首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of growth, nutrient uptake, and anthraquinone biosynthesisby suspension cultures of Galium mollugo L. cells were examinedin batch and continuous (chemostat) culture. In batch culture,although the initial growth rate was constant (minimum doublingtime = 35 h) characteristic changes in cell composition wereobserved during the growth cycle particularly cell dry weight(between 3.9 and 9.2 g/109 cells), cell anthraquinone (22–80mg/109 cells), and cell protein (0.7–1.6 g/109 cells).Using a chemostat steady state growth was established at twodifferent specific growth rates with mean doubling times of40 h and 25 h. Phosphate was established as the growth-limitingnutrient in chemostat culture at a concentration of 11 µgP ml–1. In steady state growth at a doubling time of 40h the cell composition remained constant although this was differentfrom any cells grown in batch culture. The cell anthraquinonelevel in steady state growth was between 7 and 30 times lowerthan in batch culture. This result raises the question of therelative importance of growth rate and the growth-limiting nutrientin determining accumulation of secondary products by culturedplant cells.  相似文献   

2.
An experimental system of Mycobacterium tuberculosis growth in a carbon-limited chemostat has been established by the use of Mycobacterium bovis BCG as a model organism. For this model, carbon-limited chemostats with low concentrations of glycerol were used to simulate possible growth rates during different stages of tuberculosis. A doubling time of 23 h (D = 0.03 h(-1)) was adopted to represent cells during the acute phase of infection, whereas a lower dilution rate equivalent to a doubling time of 69 h (D = 0.01 h(-1)) was used to model mycobacterial persistence. This chemostat model allowed the specific response of the mycobacterial cell to carbon limitation at different growth rates to be elucidated. The macromolecular (RNA, DNA, carbohydrate, and lipid) and elemental (C, H, and N) compositions of the biomass were determined for steady-state cultures, revealing that carbohydrates and lipids comprised more than half of the dry mass of the BCG cell, with only a quarter of the dry weight consisting of protein and RNA. Consistent with studies of other bacteria, the specific growth rate impacts on the macromolecular content of BCG and the proportions of lipid, RNA, and protein increased significantly with the growth rate. The correlation of RNA content with the growth rate indicates that ribosome production in carbon-limited M. bovis BCG cells is subject to growth rate-dependent control. The results also clearly show that the proportion of lipids in the mycobacterial cell is very sensitive to changes in the growth rate, probably reflecting changes in the amounts of storage lipids. Finally, this study demonstrates the utility of the chemostat model of mycobacterial growth for functional genomic, physiology, and systems biology studies.  相似文献   

3.
Mouse leukemia L 1210 cells were cultivated in the chemostat at growth rates ranging from 0.1 day−1 (population doubling time (Td) 166.3 h) to 2.0 day−1 (Td 8.3 h). At growth rates of 1.0 day−1 and above, the viability of the steady-state culture was greater than 99%. However, below 1.0 day−1 there was a progressive decrease in the viability of the culture with decreasing growth rate until a minimum growth rate (0.1 day−1) was reached below which steady-state cultures of L 1210 cells could not be established. Interferon treatment had no effect on the viability (>99%) of L 1210 cells cultivated at fast growth rates in the chemostat, whereas at slow growth rates (0.35 day−1) interferon treatment markedly reduced the viability of the culture, even though the percentage increase in the doubling time of interferon-treated cultures was the same for cells cultivated at both fast and slow growth rates. Thus, although interferon is not directly cytotoxic, it can cause cell death by reducing the rate of cell multiplication below the minimum value compatible with viability.  相似文献   

4.
WILSON  G. 《Annals of botany》1976,40(5):919-932
Operational and constructional details are given of a relativelysimple and inexpensive chemostat designed for the continuousculture of plant cells in suspension. This apparatus permitscontrol of the growth rate of sycamore, Acer pseudoplatanusL. cells in steady-state conditions. By alteration of the rateof input of medium different steady-state growth rates wereobtained over a wide range (mean doubling times from 182 h to36 h). In order to establish a growth-limiting nutrient thetime course of nutrient uptake in batch culture was measured.In batch culture the maximum growth obtained was proportionalto the initial concentration of phosphate when this was belowa concentration of 17 µg P per ml (as phosphate). It isalso shown in chemostat culture that the steady-state cell densityis proportional to the phosphate concentration in the mediumwhen this is below 17 µg P per ml (as phosphate). Phosphatewas therefore established to be the growth rate-limiting nutrientin chemostat culture at a concentration of 8•5 µgP per ml (as phosphate).  相似文献   

