首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microscopic estimation of bacterial biomass requires determination of both biovolume and biovolume-to-biomass conversion. Both steps have uncertainty when applied to the very small bacteria typically found in natural seawater. In the present study, natural bacterioplankton assemblages were freshly collected, passed through 0.6-μm-pore-size Nuclepore filters to remove larger particulate materials, and diluted for growth in 0.22-μm-pore-size Millipore filter-sterilized unenriched seawater. This provided cells comparable in size and morphology to those in natural seawater, but the cultures were free of the interfering particulate detritus naturally present. Cells were collected on glass-fiber GF/F filters, and biovolumes were corrected for cells passing these filters; C and N were measured with a CHN analyzer. Our criteria for size measurement by epifluorescence photomicrography were confirmed with fluorescent microspheres of known diameters. Surprisingly, in six cultures with average per-cell biovolumes ranging from 0.036 to 0.073 μm3, the average per-cell carbon biomass was relatively constant at 20 ± 0.08 fg of C (mean ± standard error of the mean). The biovolume-to-biomass conversion factor averaged 0.38 ± 0.05 g of C cm−3, which is about three times higher than the value previously estimated from Escherichia coli, and decreased with increasing cell volume. The C:N ratio was 3.7 ± 0.2. We conclude that natural marine bacterial biomass and production may be higher than was previously thought and that variations in bacterial size may not reflect variations in biomass per cell.  相似文献   

2.
The small average cell size of in situ bacterioplankton, relative to cultured cells, has been suggested to be at least partly a result of selection of larger-sized cells by bacterivorous protozoa. In this study, we determined the relative rates of uptake of fluorescence-labeled bacteria (FLB), of various cell sizes and cell types, by natural assemblages of flagellates and ciliates in estuarine water. Calculated clearance rates of bacterivorous flagellates had a highly significant, positive relationship with size of FLB, over a range of average biovolume of FLB of 0.03 to 0.08 microns3. Bacterial cell type or cell shape per se did not appear to affect flagellate clearance rates. The dominant size classes of flagellates which ingested all types of FLB were 3- to 4-microns cells. Ciliates also showed a general preference for larger-sized bacteria. However, ciliates ingested a gram-positive enteric bacterium and a marine bacterial isolate at higher rates than they did a similarly sized, gram-negative enteric bacterium or natural bacterioplankton, respectively. From the results of an experiment designed to test whether the addition of a preferentially grazed bacterial strain stimulated clearance rates of natural bacterioplankton FLB by the ciliates, we hypothesized that measured differences in rates of FLB uptake were due instead to differences in effective retention of bacteria by the ciliates. In general, clearance rates for different FLB varied by a factor of 2 to 4. Selective grazing by protozoa of larger bacterioplankton cells, which are generally the cells actively growing or dividing, may in part explain the small average cell size, low frequency of dividing cells, and low growth rates generally observed for assemblages of suspended bacteria.  相似文献   

3.
The size of bacteria and the size distribution of heterotrophic activity were examined in estuarine, neritic, and coastal waters. The data indicated the small size of suspended marine bacteria and the predominance of free-living cells in numerical abundance and in the incorporation of dissolved amino acids. The average per-cell volume of suspended marine bacteria in all environments was less than 0.1 μm3. Cell volume ranged from 0.072 to 0.096 μm3 at salinities of 0 to 34.3‰ in the Newport River estuary, N.C., and from 0.078 to 0.096 μm3 in diverse areas of the Gulf of Mexico. Thus, the free-living bacteria were too small to be susceptible to predation by copepods. In the Newport River estuary, ca. 93 to 99% of the total number of cells and 75 to 97% of incorporated tritium (from 3H-labeled mixed amino acids) retained by a 0.2-μm-pore-size filter passed through a 3.0-μm-pore-size filter. Although the amino acid turnover rate per cell was higher for the bacteria in the >3.0-μm size fraction than in the <3.0-μm size fraction, the small number of bacteria associated with the >3.0-μm size particles resulted in the low relative contribution of attached bacteria to total heterotrophic activity in the estuary. For coastal and neritic samples, collected off the coast of Georgia and northeast Florida and in the plume of the Mississippi River, 56 to 98% of incorporated label passed through a 3.0-μm-pore-size filter. The greatest activity in the >3.0-μm fraction in the Georgia Bight was at nearshore stations and in the bottom samples. Our data were consistent with the hypothesis that resuspension of bottom material is an important factor in influencing the proportion of heterotrophic activity attributable to particle-associated bacteria.  相似文献   

