首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
 Fourier transform infrared (FTIR) spectroscopy is used to compare the thermally induced conformational changes in horse, bovine and tuna ferricytochromes c in 50 mM phosphate/0.2 M KCl. Thermal titration in D2O at pD 7.0 of the amide II intensity of the buried peptide NH protons reveals tertiary structural transitions at 54  °C in horse and at 57  °C in bovine c. These transitions, which occur well before loss of secondary structure, are associated with the alkaline isomerization involving Met80 heme-ligand exchange. In tuna c, the amide-II-monitored alkaline isomerization occurs at 35  °C, followed by a second amide II transition at 50  °C revealing a hitherto unreported conformational change in this cytochrome. Amide II transitions at 50  °C (tuna) and 54  °C (horse) are also observed during the thermal titration of the CN-ligated cytochromes (where CN displaces the Met80 ligand), but a well-defined 35  °C amide II transition is absent from the titration curve of the CNadduct of tuna c. The different mechanisms suggested by the FTIR data for the alkaline isomerization of tuna and the mammalian cytochromes c are discussed. After the alkaline isomerization, loss of secondary structure and protein aggregation occur within a 5  °C range with T m values at 74  °C (bovine c), 70  °C (horse c) and 65  °C (tuna c), as monitored by changes in the amide I′ bands. The FTIR spectra were also used to compare the secondary structures of the ferricytochromes c at 25  °C. Curve fitting of the amide I (H2O) and amide I′ (D2O) bands reveals essentially identical secondary structure in horse and bovine c, whereas splitting of the α-helical absorption of tuna c indicates the presence of less-stable helical structures. CN adduct formation results in no FTIR-detectable changes in the secondary structures of either tuna or horse c, indicating that Met80 ligation does not influence the secondary structural elements in these cytochromes. The data provided here demonstrate for the first time that the selective thermal titration of the amide II intensity of buried peptide NH protons in D2O is a powerful tool in protein conformational analysis. Received: 1 April 1999 / Accepted: 24 August 1999  相似文献   

2.
We used tritium-labeled water to measure total body water, water influx (which approximated oxidative water production) and water efflux in free-flying tippler pigeons (Columba livia) during flights that lasted on average 4.2 h. At experimental air temperatures ranging from 18 to 27 °C, mean water efflux by evaporation and excretion [6.3 ± 1.3 (SD) ml · h−1, n = 14] exceeded water influx from oxidative water and inspired air (1.4 ± 0.7 ml · h−1, n = 14), and the birds dehydrated at 4.9 ± 0.9 ml · h−1. This was not significantly different from gravimetrically measured mass loss of 6.2 ± 2.1 g · h−1 (t = 1.902, n = 14, P>0.05). This flight-induced dehydration resulted in an increase in plasma osmolality of 4.3 ± 3.0 mosmol · kg−1 · h−1 during flights of 3–4 h. At 27 °C, the increase in plasma osmolality above pre-flight levels (ΔP osm = 7.6±4.29 mosmol · kg−1 · h−1, n = 6) was significantly higher than that at 18 °C (ΔP osm = 0.83±2.23 mosmol · kg−1 · h−1, (t = 3.43, n = 6, P < 0.05). Post-flight haematocrit values were on average 1.1% lower than pre-flight levels, suggesting plasma expansion. Water efflux values during free flight were within 9% of those in the one published field study (Gessaman et al. 1991), and within the range of values for net water loss determined from mass balance during wind tunnel experiments (Biesel and Nachtigall 1987). Our net water loss rates were substantially higher than those estimated by a simulation model (Carmi et al. 1992) suggesting some re-evaluation of the model assumptions is required. Accepted: 8 April 1997  相似文献   

