首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A normal distribution and a mixture model of two normal distributions in a Bayesian approach using prevalence and concentration data were used to establish the distribution of contamination of the food-borne pathogenic bacteria Listeria monocytogenes in unprocessed and minimally processed fresh vegetables. A total of 165 prevalence studies, including 15 studies with concentration data, were taken from the scientific literature and from technical reports and used for statistical analysis. The predicted mean of the normal distribution of the logarithms of viable L. monocytogenes per gram of fresh vegetables was −2.63 log viable L. monocytogenes organisms/g, and its standard deviation was 1.48 log viable L. monocytogenes organisms/g. These values were determined by considering one contaminated sample in prevalence studies in which samples are in fact negative. This deliberate overestimation is necessary to complete calculations. With the mixture model, the predicted mean of the distribution of the logarithm of viable L. monocytogenes per gram of fresh vegetables was −3.38 log viable L. monocytogenes organisms/g and its standard deviation was 1.46 log viable L. monocytogenes organisms/g. The probabilities of fresh unprocessed and minimally processed vegetables being contaminated with concentrations higher than 1, 2, and 3 log viable L. monocytogenes organisms/g were 1.44, 0.63, and 0.17%, respectively. Introducing a sensitivity rate of 80 or 95% in the mixture model had a small effect on the estimation of the contamination. In contrast, introducing a low sensitivity rate (40%) resulted in marked differences, especially for high percentiles. There was a significantly lower estimation of contamination in the papers and reports of 2000 to 2005 than in those of 1988 to 1999 and a lower estimation of contamination of leafy salads than that of sprouts and other vegetables. The interest of the mixture model for the estimation of microbial contamination is discussed.  相似文献   

2.
The fresh-cut produce industry has been the fastest-growing portion of the food retail market during the past 10 years, providing consumers with convenient and nutritious food. However, fresh-cut fruits and vegetables raise food safety concerns, because exposed tissue may be colonized more easily by pathogenic bacteria than intact produce. This is due to the higher availability of nutrients on cut surfaces and the greater potential for contamination because of the increased amount of handling. We found that applied Listeria monocytogenes populations survived and increased only slightly on fresh-cut Red Delicious apples stored at 10 degrees C but increased significantly on fresh-cut honeydew melons stored at 10 degrees C over 7 days. In addition, we examined the effect of lytic, L. monocytogenes-specific phages via two phage application methods, spraying and pipetting, on L. monocytogenes populations in artificially contaminated fresh-cut melons and apples. The phage mixture reduced L. monocytogenes populations by 2.0 to 4.6 log units over the control on honeydew melons. On apples, the reduction was below 0.4 log units. In combination with nisin (a bacteriocin), the phage mixture reduced L. monocytogenes populations by up to 5.7 log units on honeydew melon slices and by up to 2.3 log units on apple slices compared to the control. Nisin alone reduced L. monocytogenes populations by up to 3.2 log units on honeydew melon slices and by up to 2.0 log units on apple slices compared to the control. The phage titer was stable on melon slices, but declined rapidly on apple slices. The spray application of the phage and phage plus nisin reduced the bacterial numbers at least as much as the pipette application. The effectiveness of the phage treatment also depended on the initial concentration of L. monocytogenes.  相似文献   