4.
Frequency of Dividing Cells as an Estimator of Bacterial Productivity   总被引:30,自引:24,他引:6       下载免费PDF全文
It has recently been proposed that the frequency of dividing bacterial cells (FDC) can be used to predict growth rates of natural aquatic bacterial assemblages. We have examined the relationship between FDC and growth rate in bacteria from southern-temperate, coastal marine waters by using incubation under conditions of manipulated nutrient availability and exclusion of bacterivores. The regression of the natural logarithm of bacterial instantaneous growth rate (μ) on FDC resulted in a better fit than regression of untransformed μ on FDC. The regression equation was ln μ = 0.299FDC − 4.961. The coefficient of variation for predicted ln μ at mean FDC was 7%. The range of FDC-estimated bacterial instantaneous generation times for coastal Georgia waters was 12 to 68 h, and range of calculated bacterial production rates was 0.6 to 17.6 mg of C·m−3· h−1. Unresolved problems of and suggested improvements on the FDC method of predicting growth rate are discussed.  相似文献   

5.
Bacterioplankton productivity in Antarctic waters of the eastern South Pacific Ocean and Drake Passage was estimated by direct counts and frequency of dividing cells (FDC). Total bacterioplankton assemblages were enumerated by epifluorescent microscopy. The experimentally determined relationship between in situ FDC and the potential instantaneous growth rate constant (μ) is best described by the regression equation ln μ = 0.081 FDC − 3.73. In the eastern South Pacific Ocean, bacterioplankton abundance (2 × 105 to 3.5 × 105 cells per ml) and FDC (11%) were highest at the Polar Front (Antarctic Convergence). North of the Subantarctic Front, abundance and FDC were between 1 × 105 to 2 × 105 cells per ml and 3 to 5%, respectively, and were vertically homogeneous to a depth of 600 m. In Drake Passage, abundance (10 × 105 cells per ml) and FDC (16%) were highest in waters south of the Polar Front and near the sea ice. Subantarctic waters in Drake Passage contained 4 × 105 cells per ml with 4 to 5% FDC. Instantaneous growth rate constants ranged between 0.029 and 0.088 h−1. Using estimates of potential μ and measured standing stocks, we estimated productivity to range from 0.62 μg of C per liter · day in the eastern South Pacific Ocean to 17.1 μg of C per liter · day in the Drake Passage near the sea ice.  相似文献   

6.
The effects of organic and inorganic nutrient additions on the specific growth rates of bacterioplankton in oligotrophic lake water cultures were investigated. Lake water was first passed through 0.8-μm-pore-size filters (prescreening) to remove bacterivores and to minimize confounding effects of algae. Specific growth rates were calculated from changes in both bacterial cell numbers and biovolumes over 36 h. Gross specific growth rates in unmanipulated control samples were estimated through separate measurements of grazing losses by use of penicillin. The addition of mixed organic substrates alone to prescreened water did not significantly increase bacterioplankton specific growth rates. The addition of inorganic phosphorus alone significantly increased one or both specific growth rates in three of four experiments, and one experiment showed a secondary stimulation by organic substrates. The stimulatory effects of phosphorus addition were greatest concurrently with the highest alkaline phosphatase activity in the lake water. Because bacteria have been shown to dominate inorganic phosphorus uptake in other P-deficient systems, the demonstration that phosphorus, rather than organic carbon, can limit bacterioplankton growth suggests direct competition between phytoplankton and bacterioplankton for inorganic phosphorus.  相似文献   