3.
This study compares the thermal ecology of male bearded dragon lizards (Pogona barbata) from south-east Queensland across two seasons: summer (1994–1995) and autumn (1995). Seasonal patterns of body temperature (T b) were explored in terms of changes in the physical properties of the thermal environment and thermoregulatory effort. To quantify thermoregulatory effort, we compared behavioral and physiological variables recorded for observed lizards with those estimated for a thermoconforming lizard. The study lizards' field T bs varied seasonally (summer: grand daily mean (GDM) 34.6 ± 0.6°C, autumn: GDM 27.5 ± 0.3°C) as did maximum and minimum available operative temperatures (summer: GDM T max 42.1 ± 1.7°C, T min 32.2 ± 1.0°C, autumn: GDM T max 31.7 ± 1.2°C, T min 26.4 ± 0.5°C). Interestingly, the range of temperatures that lizards selected in a gradient (selected range) did not change seasonally. However, P. barbata thermoregulated more extensively and more accurately in summer than in autumn; lizards generally displayed behaviors affecting heat load nonrandomly in summer and randomly in autumn, leading to the GDM of the mean deviations of lizards' field T bs from their selected ranges being only 2.1 ± 0.5°C in summer, compared to 4.4 ± 0.5°C in autumn. This seasonal difference was not a consequence of different heat availability in the two seasons, because the seasonally available ranges of operative temperatures rarely precluded lizards from attaining field T bs within their selected range, should that have been the goal. Rather, thermal microhabitat distribution and social behavior appear to have had an important influence on seasonal levels of thermoregulatory effort. Received: 28 April 1997 / Accepted: 29 December 1997  相似文献   

4.
The influx of glucose into the brain and plasma glucose disappearance were estimated in rainbow trout (Oncorhynchus mykiss) intravenously injected (1 ml · kg−1 body weight) with a single dose (15 μCi · kg−1 body weight) of 3-O-methyl-D-[U-14C]glucose ([U-14C]-3-OMG) at different times (2–160 min), and after intravenous injection at 15 min of increased doses (10–60 μCi · kg−1 body weight) of [U-14C]-3-OMG. Brain and plasma radiotracer concentrations were measured, and several kinetic parameters were calculated. The apparent brain glucose influx showed a maximum after 15–20 min of injection then decreased to a plateau after 80 min. Brain distribution space of 3-OMG increased from 2 min to 20 min reaching equilibrium from that time onwards at a value of 0.14 ml · g−1. The unidirectional clearance of glucose from blood to brain (k1) and the fractional clearance of glucose from brain to blood (k2) were estimated to be 0.093 ml · min−1 · g−1, and 0.867 min−1, respectively. A linear increase was observed in brain and plasma radiotracer concentrations when increased doses of [U-14C]-3-OMG were used. All these findings support a facilitative transport of glucose through the blood-brain barrier of rainbow trout with characteristics similar to those observed in mammals. The injection of different doses of melatonin (0.25–1.0 mg · kg−1) significantly increased brain glucose influx suggesting a possible role for melatonin in the regulation of glucose transport into the brain. Accepted: 26 January 2000  相似文献   

5.
A laboratory study investigated the metabolic physiology, and response to variable periods of water and sodium supply, of two arid-zone rodents, the house mouse (Mus domesticus) and the Lakeland Downs short-tailed mouse (Leggadina lakedownensis) under controlled conditions. Fractional water fluxes for M. domesticus (24 ± 0.8%) were significantly higher than those of L. lakedownensis (17 ± 0.7%) when provided with food ad libitum. In addition, the amount of water produced by M. domesticus and by L. lakedownensis from metabolic processes (1.3 ± 0.4 ml · day−1 and 1.2 ± 0.4 ml · day−1, respectively) was insufficient to provide them with their minimum water requirement (1.4 ± 0.2 ml · day−1 and 2.0 ± 0.3 ml · day−1, respectively). For both species of rodent, evaporative water loss was lowest at 25 °C, but remained significantly higher in M. domesticus (1.1 ± 0.1 mg H2O · g−0.122 · h−1) than in L. lakedownensis (0.6 ± 0.1 mg H2O · g−0.122 · h−1). When deprived of drinking water, mice of both species initially lost body mass, but regained it within 18 days following an increase in the amount of seed consumed. Both species were capable of drinking water of variable saline concentrations up to 1 mol · l−1, and compensated for the increased sodium in the water by excreting more urine to remove the sodium. Basal metabolic rate was significantly higher in M. domesticus (3.3 ± 0.2 mg O2 · g−0.75 · h−1) than in L. lakedownensis (2.5 ± 0.1 mg O2 · g−0.75 · h−1). The study provides good evidence that water flux differences between M. domesticus and L. lakedownensis in the field are due to a requirement for more water in M. domesticus to meet their physiological and metabolic demands. Sodium fluxes were lower than those observed in free-ranging mice, whose relatively high sodium fluxes may reflect sodium associated with available food. Accepted: 16 August 1999  相似文献   