3.
Fresh blue crab (Callinectes sapidus) meat was obtained from retail markets in Florida and sampled for viable Listeria monocytogenes. The pathogen was found in crabmeat in three of four different lots tested by enrichment and at levels of 75 CFU/g in one of the same four lots by direct plating. Next, crabmeat was steam sterilized, inoculated with a three-strain mixture of L. monocytogenes (ca. 5.5 log10 CFU/g), washed with various lactic acid bacterium fermentation products (2,000 to 20,000 arbitrary units [AU]/ml of wash) or food-grade chemicals (0.25 to 4 M), and stored at 4 degrees C. Counts of the pathogen remained relatively constant in control samples during storage for 6 days, whereas in crabmeat washed with Perlac 1911 or MicroGard (10,000 to 20,000 AU), numbers initially decreased (0.5 to 1.0 log10 unit/g) but recovered to original levels within 6 days. Numbers of L. monocytogenes cells decreased 1.5 to 2.7 log10 units/g of crabmeat within 0.04 day when washed with 10,000 to 20,000 AU of Alta 2341, enterocin 1083, or Nisin per ml. Thereafter, counts increased 0.5 to 1.6 log10 units within 6 days. After washing with food-grade chemicals, modest reductions (0.4 to 0.8 log10 unit/g) were observed with sodium acetate (4 M), sodium diacetate (0.5 or 1 M), sodium lactate (1 M), or sodium nitrite (1.5 M). However, Listeria counts in crabmeat washed with 2 M sodium diacetate decreased 2.6 log10 units/g within 6 days. In addition, trisodium phosphate reduced L. monocytogenes counts from 1.7 (0.25 M) to > 4.6 (1 M) log10 units/g within 6 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Interest in fresh vegetables is on the increase due to their protective effects against several diseases. Listeria monocytogenes is a human pathogen easily found in vegetables. The purpose of this review article is to analyse the influence of the agricultural practices applied in pre-harvest, the environmental biotic and abiotic factors characterising the cultivation field, as well as the handling procedures at harvest that might greatly influence the presence and the levels of L. monocytogenes in fresh produce. This review article describes the routes of L. monocytogenes infections in relation to the agricultural practices commonly applied during vegetable cultivation. It also analyses the influence of the different cultivation systems as well as the main environmental factors and compares the effects of manual and mechanical harvest retrieving data from literature. Even though post-harvest sanitising is a common practice, fresh produce is still responsible for foodborne diseases. In the last years, the number of cases of human listeriosis is on the increase, and the consumption of fresh vegetables is being more frequently associated with these events. While still relatively rare, human listeriosis is one of the most serious food-borne diseases and continues to be one of the more lethal foodborne pathogens associated with vegetables. Seed decontamination represents an efficient operation to reduce microbial plant internalisation and diffusion. Since L. monocytogenes persists in soil for long periods, the hydroponic systems have been found to reduce its contamination of vegetables.  相似文献   

5.
AIMS: To investigate the presence of viable but non-culturable Listeria monocytogenes during survival on parsley leaves under low relative humidity (RH) and to evaluate the ability of L. monocytogenes to recover from VBNC to culturable state under satured humidity. METHODS AND RESULTS: Under low RH (47-69%) on parsley leaves, the initial number of L. monocytogenes populations counted on non selective media (10(9) L. monocytogenes per leaf on TSA) was reduced by 6 log10 scales in 15 days, whereas number of viable L. monocytogenes counted under the microscope was reduced by 3-4 log10 scales, indicating the presence of VBNC cells. This was demonstrated on three L. monocytogenes strains (EGDe, Bug 1995 and LmP60). Changing from low to 100% RH permitted an increase of the culturable counts of L. monocytogenes and this growth was observed only when residual culturable cells were present. Moreover, VBNC L. monocytogenes inoculated on parsley leaves did not become culturable after incubation under 100% RH. CONCLUSIONS: Dry conditions induced VBNC L. monocytogenes on parsley leaves but these VBNC were likely unable to recover culturability after transfer to satured humidity. SIGNIFICANCE AND IMPACT OF STUDY: Enumeration on culture media presumably under-estimates the number of viable L. monocytogenes on fresh produce after exposure to low RH.  相似文献   

6.
Listeria monocytogenes serotypes in Italian meat products   总被引:3,自引:1,他引:2  
Listeria monocytogenes was isolated and enumerated in Italian fresh ground beef, fresh pork meat and industrial sausages. All the samples contained less than 2000 L. monocytogenes /g of meat. The main serotype isolated was 1/2c (56.9%). Other serotypes isolated included 1/2a, 1/2b, 3c, 4b and 4c. A prevalence of less virulent serotypes over more virulent was thus noted. It seems that the low incidence of listeriosis from these products is related to the low concentration and virulence of L. monocytogenes present.  相似文献   