7.
The trophic link between bacteria and bacterivorous protists is a complex interaction that involves feedback of inorganic nutrients and growth substrates that are immeadiately available for prey growth. These interactions were examined in the laboratory and in incubations of concentrated natural assemblages of bacterioplankton. Growth dynamics of estuarine and marine bacterivorous protists were determined in laboratory culture using Vibrio natriegens as prey and were compared to growth of protists on bacterioplankton assemblages concentrated by tangential flow filtration from four northwest Florida Estuaries. Biomass transfers from bacteria to protists were monitored by tracing elemental carbon and nitrogen in particulate fractions of protist added and grazer free controls. Gross growth efficiencies of the protists on naturally occurring bacteria were within the range determined in lab estimates of growth efficiency on cultured bacteria (50%). However, bacterial response to protist excretion products was different in the lab and field incubations, and bacterial growth contributed to the biomass available to protists in the field incubations. As determined by radioisotope-labeled substrate incorporation, a time lag in bacterial reponse to protist excretion products was observed for laboratory batch cultures, allowing accurate estimation of growth efficiency. In incubations with concentrated natural bacterial assemblages, bacterial growth response coincided with protist growth and excretion. The additional bacterial production on protist excretion products reached a maximum of 2–3-fold higher than protist-free controls. In addition, ammonium concentrations increased with protist grazing and growth in lab cultures, but ammonium excreted by protists in concentrates did not accumulate. The C:N values for the bacterial concentrates suggests that these bacteria were nitrogen limited. It is speculated that dissolved organic carbon, concentrated by tangential flow filtration (> 100,000 MW membrane) with the bacterioplankton, was utilized by bacteria when nitrogen was supplied as ammonium and amino acids from protist excretion. Thus, estimates of protist growth efficiency on naturally occurring bacterioplankton, corrected for protist-stimulated bacterial production, were in the range of 13–21%.  相似文献   

8.
A total of 247 clones of 16S rRNA genes from microorganisms captured by 0.2- and 0.1-μm-pore-size filters from sedimentary and granite rock aquifers were amplified and yielded 37 operational taxonomic units (OTUs). Fifteen OTUs captured by 0.1-μm-pore-size filters were affiliated with the candidate divisions OD1 and OP11, representing novel lineages. On the other hand, OTUs captured by 0.2-μm-pore-size filters were largely affiliated with Betaproteobacteria.  相似文献   

9.
Total DNA concentration in 0.2-μm-pore-size Nuclepore filter filtrates (<0.2-μm fraction) of Tokyo Bay water was estimated to be 9 to 19 ng/ml by an immunochemical quantification method. Almost 90% of the DNA in the <0.2-μm fraction was found in the size fractions larger than 3.0 × 105 Da and 0.03 μm, and most was not susceptible to DNase digestion, that is, consisted of non-DNase-digestible DNA (coated DNA). A significant amount of DNA was obtained from the <0.2-μm fraction of the seawater by three different methods: polyethylene glycol precipitation, direct ethanol precipitation, and ultrafilter concentration. Gel electrophoresis analysis of the isolated DNAs showed that they consisted mainly of coated DNAs with a similar molecular sizes (20 to 30 kb [1.3 × 107 to 2.0 × 107 Da). The abundance of the ultramicron virus-sized coated DNA in natural seawater suggests that these DNA-rich particles can be attributed to marine DNA virus assemblages and that they may be a significant phosphorus reservoir in the environment.  相似文献   

10.
The mean specific biovolumes (biovolume cell−1) of the bacterioplankton within a 250-m-deep water column in Howe Sound, British Columbia, were determined for the period of 4 September 1984 to 23 October 1985. These bacteria had an annual cycle in mean specific biovolume; they were small (ca. 0.058 μm3) in mid-winter, larger in spring (ca. 0.076 μm3), larger again in summer (up to 0.102 μm3), and largest (ca. 0.133 μm3) in early fall (immediately after the decrease in phytoplankton production). The mean specific biovolumes changed coincidently through the water column with time, although the larger bacterioplankton tended to occur in the surface and deepest water. Although the mean specific biovolumes correlated better with in situ temperature (r = 0.65, a = 0.01) than with in situ chlorophyll a concentration (r = 0.34, a = 0.25), modeling experiments with batch cultures of the dinoflagellate Prorocentrum minimum (Pavillard) and the green alga Dunaliella tertiolecta (Butcher) indicated that the biomass and physiological condition of the phytoplankters may be more important than temperature in determining these bacterial specific biovolumes.  相似文献   