5.
Methanobacterium thermoautotrophicum was grown in phosphate-limited chemostat cultures at a dilution rate corresponding to a doubling time of 13.2 h. The cyclic-2,3-diphospho-D-glycerate content of these cells was 8 to 10-fold lower than that of cells grown in batch cultures having a doubling time of 11.5 h. This metabolite accounted for 5% of cell dry weight during batch growth on 2 mM phosphate. In the chemostat the steady-state concentration of phosphate was 4 microM, showing that this methanogen is adapted to highly efficient growth at low phosphate concentrations. Since growth rates were similar in both cultures, the growth rate clearly does not depend on intracellular levels of cyclic-2,3-diphosphoglycerate.  相似文献   

6.
Chemostat cultures of carrot suspension cultures, where growth was limited by the concentration of phosphate in the input medium, were achieved by replacing a fixed proportion of the culture with fresh medium at daily intervals. In the range 0.05–0.30mM phosphate in the input medium and at a specific growth rate of 0.357 days?1, steady-state culture density but not anthocyanin in the cells was strictly proportional to the input phosphate concentration with no intercept. At a phosphate concentration of 0.10mM and growth rates from 0.105 to 0.430 days?1, the steady-state culture density could not be described by Monod's model of chemostat cultures, but could be described by Nyholm's model. The steady-state levels of anthocyanin were not strictly proportional to the steady-state biomass under all conditions, showing that anthocyanin production is not completely growth associated.  相似文献   

7.
Chemostat cultivation enables investigations into the effects of individual environmental parameters on sugar transport in yeasts. Various means are available to manipulate the specific rate of sugar uptake (qs) in sugar-limited chemostat cultures. A straightforward way to manipulate qs is variation of the dilution rate, which, in substrate-limited chemostat cultures, is equal to the specific growth rate. Alternatively, qs can be varied independently of the growth rate by mixed-substrate cultivation or by variation of the biomass yield on sugar. The latter can be achieved, for example, by addition of nonmetabolizable weak acids to the growth medium or by variation of the oxygen supply. Such controlled manipulation of metabolic fluxes cannot be achieved in batch cultures, in which various parameters that are essential for the kinetics of sugar transport cannot be controlled. In sugar-limited chemostat cultures, yeasts adapt their sugar transport systems to cope with the low residual sugar concentrations, which are often in the micromolar range. Under the conditions, yeasts with high-affinity proton symport carriers have a competitive advantage over yeasts that transport sugars via facilitated-diffusion carriers. Chemostat cultivation offers unique possibilities to study the energetic consequences of sugar transport in growing cells. For example, anaerobic, sugar-limited chemostat cultivation has been used to quantify the energy requirement for maltose-proton symport in Saccharomyces cerevisiae. Controlled variation of growth conditions in chemostat cultures can be used to study the differential expression of genes involved in sugar transport and as such can make an important contribution to the ongoing studies on the molecular biology of sugar transport in yeasts.  相似文献   

8.
We successfully cultivated fin cells of the deep-sea eel Simenchelys parasiticus (collected at 1,162 m) in L-15 medium supplemented with fetal bovine serum (FBS) and additional NaCl. We found that the pectoral fin cells proliferated in L-15 medium enriched with 4 g/l of NaCl salt (pH 7.3) containing 10% FBS at 10 degrees C and 15 degrees C. No cells were attached to the plastic culture plates when Dulbecco's modified Eagle's medium (pH 7.8) or 0-2 g/l of NaCl was added to the medium or when incubation was carried out at 4 degrees C. The majority of the explant outgrowth cells were detached when temperature increased to higher than 15 degrees C. The rate of proliferation of the fin cells was extremely slow and was dependent on the FBS concentration. Cell growth was enhanced by approximately 2.2-fold, and doubling time decreased from 170 h to 77 h when the FBS concentration was increased from 10% to 20% (v/v). Our established deep-sea eel cells were passaged 16 times over a 1-year period under atmospheric pressure conditions.  相似文献   