6.
Saponified vernonia oil was converted exclusively to poly(β-hydroxybutyrate) (PHB) by Alcaligenes eutrophus in a single-stage batch culture. After harvesting, centrifugation followed by lyophilization, the resulting dried cells contained up to 42.8 wt% PHB having a peak molecular mass of 381 863 Da, weight-average molecular mass of 308 390 Da, and a polydispersity of 1.1. The PHB had a melting point (Tm) range of 163–174°C with a maximum at 172°C (lit. Tm, 175°C), and heat of fusion of 18.43 cal g−1. Fermentation performed under varying conditions of nitrogen limitation indicated that there was no significant effect of nitrogen concentration on the molecular mass of PHB produced from vernonia oil by A. eutrophus. Received 27 March 1998/ Accepted in revised form 17 July 1998  相似文献   

7.
A wet suit may not provide adequate thermal protection when diving in moderately cold water (17–18°C), and any resultant mild hypothermia may impair performance during prolonged diving. We studied heat exchange during a dive to a depth of 5 m in sea water (17–18.5°C) in divers wearing a full wet suit and using closed-circuit oxygen breathing apparatus. Eight fin swimmers dived for 3.1 h and six underwater scooter (UWS) divers propelled themselves through the water for 3.7 h. The measurements taken throughout the dive were the oxygen pressure in the cylinder and skin and rectal temperatures (T re). Each subject also completed a cold score questionnaire. The T re decreased continuously in all subjects. Oxygen consumption in the fin divers (1.40 l · min−1) was higher than that of the UWS divers (1.05 l · min−1). The mean total insulation was 0.087°C · m2 · W−1 in both groups. Mean body insulation was 37% of the total insulation (suit insulation was 63%). The reduction in T re over the 1st hour was related to subcutaneous fat thickness. There was a correlation between cold score and T re at the end of 1 h, but not after that. A full wet suit does not appear to provide adequate thermal protection when diving in moderately cold water. Accepted: 21 January 1997  相似文献   

8.
The costs of arousal from induced torpor were measured in the striped-faced dunnart (Sminthopsis macroura; ca. 25 g) under two experimental ambient temperature cycles. The sinusoidal-type temperature cycles were designed to evaluate the effects of passive, ambient temperature heating during arousal from torpor in these insectivorous marsupials. It was hypothesised that diel ambient temperature cycles may offer significant energy savings during arousal in animals that employ daily torpor in summer as a response to unpredictable food availability. The cost of arousal in animals in which passive, exogenous heating occurred was significantly lower than that in animals not exposed to an ambient temperature cycle. The total cost of all three phases of torpor (entry, maintenance and arousal) was almost halved when animals were exposed to an ambient heating cycle from 15 °C to 25 °C over a 24-h period. In all animals, irrespective of the experimental ambient temperature cycle employed, the minimum torpor body temperature was 17–18 °C. The body temperature (Tb) of animals exposed to exogenous heating increased from the torpor Tb minimum to a mean value of 22.59 °C before endogenous heat production commenced. This relatively small increase in Tb of ca. 5 °C through `free' passive heating was sufficient to account for the significant ca. three-fold decrease in the cost of arousal and may represent an important energetic aid to free-ranging animals. Accepted: 4 October 1998  相似文献   

9.
 The electrochemistry of a water-soluble fragment from the CuA domain of Thermus thermophilus cytochrome ba 3 has been investigated. At 25  °C, CuA exhibits a reversible reduction at a pyridine-4-aldehydesemicarbazone-modified gold electrode (0.1 M Tris, pH 8) with E° = 0.24 V vs NHE. Thermodynamic parameters for the [Cu(Cys)2Cu]+/0 electrode reaction were determined by variable-temperature electrochemistry (ΔS°rc = –5.4(12) eu, ΔS° = –21.0(12) eu, ΔH° = –11.9(4) kcal/mol;ΔG° = –5.6 (11) kcal/mol). The relatively small reaction entropy is consistent with a low reorganization energy for [Cu(Cys)2Cu]+/0 electron transfer. An irreversible oxidation of [Cu(Cys)2Cu]+ at 1 V vs NHE confirms that the CuII:CuII state of CuA is significantly destabilized relative to the CuII state of analogous blue-copper proteins. Received: 3 June 1996 / Accepted: 26 August 1996  相似文献   