11.
Bacterioplankton numbers, biomasses, and productivities, as well as chlorophyll a concentrations and phytoplankton productivities, were assayed from 1 March 1984 to 12 August 1985 through a 250-m-deep seawater column in Howe Sound, a temperate fjord-sound on the southern coast of British Columbia, Canada. Primary production during this 18-month period was 845 g of C m−2. Bacterial production was assayed over this same period as 193 g of C m−2 (thymidine incorporation) and 77 g of C m−2 (frequency of dividing cells). Bacterial productivities per cubic meter were usually greater in the euphotic zone than in deeper aphotic water, but when integrated through the water column, approximately half of the bacterial production occurred in the deeper aphotic portion. Bacterial production occurred throughout the year, although at reduced rates in late fall and early winter; primary production almost ceased during late fall and early winter. Because of this heterotrophic bacterioplankton production was a very large portion of the microbial (bacterial plus phyto-plankton) production at this time. In mid-summer bacterial production was a small proportion of the microbial production. Because of this asynchrony in peaks and troughs of bacterial and phytoplankton production through the year, data comparison is best done over an annual cycle. On this basis the bacterial production in the Howe Sound water column was between 23 and 9% of the phytoplankton production when a bacterial C to biovolume ratio of 0.107 pg of C μm−3 was assumed; the corresponding values were 64 and 29% when a ratio of 0.300 pg of bacterial C μm−3 was assumed.  相似文献   

12.
[3H]thymidine incorporation, the rate of reduction of iodonitrotetrazolium violet (INT) to INT formazan normalized to DNA, and the ratio of ATP to DNA were adapted to measure the activity of attached and unattached microbial assemblages of Bayboro Harbor, Fla. Activity measurements by [3H]thymidine incorporation were made of cells attached to polystyrene culture dishes, in unfiltered water samples, and in the <1-μm-filtered fraction. In most cases, the activity of attached cells was greater than that of unattached cells either in unfiltered water samples or in the <1-μm fraction. The calculated thymidine incorporation rates for cells in the >1-μm fraction were higher than those for cells either in unfiltered water or in the <1-μm-filtered fraction. By the rate of reduction of INT to INT formazan normalized to DNA and by ATP-to-DNA ratios, attached cells were also more active than cells in unfiltered water samples. These results indicate that the microenvironment afforded by attachment is a more beneficial habitat for microbial growth. Reasons for greater activity by natural populations of attached bacteria are discussed.  相似文献   

13.
Research on microbial loop organisms, heterotrophic bacteria and phagotrophic protists, has been stimulated in large measure by Pomeroy's seminal paper published in BioScience in 1974. We now know that a significant fate of bacterioplankton production is grazing by < 20-µm-sized flagellates. By selectively grazing larger, more rapidly growing and dividing cells in the bacterioplankton assemblage, bacterivores may be directly cropping bacterial production rather than simply the standing stock of bacterial cells. Protistan herbivory, however, is likely to be a more significant pathway of carbon flow in pelagic food webs than is bacterivory. Herbivores include both < 20-µm flagellates as well as > 20-µm ciliates and heterotrophic dinoflagellates in the microzooplankton. Protists can grow as fast as, or faster than their phytoplankton prey. Phototrophic cells grazed by protists range from bacterial-sized prochlorophytes to large diatom chains (which are preyed upon by extracellularly-feeding dinoflagellates). Recent estimates of microzooplankton herbivory in various parts of the sea suggest that protists routinely consume from 25 to 100% of daily phytoplankton production, even in diatom-dominated upwelling blooms. Phagotrophic protists should be viewed as a dominant biotic control of both bacteria and of phytoplankton in the sea.  相似文献   

14.
The principal objective of this study was to quantify the rate of heterotrophic bacterioplankton production. Production was estimated by two approaches: (i) measurement of increasing bacterial abundance with time in filtered (3-μm pore size) seawater and (ii) estimation of bacterial deoxyribonucleic acid synthesis by tritiated thymidine incorporation in unfractionated seawater. The two approaches yielded comparable results when used at the Controlled Ecosystem Population Experiment (Saanich Inlet, British Columbia, Canada), at McMurdo Sound (Antarctica), and off Scripps Pier (La Jolla, Calif.). Estimated bacterioplankton production was lower in Antarctic samples (ranging from ~0 to 2.9 μg of C liter−1 day−1) than in those from the other two sites (ranging from 0.7 to 71 μg of C liter−1 day−1). In all three regions studied, it appeared that a significant fraction of the total primary production was utilized by the bacterioplankton and that substantial growth could occur in the absence of large particles. These results support the conclusion that bacterioplankton are a quantitatively important component of coastal marine food webs.  相似文献   