7.
Egg white lysozyme killed or prevented growth of Listeria monocytogenes Scott A in several foods. Lysozyme was more active in vegetables than in animal-derived foods that we tested. For maximum activity in certain foods, EDTA was required in addition to lysozyme. Lysozyme with EDTA effectively killed inoculated populations of 10(4) L. monocytogenes per g in fresh corn, fresh green beans, shredded cabbage, shredded lettuce, and carrots during storage at 5 degrees C. Control incubations without lysozyme supported growth of L. monocytogenes to 10(6) to 10(7)/g. Lysozyme had less activity in animal-derived foods, including fresh pork sausage (bratwurst) and Camembert cheese. In bratwurst, lysozyme with EDTA prevented L. monocytogenes from growing for 2 to 3 weeks but did not kill significant numbers of cells and did not prevent eventual growth. The control sausages not containing lysozyme supported rapid and heavy growth, which indicated that lysozyme was bacteriostatic for 2 to 3 weeks in fresh pork sausage. We also prepared Camembert cheese containing 10(4) L. monocytogenes cells per g and investigated the changes during ripening in cheeses supplemented with lysozyme and EDTA. Cheeses with lysozyme by itself or together with EDTA reduced the L. monocytogenes population by approximately 10-fold over the first 3 to 4 weeks of ripening. In the same period, the control cheese wheels without added lysozyme with and without chelator slowly started to grown and eventually reached 10(6) to 10(7) CFU/g after 55 days of ripening.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Egg white lysozyme killed or prevented growth of Listeria monocytogenes Scott A in several foods. Lysozyme was more active in vegetables than in animal-derived foods that we tested. For maximum activity in certain foods, EDTA was required in addition to lysozyme. Lysozyme with EDTA effectively killed inoculated populations of 10(4) L. monocytogenes per g in fresh corn, fresh green beans, shredded cabbage, shredded lettuce, and carrots during storage at 5 degrees C. Control incubations without lysozyme supported growth of L. monocytogenes to 10(6) to 10(7)/g. Lysozyme had less activity in animal-derived foods, including fresh pork sausage (bratwurst) and Camembert cheese. In bratwurst, lysozyme with EDTA prevented L. monocytogenes from growing for 2 to 3 weeks but did not kill significant numbers of cells and did not prevent eventual growth. The control sausages not containing lysozyme supported rapid and heavy growth, which indicated that lysozyme was bacteriostatic for 2 to 3 weeks in fresh pork sausage. We also prepared Camembert cheese containing 10(4) L. monocytogenes cells per g and investigated the changes during ripening in cheeses supplemented with lysozyme and EDTA. Cheeses with lysozyme by itself or together with EDTA reduced the L. monocytogenes population by approximately 10-fold over the first 3 to 4 weeks of ripening. In the same period, the control cheese wheels without added lysozyme with and without chelator slowly started to grown and eventually reached 10(6) to 10(7) CFU/g after 55 days of ripening.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
AIMS: The prevalence, level of contamination and epidemiological profile of Listeria monocytogenes were investigated in two meat-producing plants during a 20-month period. METHODS AND RESULTS: Sampling for L. monocytogenes was carried out in a cattle slaughterhouse (n = 72) and a swine meat-processing plant (n = 68) during a 20-month period. Swabs and food samples were analysed with the most probable number (MPN) technique for L. monocytogenes and the isolated strains were characterized by AscI-restriction analysis pulsed-field gel electrophoresis (REA-PFGE). Contamination of meat and meat products was always at low level (below 50 MPN per gram). The seven L. monocytogenes positive samples isolated in the bovine slaughterhouse yielded strains with the same REA-PFGE profile. However, the seven strains isolated in the swine meat processing plant showed six different profiles. Two of them showed indistinguishable profiles with L. monocytogenes strains collected from other meat processing facilities located in the same area. SIGNIFICANCE AND IMPACT OF THE STUDY: The genotyping method is a valuable tool to investigate contamination sources. The study of REA-PFGE profiles indicated that environmental contamination was probably responsible for the persistence of over 16 months of one strain of L. monocytogenes in the cattle slaughterhouse. Several meat suppliers could be responsible for the contamination in the pig meat processing facility, and this is confirmed by the finding of some identical strain in other meat processing facilities located in the same area.  相似文献   