10.
We studied in batch reactors the kinetics and characterization of 70 °C, volatile fatty acids (VFAs)-grown, upflow anaerobic sludge blanket granular sludge with 55 and 35 °C sludge as reference. The half-saturation constant (K s), the inhibition constant (K i), the maximum specific methane production rate (μCH4max), and the inhibition response coefficient (n) of the 70 °C sludge were 6.15 mM, 48.2 mM, 0.132 h−1, and 2.48, respectively, while no inhibition occurred at 55 and 35 °C, where the K s was 3.67 and 3.82 mM, respectively. At 70 °C, the highest initial specific methanogenic activity (ISMA, 0.311 gCH4-COD per gram volatile solids per day) on VFAs was about 12–15% lower than that on acetate and three to four times less than the ISMA for the 55 and 35 °C sludge. In the acetate conversion study, residual acetate (79 mg l−1) at 70 °C was three to five times higher than that at 55 and 35 °C. Further, the methane produced as percentage of the acetate consumed at 70 °C (89%) was lower than that at 55 (95%) and 35 °C (97%). At 70 °C, 10% of the ISMA remained after 15 days of starvation as compared to 26% (55 °C) and 92% (35 °C) after 30 days of starvation. Thus, the kinetics of the 70 °C granular sludge seem to differ from those at 55 and 35 °C. Received: 1 February 1999 / Accepted: 20 March 1999  相似文献   

11.
We examined the relationship between body temperature (Tb) of free flying pigeons and ambient water vapor pressure and temperature. Core or near core Tb of pigeons were measured using thermistors inserted into the cloaca and connected to small transmitters mounted on the tail feathers of free flying tippler pigeons (Columba livia). Wet and dry bulb temperatures were measured using modified transmitters mounted onto free-flying pigeons. These allowed calculation of relative humidity and hence water vapor pressure at flight altitudes. Mean Tb during flight was 42.0 ± 1.3 °C (n = 16). Paired comparisons of a subset of this data indicated that average in-flight Tb increased significantly by 1.2 ± 0.7 °C (n = 7) over that of birds at rest (t = −4.22, P < 0.05, n = 7) within the first 15 min of takeoff. In addition, there was a small but significant increase in Tb with increasing ambient air (Ta) when individuals on replicate flights (n = 35) were considered. Inclusion of water vapor pressure into the regression model did not improve the correlation between body temperature and ambient conditions. Flight Tb also increased a small (0.5 °C) but significant amount (t = 2.827, P < 0.05, n = 8) from the beginning to the end of a flight. The small response of Tb to changing flight conditions presumably reflects the efficiency of convection as a heat loss mechanism during sustained regular flight. The increase in Tb on landing that occurred in some birds was a probable consequence of a sudden reduction in convective heat loss. Accepted: 2 February 1999  相似文献   

12.
 − 1  s − 1 at 25 °C and pH 7.4 in Tris.HCl buffer and 0.1 M KCl. At 25 °C, Zn7-metallothionein also exchanged metal ions with Cd-carbonic anhydrase with a rate constant of 0.33 ± 0.02 M − 1 s − 1 to reconstitute enzymatically active protein. Cd-carbonic anhydrase reacted within the time of mixing with the peptide sequence 49–61 of rabbit metallothionein 2 which contains four cysteinyl residues, leading to the exchange of most of the Cd2+ into the peptide. At pH 7.4 and 25 °C, Cd2+ has higher affinity for apometallothionein than for the apo-peptide. Received: 25 February 1999 / Accepted: 17 September 1999  相似文献   

13.
 The expression of the Arabidopsis heat shock protein (HSP) 18.2 promoter-β-d-glucuronidase (GUS) chimera gene was investigated in transgenic Nicotiana plumbaginifolia plants during the recovery phase at normal temperatures (20–22  °C) after a heat shock (HS) treatment. GUS activity increased during the recovery phase after HS at 42  °C for 2 h, and maximal GUS activity was observed after 12 h at normal temperatures, at levels 50–100 times higher than the activity immediately after HS. After HS at 44  °C, little GUS activity was observed during the first 20–24 h at normal temperatures, but the activity increased gradually thereafter, to reach a maximum at 40–50 h. After HS at 45  °C, no GUS activity was observed throughout the experimental period. RT-PCR analysis showed that GUS mRNA remained for 10 h after a 2-h HS at 42  °C and for 40 h after a 2-h HS at 44  °C. These findings demonstrate that brief HS treatment, especially at a sublethal temperature, induces a long-term accumulation of HSP-GUS mRNA during the recovery phase. Received: 31 July 1998 / Revision received: 4 November 1998 / Accepted: 19 February 1999  相似文献   