15.
Bacterial cells small enough to pass through 0.4-μm-pore-size filters made up 5 to 9% of the indigenous bacterial population in 0- to 20-cm-depth samples of Abiqua silty clay loam. Within the same soil samples, cells of a similar dimension were stained with fluorescent antibodies specific to each of four antigenically distinct indigenous serogroups of Rhizobium leguminosarum bv. trifolii and made up 22 to 34% of the soil population of the four serogroups. Despite the extensive contribution of small cells to these soil populations, no evidence of their being capable of either growth or nodulation was obtained. The density of soil bacteria which could be cultured ranged between 0.5 and 8.5% of the >0.4-μm direct count regardless of media, season of sampling, or soil depth. In the same soil samples, the viable nodulating populations of biovar trifolii determined by the plant infection soil dilution technique ranged between 1 and 10% of the >0.4-μm direct-immunofluorescence count of biovar trifolii. The <0.4-μm cell populations of both total soil bacteria and biovar trifolii changed abruptly between the 10- to 15-cm and 15- to 20-cm soil depth increments, increasing from 5 to 20% and from 20 to 50%, respectively, of their direct-count totals. The increase in density of the small-cell population corresponded to a significant increase in soil bulk density (1.07 to 1.21 g cm−3). The percent contribution of the <0.4-μm direct count to individual serogroup totals increased with soil depth by approximately 2-fold (39 to 87%) for serogroups 17 and 21 and by 12-fold (6 to 75%) for serogroups 6 and 36.  相似文献   

16.
Movement of Viruses between Biomes   总被引:8,自引:2,他引:6       下载免费PDF全文
Viruses are abundant in all known ecosystems. In the present study, we tested the possibility that viruses from one biome can successfully propagate in another. Viral concentrates were prepared from different near-shore marine sites, lake water, marine sediments, and soil. The concentrates were added to microcosms containing dissolved organic matter as a food source (after filtration to allow 100-kDa particles to pass through) and a 3% (vol/vol) microbial inoculum from a marine water sample (after filtration through a 0.45-μm-pore-size filter). Virus-like particle abundances were then monitored using direct counting. Viral populations from lake water, marine sediments, and soil were able to replicate when they were incubated with the marine microbes, showing that viruses can move between different ecosystems and propagate. These results imply that viruses can laterally transfer DNA between microbes in different biomes.  相似文献   

17.
An improved technique is described for the filtrative concentration and harvesting of bacterial cultures. A pleated tangential flow filtration unit containing 1,000 cm2 of 0.2-μm-pore-size microporous membrane was used to rapidly (30 to 50 min) reduce the volume of 5 liters of bacterial culture of approximately 109 cells per ml to 0.2 to 0.5 liters of concentrated bacterial suspension. The effects of cell concentration, filtration pressure, and tangential flow rate were examined with respect to the rate of concentration and cell viability. Recovery efficiencies were between 60 and 75%, with no apparent impairment of organism viability. Cell concentration exerted the predominant effect on the filtration rate.  相似文献   

