首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that the methicillin resistance gene mecA is carried by a novel type of mobile genetic element, SCCmec (staphylococcal cassette chromosome mec), in the chromosome of methicillin-resistant Staphylococcus aureus (MRSA). These elements are precisely excised from the chromosome and integrated into a specific site on the recipient chromosome by a pair of recombinase proteins encoded by the cassette chromosome recombinase genes ccrA and ccrB. In the present work, we detected homologues of the ccr genes in Staphylococcus hominis type strain GIFU12263 (equivalent to ATCC 27844), which is susceptible to methicillin. Sequence determination revealed that the ccr homologues in S. hominis were type 1 ccr genes (ccrA1 and ccrB1) that were localized on a genetic element structurally very similar to SCCmec except for the absence of the methicillin-resistance gene, mecA. This genetic element had mosaic-like patterns of homology with extant SCCmec elements, and we designated it SCC(12263) and considered it a type I staphylococcal cassette chromosome (SCC). The ccrB1 gene identified in the S. hominis strain is the first type 1 ccrB gene discovered to retain its function through the excision process as judged by two criteria: (i) SCC(12263) was spontaneously excised during cultivation of the strain and (ii) introduction of the S. hominis ccrB1 into an MRSA strain carrying a type I SCCmec whose ccrB1 gene is inactive generated SCCmec excisants at a high frequency. The existence of an SCC without a mec determinant is indicative of a staphylococcal site-specific mobile genetic element that serves as a vehicle of transfer for various genetic markers between staphylococcal species.  相似文献   

2.
In methicillin resistant Staphylococcus aureus (MRSA), the arginine catabolic mobile element (ACME) was initially described in USA300 (t008-ST8) where it is located downstream of the staphylococcal cassette chromosome mec (SCCmec). A common health-care associated MRSA in Copenhagen, Denmark (t024-ST8) is clonally related to USA300 and is frequently PCR positive for the ACME specific arcA-gene. This study is the first to describe an ACME element upstream of the SCCmec in MRSA. By traditional SCCmec typing schemes, the SCCmec of t024-ST8 strain M1 carries SCCmec IVa, but full sequencing of the cassette revealed that the entire J3 region had no homology to published SCCmec IVa. Within the J3 region of M1 was a 1705 bp sequence only similar to a sequence in S. haemolyticus strain JCSC1435 and 2941 bps with no homology found in GenBank. In addition to the usual direct repeats (DR) at each extremity of SCCmec, M1 had two new DR between the orfX gene and the J3 region of the SCCmec. The region between the orfX DR (DR1) and DR2 contained the ccrAB4 genes. An ACME II-like element was located between DR2 and DR3. The entire 26,468 bp sequence between DR1 and DR3 was highly similar to parts of the ACME composite island of S. epidermidis strain ATCC12228. Sequencing of an ACME negative t024-ST8 strain (M299) showed that DR1 and the sequence between DR1 and DR3 was missing. The finding of a mobile ACME II-like element inserted downstream of orfX and upstream of SCCmec indicates a novel recombination between staphylococcal species.  相似文献   

3.
The mobile element staphylococcal cassette chromosome mec (SCCmec), which carries mecA, the gene responsible for methicillin resistance in staphylococci, inserts into the chromosome at a specific site, attB, mediated by serine recombinases, CcrAB and CcrC, encoded on the element. This study sought to determine the sequence specificity for CcrB DNA binding in vitro and for CcrAB-mediated SCCmec insertion in vivo. CcrB DNA binding, as assessed in vitro by electrophoretic mobility shift assay (EMSA), revealed that a 14-bp sequence (CGTATCATAAGTAA; the terminal sequence of the orfX gene) was the minimal requirement for binding, containing an invariant sequence (TATCATAA) found in all chromosomal (attB) and SCCmec (attS) integration sites. The sequences flanking the minimal attB and attS binding sites required for insertion in vivo were next determined. A plasmid containing only 37 bp of attS and flanking sequences was required for integration into the attB site at 92% efficiency. In contrast, at least 200 bp of sequence within orfX, 5' to the attB core, and 120 bp of specific sequence 3' to the orfX stop site and attB core were required for the highest insertion frequency. Finally, an attS-containing plasmid was inserted into wild-type Staphylococcus aureus strains without integrated SCCmec (methicillin susceptible) at various frequencies which were determined both by sequences flanking the att site and by the presence of more than one att site on either the chromosome or the integration plasmid. This sequence specificity may play a role in the epidemiology of SCCmec acquisition.  相似文献   