14.
The triggering of transitory egg desertion in fasting and incubating blue petrels (Halobaena caerulea, nocturnal burrowing seabirds living in the subantarctic region) was investigated by continuously monitoring both body temperature (T sto) and egg temperature (T egg) with a telemetry system, and by measuring body mass (BM) loss. The birds were kept captive in their burrow and incubated day and night without any interruption; there was no day-night cycle in T sto and T egg, which averaged 39.9 °C and 32.0 °C, respectively. There was no evidence of hypothermia as a way to save energy in this fasting situation. Egg desertion occurred at night and was an abrupt and definitive phenomenon reflected by a simultaneous fall in T egg and a peak in T sto. After egg desertion, a distinct day-night cycle of body temperature was observed, T sto being 0.6 °C higher during night-time (P < 0.05), probably reflecting increased nocturnal activity. BM at egg desertion averaged 166.7 ± 3.8 g in telemetered birds and 164.4 ± 1.6 g in␣a group of free-living birds. Throughout fasting, the␣specific daily BM loss remained at 46 ± 1 g · kg−1 · day−1, but increased sharply below a critical BM of 160.0 ± 2.5 g. Thus, fasting incubating blue petrels spontaneously desert their egg when reaching a BM threshold. This BM is very close to a critical value in fasting birds and mammals that corresponds to a critical depletion of fat stores and to a shift from lipid to protein utilization. This strongly suggests that such a metabolic shift triggers behavioural changes leading to egg desertion and refeeding, which is of great relevance to the understanding of the long-term control of food intake and BM. Accepted: 16 July 1998  相似文献   

15.
The relationship between body temperature (T b) and the plasma concentrations of arginine vasotocin (AVT) and angiotensin II (AII) was examined in conscious, adult Pekin ducks. Exposure of birds to an ambient temperature of 40 °C for 3 h increased T b by about 1.5 °C and increased breathing rate five-fold. Plasma osmolality was elevated from the normothermic value of 294.9 ± 1.4 mosmol kg−1 by about 8 mosmol kg−1 Circulating AVT levels increased by about 2 pg ml−1 from a basal concentration of 4.98 ± 0.15 pg ml−1, a rise which could be accounted for by the change in osmotic status. Plasma AII concentrations were unchanged from the pre-heat exposure value of 31.8 ± 3.4 pg ml−1. Time control birds, exposed only to an ambient temperature of 22 °C demonstrated no significant changes in any of the measured variables. The results suggest that an increased T b has no direct effect on the circulating concentrations of AVT or AII in ducks. Accepted: 2 June 1997  相似文献   

16.
The objective of this study was to determine the effect of modulating the plasma concentrations of the avian antidiuretic hormone, arginine vasotocin (AVT), upon the febrile response to lipopolysaccharide (LPS) in Pekin ducks. LPS, intravenously administered into conscious control birds at a dose of 1 μg · kg−1, caused a monophasic increase in body temperature of 0.85 ± 0.12 °C associated with a Thermal Response Index of 2.5 ± 0.6 C° h. Plasma AVT concentrations in the control birds also increased with the progression of the fever response, more than doubling from their basal values. Ducks in which the circulating level of AVT had either been elevated by the intravenous infusion of the peptide or dehydration, or reduced by the administration of a specific AVT antibody prior to LPS administration, produced body temperature profiles and Thermal Response Index values that did not differ significantly from those of the control birds. The lack of any direct effect of variations in plasma AVT concentrations upon the magnitude of the fever response indicates that the LPS-induced elevation in plasma AVT is not associated with modulating the rise in body temperature obtained in avian fever. Accepted: 7 March 2000  相似文献   

17.
An improved method for the electrotransformation of wild-type Corynebacterium glutamicum (ATCC 13032) is described. The two crucial alterations to previously developed methods are: cultivation of cells used for electrotransformation at 18 °C instead of 30 °C, and application of a heat shock immediately following electrotransformation. Cells cultivated at sub optimal temperature have a 100-fold improved transformation efficiency (108 cfu μg−1) for syngeneic DNA (DNA isolated from the same species). A heat shock applied to these cells following electroporation improved the transformation efficiency for xenogeneic DNA (DNA isolated from a different species). In combination, low cultivation temperature and heat shock act synergistically and increased the transformation efficiency by four orders of magnitude to 2.5 × 106 cfu μg−1 xenogeneic DNA. The method was used to generate gene disruptions in C. glutamicum. Received: 26 March 1999 / Received revision: 9 June 1999 / Accepted: 11 June 1999  相似文献   