9.
Summary Three different stirred bioreactors of 0.5 to 12 l volume were used to scale up the production of a human monoclonal antibody. Inoculation density and stirrer speed were evaluated in batch cultures, whereas dilution rate and pH were optimized in chemostat cultures with respect to high specific antibody production rate and high antibody yield per time and reactor volume. The cell line used for the experiments was a heterohybridoma, producing immunoglobulin M (IgM) against lipopolysaccharide of Pseudomonas aeruginosa. Cells were cultured in spinner flasks of 500 ml liquid volume for adaptation to stirred culture conditions. Subsequently cells were transferred to the 1.5-1 KLF 2000 bioreactor and to the 12-1 NLF 22 bioreactor for pilot-scale cultures. Chemostat experiments were done in the 1.5-1 KLF bioreactor. Cell density, viability, glucose and lactate and antibody concentration were measured during culture experiments. In batch cultures in all three stirred bioreactors, comparable maximal cell densities and specific growth rates were achieved. Chemostat experiments showed that at a pH of 6.9 and a dilution rate of 0.57 per day the specific antibody production rate was threefold higher than similar experiments done at pH 7.2 with a dilution rate of 0.36 per day. By optimizing pH and dilution rate in chemostat cultures the daily yield of human IgM increased nearly threefold from 6 to 16 mg/day and per litre of reactor volume. The yield per litre of medium increased twofold. Correspondence to: U. Schürch  相似文献   

10.
Differing claims regarding the stability of the recombinant ethanologen E. coli KO11 are addressed here in batch and chemostat culture. In repeat batch culture, the organism was stable on glucose, mannose, xylose and galactose for at least three serial transfers, even in the absence of a selective antibiotic. Chemostat cultures on glucose were remarkably stable, but on mannose, xylose and a xylose/glucose mixture, they progressively lost their hyperethanologenicity. On xylose, the loss was irreversible, indicating genetic instability. The loss of hyperethanologenicity was accompanied by the production of high concentrations of acetic acid and by increasing biomass yields, suggesting that the higher ATP yield associated with acetate production may foster the growth of acetate-producing revertant strains. Plate counts on high chloramphenicol-containing medium, whether directly, or following preliminary growth on non-selective medium, were not a reliable indicator of high ethanologenicity during chemostat culture. In batch culture, the organism appeared to retain its promise for ethanol production from lignocellulosics and concerns that antibiotics may need to be included in all media appear unfounded. Received 13 January 1999/ Accepted in revised form 23 April 1999  相似文献   

11.
Mouse leukemia L 1210 cells were cultivated under glucose limitation in a chemostat. More than 20 steady-states were established over 9 different dilution rates ranging from 0.20 day−1 (cell doubling time 83 h) to 2.0 days−1 (cell doubling time 8.3 h). The steady-states were characterized by: a constant cell number, constant cell volume, constant concentrations of DNA, RNA, and L-lactate (in the culture supernatant), a constant percentage of cells labelled by autoradiography, and constant rate of incorporation of [3H]TdR, [3H]uridine, and 14C-labelled amino acids into cellular acid-precipitable material. Individual steady-states were maintained for periods up to 600 h continuous operation of the chemostat. A maximum output of 66.4 × 106 cells/h was obtained at a dilution rate of 1.3 day−1. The glucose substrate constant was determined as 0.0063 mg/ml. The relationships between dilution rate and the steady-state cell concentration, glucose concentration, and output of L 1210 cells from the chemostat, were in general agreement with the theoretical curves. It was found that the principles of continuous culture derived from the study of microorganisms are to a large extent applicable to the cultivation of animal cells.  相似文献   

12.
First, we report the application of stable isotope dilution theory in metabolome characterization of aerobic glucose limited chemostat culture of S. cerevisiae CEN.PK 113-7D using liquid chromatography-electrospray ionization MS/MS (LC-ESI-MS/MS). A glucose-limited chemostat culture of S. cerevisiae was grown to steady state at a specific growth rate (mu)=0.05 h(-1) in a medium containing only naturally labeled (99% U-12C, 1% U-13C) carbon source. Upon reaching steady state, defined as 5 volume changes, the culture medium was switched to chemically identical medium except that the carbon source was replaced with 100% uniformly (U) 13C labeled stable carbon isotope, fed for 4 h, with sampling every hour. We observed that within a period of 1 h approximately 80% of the measured glycolytic metabolites were U-13C-labeled. Surprisingly, during the next 3 h no significant increase of the U-13C-labeled metabolites occurred. Second, we demonstrate for the first time the LC-ESI-MS/MS-based quantification of intracellular metabolite concentrations using U-13C-labeled metabolite extracts from chemostat cultivated S. cerevisiae cells, harvested after 4 h of feeding with 100% U-13C-labeled medium, as internal standard. This method is hereby termed "Mass Isotopomer Ratio Analysis of U-13C Labeled Extracts" (MIRACLE). With this method each metabolite concentration is quantified relative to the concentration of its U-13C-labeled equivalent, thereby eliminating drawbacks of LC-ESI-MS/MS analysis such as nonlinear response and matrix effects and thus leads to a significant reduction of experimental error and work load (i.e., no spiking and standard additions). By coextracting a known amount of U-13C labeled cells with the unlabeled samples, metabolite losses occurring during the sample extraction procedure are corrected for.  相似文献   