10.
Experiments were carried out to examine the behavior of Listeria monocytogenes in the course of fabrication and storage of smoked salmon. In three trials, raw salmon fillets were surface inoculated with L. monocytogenes, marinated, smoked at 26 to 30 degrees C, and stored at 4 or 10 degrees C for up to 30 days. At different times during the fabrication and storage, samples were taken and, by means of the three-tube most probable number (MPN) method, quantitatively analyzed for the concentration of L. monocytogenes. The initial Listeria levels in the raw fillets were 10(4) MPN/g in trial 1, 10(1) MPN/g in trial 2, and 10(2) MPN/g in trial 3. During the fabrication, neither an increase nor a decrease of the inoculated quantities was observed. During the storage, however, a significant growth was measured in two of three trials; in trial 1, a 2.5 log10 MPN/g increase and in trial 3, an increase of even 4.5 log10 MPN/g. In the second trial, the Listeria level remained about the same. The results indicate the importance of preventing pre- and postprocessing contamination of L. monocytogenes in raw and smoked salmon. Because a significant increase of L. monocytogenes was measured during storage, there might be an increasing risk of infection for the consumer by storing such fish for a long time.  相似文献   

11.
S Guyer  T Jemmi 《Applied microbiology》1991,57(5):1523-1527
Experiments were carried out to examine the behavior of Listeria monocytogenes in the course of fabrication and storage of smoked salmon. In three trials, raw salmon fillets were surface inoculated with L. monocytogenes, marinated, smoked at 26 to 30 degrees C, and stored at 4 or 10 degrees C for up to 30 days. At different times during the fabrication and storage, samples were taken and, by means of the three-tube most probable number (MPN) method, quantitatively analyzed for the concentration of L. monocytogenes. The initial Listeria levels in the raw fillets were 10(4) MPN/g in trial 1, 10(1) MPN/g in trial 2, and 10(2) MPN/g in trial 3. During the fabrication, neither an increase nor a decrease of the inoculated quantities was observed. During the storage, however, a significant growth was measured in two of three trials; in trial 1, a 2.5 log10 MPN/g increase and in trial 3, an increase of even 4.5 log10 MPN/g. In the second trial, the Listeria level remained about the same. The results indicate the importance of preventing pre- and postprocessing contamination of L. monocytogenes in raw and smoked salmon. Because a significant increase of L. monocytogenes was measured during storage, there might be an increasing risk of infection for the consumer by storing such fish for a long time.  相似文献   

12.
The fate of Listeria monocytogenes on green leafy vegetables (broad-leaved endive, curly-leaved endive, butterhead lettuce and lamb's lettuce) was studied. Populations of L. monocytogenes increased by 1.5 log in 7 d at 10°C on broad-leaved endives and butterhead lettuce, by 0.5 log on curly-leaved endives and decreased by 1 log on lamb's lettuce. Growth patterns of the epiphytic microflora were similar among the four salad types.  相似文献   

13.
AIM: To investigate Listeria monocytogenes contamination and behaviour in naturally contaminated French cold-smoked salmon (CSS). METHOD AND RESULTS: Between 2001 and 2004, L. monocytogenes was detected in 104 of 1010 CSS packs, produced by nine French plants, with different prevalence (from 0% to 41%). The initial contamination, measured with a sensitive filtration method, was low (92% of contaminated products below 1 CFU g(-1)) and growth was limited. CONCLUSION: Growth was consistent with results of a predictive model including microbial competition. SIGNIFICANCE AND IMPACT OF THE STUDY: To be included in a quantitative risk assessment.  相似文献   

14.
Behaviour of Listeria monocytogenes under combined chilling processes   总被引:2,自引:0,他引:2  
The behaviour of Listeria monocytogenes under chilling processes was investigated. Growth kinetics were measured at 7 degrees C in TSBYE culture medium as a function of pH (7.2 and 6.2), pre-incubation temperatures (4 or 7 degrees C), cooling (0.05 or 0.1 degree C min-1) and freezing (0 and -5 degrees C) treatments. Growth curves generated were fitted by Gompertz and Baranyi functions. The Baranyi function gave better parameter estimation values than the Gompertz equation which over-estimated the specific growth rate values. Listeria monocytogenes grew at 7 degrees C without a lag phase, except when the sub-culture was performed at 37 degrees C, whereas the specific growth rate was affected by the chilling processes. In fact, L. monocytogenes grew slightly faster at 7 degrees C when a 4 degrees C pre-incubation treatment was applied than with a 7 degrees C pre-incubation treatment. These results suggest that to mimic the processes of contamination in industry, predictive microbiology studies with L. monocytogenes should be performed with organisms cultured at low temperatures.  相似文献   