18.
Little is known about torpor in the tropics or torpor in megachiropteran species. We investigated thermoregulation, energetics and patterns of torpor in the northern blossom-bat Macroglossus minimus (16 g) to test whether physiological variables may explain why its range is limited to tropical regions. Normothermic bats showed a large variation in body temperature (T b) (33 to 37 °C) over a wide range of ambient temperatures (T as) and a relatively low basal metabolic rate (1.29 ml O2 g−1 h−1). Bats entered torpor frequently in the laboratory at T as between 14 and 25 °C. Entry into torpor always occurred when lights were switched on in the morning, independent of T a. MRs during torpor were reduced to about 20–40% of normothermic bats and T bs were regulated at a minimum of 23.1 ± 1.4 °C. The duration of torpor bouts increased with decreasing T a in non-thermoregulating bats, but generally terminated after 8 h in thermoregulating torpid bats. Both the mean minimum T b and MR of torpid M. minimus were higher than that predicted for a 16-g daily heterotherm and the T b was also about 5 °C higher than that of the common blossom-bat Syconycteris australis, which has a more subtropical distribution. These observations suggest that variables associated with torpor are affected by T a and that the restriction to tropical areas in M. minimus to some extent may be due to their ability to enter only very shallow daily torpor. Accepted: 22 September 1997  相似文献   

19.
The effect of environmental hypercapnia on respiratory and acid-base variables was studied in white sturgeon, Acipenser transmontanus. Blood PCO2, PO2, pH, hemoglobin concentration, and plasma lactate, glucose, catecholamines and cortisol were measured first under normocapnia (water PCO2 < 0.5 Torr, 1 Torr = 133.32 Pa), then under hypercapnia (25–35 Torr) and a final return to normocapnia at 19 ± 0.5 °C. Acute (≤ 2h) hypercapnia significantly increased arterial PCO2 (8-fold increase), ventilation frequency (2-fold increase), plasma HCO3 (2.3-fold) and decreased arterial pH (to 7.15 ± 0.02). After 24 h, norepinephrine, epinephrine and cortisol, were significantly increased, and arterial pH reached its nadir (7.10 ± 0.03). During the 72- and 96-h-periods, arterial PCO2 (24 ± 4.4 Torr) and ventilatory frequency (105 ± 5 breaths min−1) stabilized, HCO3 reached its apparent maximum (23.6 ± 0.0 mmol−1), glucose decreased by 32%, and pH increased significantly to 7.31 + 0.03. The return to normocapnia completely restored arterial PCO2 (2.5 ± 0.14 Torr), HCO3 (7.4 ± 0.59 mmol · l−1), ventilation frequency (71 ± 7 breaths · min−1), and pH (7.75 ± 0.04). Overall, hypercapnia produced a respiratory acidosis, hyperventilation, a transient norepinephrine “spike”, and increased plasma catecholamines, cortisol, and arterial PO2. The respiratory acidosis was only partially compensated (35% pH restoration) 96 h after the onset of hypercapnia and resulted in a significantly decreased blood-O2 affinity (Bohr effect), as determined by construction of in vitro blood O2 equilibrium curves at 15 °C and 20 °C. Prolonged exposure to hypercapnia may lead to acid-base disturbances and negatively affect growth of white sturgeon. Accepted: 17 August 1997  相似文献   

20.
Continuous exposure of cattle to summer heat in the absence of shade results in significant hyperthermia and impairs growth and general health. Reliable predictors of heat strain are needed to identify this condition. A 12-day study was conducted during a moderate summer heat period using 12 Angus x Simmental (Bos taurus) steers (533 ± 12 kg average body weight) to identify animal and ambient determinations of core body temperature (T core) and respiration rate (RR) responses to heat stress. Steers were provided standard diet and water ad libitum, and implanted intraperitoneally with telemetric transmitters to monitor T core hourly. Visual count of flank movement at 0800 and 1500 hours was used for RR. Dataloggers recorded air temperature (T a), and black globe temperatures (T bg) hourly to assess radiant heat load. Analysis was across four periods and 2 consecutive days averaged within each period. Average T a and T bg increased progressively from 21.7 to 30.3°C and 25.3 to 34.0°C, respectively, from the first to fourth periods. A model utilizing a quadratic function of T a explained the most variation in T core (R 2 = 0.56). A delay in response from 1 to 3 h did not significantly improve R 2 for this relationship. Measurements at 0800 and 1500 hours alone are sufficient to predict heat strain. Daily minimum core body temperature and initial 2-h rise in T a were predictors of maximum core temperature and RR. Further studies using continuous monitoring are needed to expand prediction of heat stress impact under different conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号