13.
Summary A serum-free culture system was used to compare the nutritional requirements of mouse mammary cells transformed by bovine papillomavirus type 1 (ID13 cells) and the uninfected parent line (C127 cells). The serum-free, chemically defined medium used for this study was an MCDB 151-based medium (MCDB 151+S+I), supplemented with epidermal growth factor, transferrin, hydrocortisone, ethanolamine, phosphoethanolamine, retinoic acid, trace metals, and insulin. Proliferation of either cell type in serum-free culture required the addition of 250 μg/ml of insulin. ID13 cells have a doubling time of greater than 96 h in MCDB 151+S+I, whereas C127 cells have a doubling time of 60 h. This is in sharp contrast to the growth characteristics of the two cell types in 10% fetal bovine serum, where doubling times for the ID13 and C127 cells are 24 and 30 h, respectively. Culture of the cells in a serum-free medium has therefore revealed that the papillomavirus-transformed cells have more stringent growth requirements than the uninfected parent line. This work was supported in part by grant #1-P01 NS19214 from the National Institutes of Health, Bethesda, MD, NSF grant #R11-8217798 from the National Science Foundation, Washington, DC, and by a grant from the Otolaryngology Foundation.  相似文献   

14.
An optimized, defined minimal medium was developed to support balanced growth of Escherichia coli X90 harboring a recombinant plasmid. Foreign protein expression was repressed in these studies. A pulse injection technique was used to identify the growth responses to nutrients in a chemostat. Once the nutrients essential for growth had been identified, the yield coefficients for individual medium components. These yield coefficients were used to develop an optimized, glucose-limited defined minimal medium that supports balanced cell growth in chemostat culture. The biomass and substrate concentrations follow the Monod chemostat model. The maximum specific growth rate determined in a washout experiment is 0.87 h(-1) for this strain in the optimized medium. the glucose yield factor is 0.42 g DCW/g glucose and the maintenance coefficient is zero in the glucose-limited chemostat culture. (c) 1993 John Wiley & Sons, Inc.  相似文献   

15.
Summary Serum-free tissue culture medium consisting of a 1∶1 mixture of Dulbecco's modified Eagle's medium (DMEM) and Ham's F12 medium is herein shown to support growth of Reuber H-35 cells over several days in culture. Cells were initially plated in serum containing DMEM medium for 3 h. After cell attachment, serum is removed and replaced with a serum-free 1∶1 mixture of these two commercially available tissue culture media. The doubling time of cell growth in this unsupplemented serum-free medium was 46 h in lightly plated cultures over the first 5 d. The presence of transferrin (5 μg/ml) and insulin (3.3 nM) results in a cell doubling time of 17 h, which equaled the growth rate in medium containing 10% fetal bovine serum. In the absence of transferrin, growth rates in serum-free medium were correlated with the cell density of cultures. Conditioned medium from dense, serum-free cultures has growth-stimulating activity in recipient lightly plated cultures. This simple, serum-free culture medium will facilitate studies on the growth regulation of H-35 rat hepatoma cells. This work was funded by a feasibility grant from the American Diabetes Association, as well as by the National Institutes of Health grants CA 24604-09 and CA 16463-14.  相似文献   

