首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sweatt JD 《Cell》2007,129(1):23-24
Molecular genetic techniques are beginning to bring about a detailed understanding of the biochemical processes underlying complex cognitive phenomena such as memory, with investigations approaching atomic-level resolution. An excellent example of this is provided in this issue of Cell by Costa-Mattioli et al. (2007), whose results implicate a single protein dephosphorylation event in the control of long-term memory formation in mice.  相似文献   

2.
3.
4.
The attachment of the SUMO modifier to proteins controls cellular signaling pathways through noncovalent binding to SUMO-interaction motifs (SIMs). Canonical SIMs contain a core of hydrophobic residues that bind to a hydrophobic pocket on SUMO. Negatively charged residues of SIMs frequently contribute to binding by interacting with a basic surface on SUMO. Here we define acetylation within this basic interface as a central mechanism for the control of SUMO-mediated interactions. The acetyl-mediated neutralization of basic charges on SUMO prevents binding to SIMs in PML, Daxx, and PIAS family members but does not affect the interaction between RanBP2 and SUMO. Acetylation is controlled by HDACs and attenuates SUMO- and PIAS-mediated gene silencing. Moreover, it affects the assembly of PML nuclear bodies and restrains the recruitment of the corepressor Daxx to these structures. This acetyl-dependent switch thus expands the regulatory repertoire of SUMO signaling and determines the selectivity and dynamics of SUMO-SIM interactions.  相似文献   

5.
Decades of research to build programmable intelligent machines have demonstrated limited utility in complex, real-world environments. Comparing their performance with biological systems, these machines are less efficient by a factor of 1 million1 billion in complex, real-world environments. The Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program is a multifaceted Defense Advanced Research Projects Agency (DARPA) project that seeks to break the programmable machine paradigm and define a new path for creating useful, intelligent machines. Since real-world systems exhibit infinite combinatorial complexity, electronic neuromorphic machine technology would be preferable in a host of applications, but useful and practical implementations still do not exist. HRL Laboratories LLC has embarked on addressing these challenges, and, in this article, we provide an overview of our project and progress made thus far.  相似文献   

6.
7.
Diadenosine polyphosphates (diadenosine 5',5'-P(1),P(n)-polyphosphate (Ap(n)A)) are 5'-5'-phosphate-bridged dinucleosides that have been proposed to act as signaling molecules in a variety of biological systems. Isothermal titration calorimetry was used to measure the affinities of a variety of metal cations for ATP, diadenosine 5',5'-P(1),P(3)-triphosphate (Ap(3)A), diadenosine 5',5'-P(1),P(4)-tetraphosphate (Ap(4)A), and diadenosine 5',5'-P(1),P(5)-pentaphosphate (Ap(5)A). The binding of Mg(2+), Ca(2+), and Mn(2+) to ATP is shown to take place with the beta,gamma-phosphates (primary site) and be endothermic in character. The binding of Ni(2+), Cd(2+), and Zn(2+) to ATP is found to take place at both the primary site and at a secondary site identified as N-7 of the adenine ring. Binding to this second site is exothermic in character. Generally, the binding of metal cations to diadenosine polyphosphates involves a similar primary site to ATP. No exothermic binding events are identified. Critically, the binding of Zn(2+) to diadenosine polyphosphates proves to be exceptional. This appears to involve a very high affinity association involving the N-7 atoms of both adenine rings in each Ap(n)A, as well as the more usual endothermic association with the phosphate chain. The high affinity association is also endothermic in character. A combination of NMR and CD evidence is provided in support of the calorimetry data demonstrating chemical shift changes and base stacking disruptions entirely consistent with N-7 bridging interactions. N-7 bridging interactions are entirely reversible, as demonstrated by EDTA titration. Considering the effects of Zn(2+) on a wide variety of dinucleoside polyphosphate-metabolizing enzymes, we examine the possibility of Zn(2+) acting as an atomic switch to control the biological function of the diadenosine polyphosphates.  相似文献   

8.
Advancing the size and complexity of neural network models leads to an ever increasing demand for computational resources for their simulation. Neuromorphic devices offer a number of advantages over conventional computing architectures, such as high emulation speed or low power consumption, but this usually comes at the price of reduced configurability and precision. In this article, we investigate the consequences of several such factors that are common to neuromorphic devices, more specifically limited hardware resources, limited parameter configurability and parameter variations due to fixed-pattern noise and trial-to-trial variability. Our final aim is to provide an array of methods for coping with such inevitable distortion mechanisms. As a platform for testing our proposed strategies, we use an executable system specification (ESS) of the BrainScaleS neuromorphic system, which has been designed as a universal emulation back-end for neuroscientific modeling. We address the most essential limitations of this device in detail and study their effects on three prototypical benchmark network models within a well-defined, systematic workflow. For each network model, we start by defining quantifiable functionality measures by which we then assess the effects of typical hardware-specific distortion mechanisms, both in idealized software simulations and on the ESS. For those effects that cause unacceptable deviations from the original network dynamics, we suggest generic compensation mechanisms and demonstrate their effectiveness. Both the suggested workflow and the investigated compensation mechanisms are largely back-end independent and do not require additional hardware configurability beyond the one required to emulate the benchmark networks in the first place. We hereby provide a generic methodological environment for configurable neuromorphic devices that are targeted at emulating large-scale, functional neural networks.  相似文献   