4.
The phenol-soluble modulin PSM-mec is the only known staphylococcal toxin that is encoded on a mobile antibiotic resistance determinant, namely the staphylococcal cassette chromosome (SCC) element mec encoding resistance to methicillin. Here we show that the psm-mec gene is found frequently among methicillin-resistant Staphylococcus aureus (MRSA) strains of SCCmec types II, III, and VIII, and is a conserved part of the class A mec gene complex. Controlled expression of AgrA versus RNAIII in agr mutants of all 3 psm-mec-positive SCCmec types demonstrated that expression of psm-mec, which is highly variable, is controlled by AgrA in an RNAIII-independent manner. Furthermore, psm-mec isogenic deletion mutants showed only minor changes in PSMα peptide production and unchanged (or, as previously described, diminished) virulence compared to the corresponding wild-type strains in a mouse model of skin infection. This indicates that the recently reported regulatory impact of the psm-mec locus on MRSA virulence, which is opposite to that of the PSM-mec peptide and likely mediated by a regulatory RNA, is minor when analyzed in the original strain background. Our study gives new insight in the distribution, regulation, and role in virulence of the PSM-mec peptide and the psm-mec gene locus.  相似文献   

5.
The Staphylococcus aureus serotype 5 capsular polysaccharide (CP5) has a trisaccharide repeating unit of (→ 4)-3-O-Ac-β- D -ManNAcA p -(1 → 4)-α- L -FucNAc p -(1 → 3)-β- D -FucNAc p -(1→). Tn 918 mutagenesis of strain Reynolds yielded a mutant that produced wild-type levels of O-deacetylated CP5. The site and orientation of the single transposon insertion in mutant JL232 were determined by analysis of Southern blots and amplification of DNA flanking the transposon. DNA sequencing revealed that Tn 918 was inserted within an open reading frame of 627 bp. The predicted amino acid sequence encodes a protein of approximately 26 kDa with homology to members of the NodL-LacA-CysE family of bacterial acetyltransferases. Southern blot analysis showed that genes similar to cap5H were present only in strains of S . aureus belonging to capsular serotypes 2, 4 and 5. In an in vitro assay, the parental strain was more resistant to opsonophagocytic killing than the mutant strain. In a mouse model of staphylococcal infection, the parental strain was able to seed the bloodstream from the peritoneal cavity and colonize the kidneys more efficiently than the O-deacetylated mutant. When cap5H was provided to the mutant in trans , it fully restored CP5 O-acetylation. The virulence of the complemented mutant strain closely approximated that of the parental strain.  相似文献   

6.
The emergence and evolution of methicillin-resistant Staphylococcus aureus   总被引:25,自引:0,他引:25  
Significant advances have been made in recent years in our understanding of how methicillin resistance is acquired by Staphylococcus aureus. Integration of a staphylococcal cassette chromosome mec (SCCmec) element into the chromosome converts drug-sensitive S. aureus into the notorious hospital pathogen methicilin-resistant S. aureus (MRSA), which is resistant to practically all beta-lactam antibiotics. SCCmec is a novel class of mobile genetic element that is composed of the mec gene complex encoding methicillin resistance and the ccr gene complex that encodes recombinases responsible for its mobility. These elements also carry various resistance genes for non-beta-lactam antibiotics. After acquiring an SCCmec element, MRSA undergoes several mutational events and evolves into the most difficult-to-treat pathogen in hospitals, against which all extant antibiotics including vancomycin are ineffective. Recent epidemiological data imply that MRSA has embarked on another evolutionary path as a community pathogen, as at least one novel SCCmec element seems to have been successful in converting S. aureus strains from the normal human flora into MRSA.  相似文献   