16.
Batch-grown Methanobacterium thermoautotrophicum cells grew nonexponentially in the absence of exogenous Pi until intracellular cyclic-2,3-diphosphoglycerate (cyclic DPG) had fallen below 2 mumol/g (dry weight), the limit of detection. Growth resumed immediately upon transfer to medium containing Pi Cyclic DPG levels were also below detection in Pi-limited chemostat cultures operating at a dilution rate of 0.173 h-1 (4-h doubling time), with reservoir Pi concentrations below 200 microM. At this dilution rate, the Pi concentration in the culture was 4 microM. An H2-limited steady state was achieved with 400 microM Pi in the inflowing medium (67 microM in the culture). The cyclic DPG content of these cells was 72 to 74 mumol/g, about one-third the amount in batch-grown cells. The specific growth rate accelerated immediately to 0.36 h-1 (1.9-h doubling time) under washout conditions at high dilution rate. The cellular content of cyclic DPG declined over a 2-h period, and then increased rapidly as the Pi level in the medium approached 200 microM. Expansion of the cyclic DPG pool coincided with a marked increase in Pi assimilation. These results indicated that M. thermoautotrophicum accumulated cyclic DPG only when Pi and H2 were readily available.  相似文献   

17.
Summary Growth hormone production by a rat pituitary tumor cell line (GH1) was measured during lag, exponential, and plateau phases of growth in different culture media. Growth hormone secretion was low during lag and early exponential phase; it increased late in the exponential phase and continued to increase during the plateau phase. This biphasic pattern of growth hormone production was observed in all media and sera utilized. Both the doubling time and growth hormone production were influenced by the choice of media and sera. In addition, the length of time in culture affected the growth fraction with passage level 40 GH1 cells having a 79% growth fraction, whereas the growth fraction of passage level 100 cells was 95%. Using the population doubling time as a criterion for a choice of medium, F-10 medium supplemented with 20% fetal bovine serum consistently yielded the most rapid doubling time (32 hr), whereas Dulbecco's MEM supplemented with 15% horse serum and 2.5% fetal bovine serum yielded the greatest plateau cell density. Growth hormone secretion and the population doubling times were directly related to culture conditions including length of time in culture, choice of tissue culture media, choice of sera, and the phase of cell growth (lag, exponential or plateau).  相似文献   

18.
Continuous culture of Bacillus popilliae was achieved for the first time in a small chemostat. Initially, variable cell yields during steady-state chemostat growth led to a re-examination of growth rates in batch cultures. B. popilliae NRRL B-2309 and a wild strain were both found to be natural mixtures of three substrains characterized by different growth rates and colony morphologies and varying stability. Selected subcultures grown continuously provided data for three different cell production curves. Cell yields were two to three times greater per unit of medium in continuous than in batch culture, and about 1% of slow-growing chemostat cells formed typical spores.  相似文献   

19.
Continuous culture of Bacillus popilliae was achieved for the first time in a small chemostat. Initially, variable cell yields during steady-state chemostat growth led to a re-examination of growth rates in batch cultures. B. popilliae NRRL B-2309 and a wild strain were both found to be natural mixtures of three substrains characterized by different growth rates and colony morphologies and varying stability. Selected subcultures grown continuously provided data for three different cell production curves. Cell yields were two to three times greater per unit of medium in continuous than in batch culture, and about 1% of slow-growing chemostat cells formed typical spores.  相似文献   

20.
Six cell lines of human malignant melanoma: A375, A375.2, G361, HMV-1, MM8.1 and WM115 were seeded at densities of 1 × 104 cells/ml, 2 × 104 cells/ml or 3 × 104 cells/ml of RPMI medium supplemented with 10% fetal calf serum and antibiotics in a humidified atmosfere of 5% CO2 at 37°C. A375 cells were also grown in Dulbecco's minimum Eagle's medium (DMEM medium). The morphology was studied by phase contrast light microscopy. At 4 days after seeding the colonies of A375 cells and HMV-1 cells were oval-shaped, the cells were polyhedrical and were making contact with each other regularly. The remaining cells were scattered, more elongated, and made contact randomly. G361 cells and MM8.1 cells tended to form superposed layers before 100% confluency was achieved. There were great differences in the growth rate and doubling time of melanoma cells. The doubling time in day 1 was short (around 6-12 h) in the case of A375, G361 and HMV-1 cells, longer (around 18h) in the case of MM8.1 cells and very long (ranging between 26 and 89 h) for A375.2 and WM115 cells. There were also differences in the doubling time of cells as a function of the cell density at seeding. On the other hand, except for MM8.1 cells, there were differences between the doubling time in day 2 compared to day 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号