18.
Bacterioplankton from a meso-eutrophic dam reservoir was size fractionated to reduce (<0.8-μm treatment) or enhance (<5-μm treatment) protistan grazing and then incubated in situ for 96 h in dialysis bags. Time course samples were taken from the bags and the reservoir to estimate bacterial abundance, mean cell volume, production, protistan grazing, viral abundance, and frequency of visibly infected cells. Shifts in bacterial community composition (BCC) were examined by denaturing gradient gel electrophoresis (DGGE), cloning and sequencing of 16S rDNA genes from the different treatments, and fluorescence in situ hybridization (FISH) with previously employed and newly designed oligonucleotide probes. Changes in bacterioplankton characteristics were clearly linked to changes in mortality rates. In the reservoir, where bacterial production about equaled protist grazing and viral mortality, community characteristics were nearly invariant. In the “grazer-free” (0.8-μm-filtered) treatment, subject only to a relatively low mortality rate (~17% day−1) from viral lysis, bacteria increased markedly in concentration. While the mean bacterial cell volume was invariant, DGGE indicated a shift in BCC and FISH revealed an increase in the proportion of one lineage within the beta proteobacteria. In the grazing-enhanced treatment (5-μm filtrate), grazing mortality was ~200% and viral lysis resulted in mortality of 30% of daily production. Cell concentrations declined, and grazing-resistant flocs and filaments eventually dominated the biomass, together accounting for >80% of the total bacteria by the end of the experiment. Once again, BCC changed strongly and a significant fraction of the large filaments was detected using a FISH probe targeted to members of the Flectobacillus lineage. Shifts of BCC were also reflected in DGGE patterns and in the increases in the relative importance of both beta proteobacteria and members of the Cytophaga-Flavobacterium cluster, which consistently formed different parts of the bacterial flocs. Viral concentrations and frequencies of infected cells were highly significantly correlated with grazing rates, suggesting that protistan grazing may stimulate viral activity.  相似文献   

19.
Mechanisms and Rates of Decay of Marine Viruses in Seawater   总被引:31,自引:17,他引:14       下载免费PDF全文
Loss rates and loss processes for viruses in coastal seawater from the Gulf of Mexico were estimated with three different marine bacteriophages. Decay rates in the absence of sunlight ranged from 0.009 to 0.028 h-1, with different viruses decaying at different rates. In part, decay was attributed to adsorption by heat-labile particles, since viruses did not decay or decayed very slowly in seawater filtered through a 0.2-μm-pore-size filter (0.2-μm-filtered seawater) and in autoclaved or ultracentrifuged seawater but continued to decay in cyanide-treated seawater. Cyanide did cause decay rates to decrease, however, indicating that biological processes were also involved. The observations that decay rates were often greatly reduced in 0.8- or 1.0-μm-filtered seawater, whereas bacterial numbers were not, suggested that most bacteria were not responsible for the decay. Decay rates were also reduced in 3-μm-filtered or cycloheximide-treated seawater but not in 8-μm-filtered seawater, implying that flagellates consumed viruses. Viruses added to flagellate cultures decayed at 0.15 h-1, corresponding to 3.3 viruses ingested flagellate-1 h-1. Infectivity was very sensitive to solar radiation and, in full sunlight, decay rates were 0.4 to 0.8 h-1. Even when UV-B radiation was blocked, rates were as high as 0.17 h-1. Calculations suggest that in clear oceanic waters exposed to full sunlight, most of the virus decay, averaged over a depth of 200 m, would be attributable to solar radiation. When decay rates were averaged over 24 h for a 10-m coastal water column, loss rates of infectivity attributable to sunlight were similar to those resulting from all other processes combined. Consequently, there should be a strong diel signal in the concentration of infectious viruses. In addition, since sunlight destroys infectivity more quickly than virus particles, a large proportion of the viruses in seawater is probably not infective.  相似文献   

20.
Automatic Determination of Bacterioplankton Biomass by Image Analysis   总被引:22,自引:11,他引:11       下载免费PDF全文
Image analysis was applied to epifluorescense microscopy of acridine orange-stained plankton samples. A program was developed for discrimination and binary segmentation of digitized video images, taken by an ultrasensitive video camera mounted on the microscope. Cell volumes were estimated from area and perimeter of the objects in the binary image. The program was tested on fluorescent latex beads of known diameters. Biovolumes measured by image analysis were compared with directly determined carbon biomasses in batch cultures of estuarine and freshwater bacterioplankton. This calibration revealed an empirical conversion factor from biovolume to biomass of 0.35 pg of C μm−3 (± 0.03 95% confidence limit). The deviation of this value from the normally used conversion factors of 0.086 to 0.121 pg of C μm−3 is discussed. The described system was capable of measuring 250 cells within 10 min, providing estimates of cell number, mean cell volume, and biovolume with a precision of 5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号