15.
Exudative fluids were collected from packages of five brands of all-beef wieners and inoculated to contain 10(4) to 10(5) CFU of a three-strain (Scott A, V7, and 101M) mixture of Listeria monocytogenes per ml. Listeriae were inactivated (decrease of 0.61 to 3.8 log10 CFU/ml) in all five exudates held at 4 degrees C for 29 days. L. monocytogenes grew (increase of 1.7 to 3.6 log10 CFU/ml) in two of five exudates held at 25 degrees C for 6 days. Exudate was inoculated with a derivative of Pediococcus acidilactici H (designated JBL1095) or treated with pediocin AcH (a bacteriocin) as a novel approach to control the growth of L. monocytogenes in wiener exudates. Initially, pediocin AcH caused rapid death (decrease of 0.74 log10 CFU/ml in 2 h) of L. monocytogenes in exudate held at 4 degrees C, but thereafter the inactivation was similar to that in control exudate (L. monocytogenes only) or exudate containing L. monocytogenes plus JBL1095. At 25 degrees C, L. monocytogenes grew in the presence of JBL1095 during the first 64 h of incubation, but thereafter the numbers of the pathogen decreased appreciably (5.84 log10 CFU/ml in 3 days). In the presence of pediocin AcH, there was a gradual decrease in numbers of L. monocytogenes throughout the storage period at 25 degrees C. These data indicate that added biopreservatives can potentiate and amplify the intrinsic listeriostatic or listericidal activity of wiener exudate.  相似文献   

16.
Exudative fluids were collected from packages of five brands of all-beef wieners and inoculated to contain 10(4) to 10(5) CFU of a three-strain (Scott A, V7, and 101M) mixture of Listeria monocytogenes per ml. Listeriae were inactivated (decrease of 0.61 to 3.8 log10 CFU/ml) in all five exudates held at 4 degrees C for 29 days. L. monocytogenes grew (increase of 1.7 to 3.6 log10 CFU/ml) in two of five exudates held at 25 degrees C for 6 days. Exudate was inoculated with a derivative of Pediococcus acidilactici H (designated JBL1095) or treated with pediocin AcH (a bacteriocin) as a novel approach to control the growth of L. monocytogenes in wiener exudates. Initially, pediocin AcH caused rapid death (decrease of 0.74 log10 CFU/ml in 2 h) of L. monocytogenes in exudate held at 4 degrees C, but thereafter the inactivation was similar to that in control exudate (L. monocytogenes only) or exudate containing L. monocytogenes plus JBL1095. At 25 degrees C, L. monocytogenes grew in the presence of JBL1095 during the first 64 h of incubation, but thereafter the numbers of the pathogen decreased appreciably (5.84 log10 CFU/ml in 3 days). In the presence of pediocin AcH, there was a gradual decrease in numbers of L. monocytogenes throughout the storage period at 25 degrees C. These data indicate that added biopreservatives can potentiate and amplify the intrinsic listeriostatic or listericidal activity of wiener exudate.  相似文献   

17.
Muscle, organ, and lymphoid tissues of four Holstein cows experimentally inoculated (intravenously) with Listeria monocytogenes were examined 2, 6, or 54 days postinoculation for the presence of the organism by direct plating and cold enrichment procedures. L. monocytogenes was isolated from 66% of the tissues sampled; 38% of the isolations were attributed to the use of cold enrichment. Isolation of the organism from muscle tissue was possible only with animals inoculated 2 days before slaughter. The fate of L. monocytogenes during the manufacture and storage of fermented hard salami made from this meat also was determined. Three sausage treatments were evaluated: (i) uninoculated control sausage, (ii) "naturally" contaminated sausage (NC) made from meat of an experimentally inoculated cow, and (iii) sausage made from beef inoculated with a laboratory culture of L. monocytogenes (I). Initial Listeria levels in NC and I sausage were 10(3) CFU/g in trial 1 and 10(4) CFU/g in trial 2. Numbers of L. monocytogenes decreased by approximately 1 log10 CFU/g during fermentation and decreased further during drying and refrigerated storage. Small numbers (less than or equal to 20 CFU/g) of L. monocytogenes were present in I and NC sausage at the end of 12 weeks of refrigerated storage; recovery of these organisms generally depended on the use of an enrichment procedure. The results indicate that L. monocytogenes does not multiply during the fermentation and drying processes typical of hard salami manufacture but that survival may occur if the organism is initially present at greater than or equal to 10(3) CFU/g.  相似文献   