9.
10.
The visual cortex analyzes motion information along hierarchically arranged visual areas that interact through bidirectional interconnections. This work suggests a bio-inspired visual model focusing on the interactions of the cortical areas in which a new mechanism of feedforward and feedback processing are introduced. The model uses a neuromorphic vision sensor (silicon retina) that simulates the spike-generation functionality of the biological retina. Our model takes into account two main model visual areas, namely V1 and MT, with different feature selectivities. The initial motion is estimated in model area V1 using spatiotemporal filters to locally detect the direction of motion. Here, we adapt the filtering scheme originally suggested by Adelson and Bergen to make it consistent with the spike representation of the DVS. The responses of area V1 are weighted and pooled by area MT cells which are selective to different velocities, i.e. direction and speed. Such feature selectivity is here derived from compositions of activities in the spatio-temporal domain and integrating over larger space-time regions (receptive fields). In order to account for the bidirectional coupling of cortical areas we match properties of the feature selectivity in both areas for feedback processing. For such linkage we integrate the responses over different speeds along a particular preferred direction. Normalization of activities is carried out over the spatial as well as the feature domains to balance the activities of individual neurons in model areas V1 and MT. Our model was tested using different stimuli that moved in different directions. The results reveal that the error margin between the estimated motion and synthetic ground truth is decreased in area MT comparing with the initial estimation of area V1. In addition, the modulated V1 cell activations shows an enhancement of the initial motion estimation that is steered by feedback signals from MT cells.  相似文献   

11.
The conformational behavior of hyaluronan (HA) polysaccharide chains in aqueous NaCl solution was characterized directly at the single-molecule level. This communication reports on one of the first single-chain atomic force microscopy (AFM) experiments performed at variable temperatures, investigating the influence of the temperature on the stability of the HA single-chain conformation. Through AFM single-molecule force spectroscopy, the temperature destabilization of a local structure was proven. This structure involved a hydrogen-bonded network along the polymeric chain, with hydrogen bonds between the polar groups of HA and possibly water, and a change from a nonrandom coil to a random coil behavior was observed when increasing the temperature from 29 +/- 1 to 46 +/- 1 degrees C. As a result of the applied force, this superstructure was found to break progressively at room temperature. The use of a hydrogen-bonding breaker solvent demonstrated the hydrogen-bonded water-bridged nature of the network structure of HA single chains in aqueous NaCl solution.  相似文献   

12.
The 5′ untranslated region of hepatitis C virus (HCV) genomic RNA contains an internal ribosome entry site (IRES) element, composed of domains II–IV, which is required for cap-independent translation initiation. Little information on the 3D structure of the whole functional HCV IRES is still available. Here, we use atomic force microscopy to visualize the HCV IRES conformation in its natural sequence context, which includes the upstream domain I and the essential, downstream domains V and VI. The 574 nt-long molecule analyzed underwent an unexpected, Mg2+-induced switch between two alternative conformations: from ‘open’, elongated morphologies at 0–2 mM Mg2+ concentration to a ‘closed’, comma-shaped conformation at 4–6 mM Mg2+. This sharp transition, confirmed by gel-shift analysis and partial RNase T1 cleavage, was hindered by the microRNA miR-122. The comma-shaped IRES-574 molecules visualized at 4–6 mM Mg2+ in the absence of miR-122 showed two arms. Our data support that the first arm would contain domain III, while the second one would be composed of domains (I–II)+(V–VI) thanks to a long-range RNA interaction between the I-II spacer and the basal region of domain VI. This reinforces the previously described structural continuity between the HCV IRES and its flanking domains I, V and VI.  相似文献   

13.
14.
15.
We have examined several mutants in the switch I, switch II region of rat kinesin. Pre-steady-state kinetic analysis of association and dissociation of an N256K mutant with nucleotides and microtubules demonstrates that the mutation blocks microtubule stimulation of nucleotide release and ATP hydrolysis without affecting other kinetic parameters. The results suggest that ADP release on one head may be coupled to structural changes on the other head to stimulate ATP hydrolysis. Mutations at Glu(237), a residue predicted to participate in a hydrogen-bond interaction critical for nucleotide processing, reduced or abolished microtubule-dependent ATPase activity with only minor effects on pre-steady-state rates of nucleotide release or binding. Mutations at Glu(200), a residue that could serve as an alternate electron acceptor in the above-mentioned hydrogen-bond interaction, had small effects on microtubule-dependent ATPase activity despite modestly reducing the rate at which microtubule-stimulated nucleotide release occurs. These results further clarify the pathway of coupling of ATP hydrolysis to force production.  相似文献   

16.
R. N. Richards 《CMAJ》1972,107(11):1062
  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号