18.
Muscle, organ, and lymphoid tissues of four Holstein cows experimentally inoculated (intravenously) with Listeria monocytogenes were examined 2, 6, or 54 days postinoculation for the presence of the organism by direct plating and cold enrichment procedures. L. monocytogenes was isolated from 66% of the tissues sampled; 38% of the isolations were attributed to the use of cold enrichment. Isolation of the organism from muscle tissue was possible only with animals inoculated 2 days before slaughter. The fate of L. monocytogenes during the manufacture and storage of fermented hard salami made from this meat also was determined. Three sausage treatments were evaluated: (i) uninoculated control sausage, (ii) "naturally" contaminated sausage (NC) made from meat of an experimentally inoculated cow, and (iii) sausage made from beef inoculated with a laboratory culture of L. monocytogenes (I). Initial Listeria levels in NC and I sausage were 10(3) CFU/g in trial 1 and 10(4) CFU/g in trial 2. Numbers of L. monocytogenes decreased by approximately 1 log10 CFU/g during fermentation and decreased further during drying and refrigerated storage. Small numbers (less than or equal to 20 CFU/g) of L. monocytogenes were present in I and NC sausage at the end of 12 weeks of refrigerated storage; recovery of these organisms generally depended on the use of an enrichment procedure. The results indicate that L. monocytogenes does not multiply during the fermentation and drying processes typical of hard salami manufacture but that survival may occur if the organism is initially present at greater than or equal to 10(3) CFU/g.  相似文献   

19.
Depending on its composition and metabolic activity, the natural flora that may be established in a meat plant environment can affect the survival, growth, and acid tolerance response (ATR) of bacterial pathogens present in the same niche. To investigate this hypothesis, changes in populations and ATR of inoculated (10(5) CFU/ml) Listeria monocytogenes were evaluated at 35 degrees C in water (10 or 85 degrees C) or acidic (2% lactic or acetic acid) washings of beef with or without prior filter sterilization. The model experiments were performed at 35 degrees C rather than lower (8.0 log CFU/ml) by day 1. The pH of inoculated water washings decreased or increased depending on absence or presence of natural flora, respectively. These microbial and pH changes modulated the ATR of L. monocytogenes at 35 degrees C. In filter-sterilized water washings, inoculated L. monocytogenes increased its ATR by at least 1.0 log CFU/ml from days 1 to 8, while in unfiltered water washings the pathogen was acid tolerant at day 1 (0.3 to 1.4 log CFU/ml reduction) and became acid sensitive (3.0 to >5.0 log CFU/ml reduction) at day 8. These results suggest that the predominant gram-negative flora of an aerobic fresh meat plant environment may sensitize bacterial pathogens to acid.  相似文献   

20.
The effect of bacteriocin, piscicolin 126, on the growth of Listeria monocytogenes and cheese starter bacteria was investigated in milk and in Camembert cheese manufactured from milk challenged with 10(2) cfu ml(-1) L. monocytogenes. In milk incubated at 30 degrees C, piscicolin 126 added in the range of 512-2,048 AU ml(-1) effectively inhibited growth of L. monocytogenes for more than 20 d when challenged with approximately 10(2) cfu ml(-1) L. monocytogenes. At higher challenge levels (10(4) and 10(6) cfu ml(-1)), piscicolin 126 reduced the viable count of L. monocytogenes by 4-5 log units immediately after addition of the bacteriocin; however, growth of Listeria occurred within 24 h. The minimum inhibitory concentration (MIC) of piscicolin 126 against lactic acid cheese starter bacteria was generally greater than 204,800 AU ml(-1) , and the viable count and acid production of these starter cultures in milk were not affected by the addition of 2,048 AU ml(-1) piscicolin 126. Camembert cheeses made from milk challenged with L. monocytogenes and with added piscicolin 126 showed a viable count of L. monocytogenes 3-4 log units lower than those without piscicolin 126. Inactivation of piscicolin 126 by proteolytic enzymes from cheese starter bacteria and mould together with the emergence of piscicolin 126-resistant isolates was responsible for the recovery of L. monocytogenes in the cheeses during ripening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号