7.
8.
The serotype 5 capsule gene cluster of Staphylococcus aureus comprises 16 genes (cap5A through cap5P), but little is known about how the putative gene products function in capsule biosynthesis. We propose that the N-acetylmannosaminuronic acid (ManNAcA) component of the S. aureus serotype 5 capsular polysaccharide (CP5) is synthesized from a UDP-N-acetylglucosamine (UDP-GlcNAc) precursor that is epimerized to UDP-N-acetylmannosamine (UDP-ManNAc) and then oxidized to UDP-ManNAcA. We report the purification and biochemical characterization of a recombinant UDP-GlcNAc 2-epimerase encoded by S. aureus cap5P. Purified Cap5P converted approximately 10% of UDP-GlcNAc to UDP-ManNAc as detected by gas chromatography-mass spectrometry. The epimerization of UDP-GlcNAc to UDP-ManNAc occurred over a wide pH range and was unaffected by divalent cations. Surprisingly, CP5 expression in S. aureus was unaffected by insertional inactivation of cap5P. Sequence homology searches of the public S. aureus genomic databases revealed the presence of another putative UDP-GlcNAc 2-epimerase on the S. aureus chromosome that showed 61% identity to Cap5P. Redundancy of UDP-GlcNAc 2-epimerase function in S. aureus was demonstrated by cloning the cap5P homologue from strain Newman and complementing an Escherichia coli rffE mutant defective in UDP-GlcNAc 2-epimerase activity. Our results confirm the putative function of the S. aureus cap5P gene product and demonstrate the presence of a second gene on the staphylococcal chromosome with a similar function.  相似文献   

9.
We identified a novel type-III staphylococcal cassette chromosome mec (SCC mec ) element carried by eight methicillin-resistant Staphylococcus aureus (MRSA) strains from different wards and patients in an Indian hospital. Although the pulsed-field gel electrophoresis pattern and spa types of eight strains were identical and clonally related to other nosocomial Indian isolates that belonged to sequence type (ST) 239 and spa type t037, the minimum inhibitory concentration (MIC) of these eight variants was noticeably low compared with the typical type-III isolates from the same hospital, and we were unable to identify ccrC and hsdR by multiplex PCR, although mer operon and transposases A, B, and C of Tn 554 were amplified. By amplifying the entire SCC mec region by long-range PCR and determining parts of the nucleotide sequences of one isolate (V14), we found that the strain carried a novel SCC mec element containing a 422 bp sequence, which is highly homologous to that identified in strain CCR1-9583, mer operon and plasmid pT181 integrated in tandem via IS 431 in the J3 region. It also carried a cassette chromosome, previously reported to be an SCC-like element, downstream of type-III SCC mec . Because PCR amplification of representative genes showed that these eight strains carried the same genetic elements, they belong to a novel MRSA clone that differs from most nosocomial clones carrying type-III SCC mec and SCC mercury , despite belonging to the ST239 genotype.  相似文献   

10.
耐甲氧西林金黄色葡萄球菌(MRSA)的产生是由甲氧西林敏感的金黄色葡萄球菌(MSSA)获得外源性的SCCmec所致。MRSA菌株可以产生一种新的青霉素结合蛋白PBP2a,PBP2a降低了与β-内酰胺类抗生素的亲合力,从而对β-内酰胺类抗生素产生耐药性。PBP2a由mecA基因编码,mecA基因存在于葡萄球菌盒式染色体(Staphylococcal cassette chromosome mec,SCCmec)中,SCCmec是一种可移动的遗传元件,该元件还携带除mecA基因外的其他抗菌药物的耐药基因,造成多重耐药(Multidrug-resistance,MDR)。SCCmec目前主要分为8型,其中又分为若干亚型。SCCmec的基因型与MRSA的流行背景有关,不同地区的SCCmec基因分型分布可能不同。  相似文献   

11.
The major methicillin-resistant Staphylococcus aureus(MRSA) distributed among hospitals in Japan is New York/Japan clone [multilocus sequence type 5 (ST5), agr type 2 and methicillin resistance locus type (SCC mec) II] which possesses both the toxic shock syndrome toxin 1 gene (tst) and staphylococcal enterotoxin C gene (sec). In this study, we collected 245 MRSA strains from four hospitals during 2001 to 2005 in Niigata, Japan, and analyzed tst and sec genes and SCC mec type among them. A total of 13 strains were further examined for their genotypes, virulence gene patterns and drug resistance. Among the 245 strains four tst sec genes patterns were observed; tst(+) sec(+) strains represented a majority of 86.5% and 9.4% were tst(-) sec(-). SCCmec typing revealed that 91.4% had type II, 4.1% type IV and 4.1% type I. Multilocus sequence typing (MLST) revealed that 10 of the 13 typed strains belonged to clonal complex 5 (7 had ST5 while 3 were single locus variants of ST5) with similar characteristics to the New York/Japan clone and possessed multi-drug resistance with high virulence gene content. The remaining 3 strains were ST8 (n=2) and ST91 (n=1). The ST91 strain had SCC mec IV and seemed to originate in the community, while ST8 strains exhibited SCC mec type I, which is distinct from community type IV. The data suggest that MRSA in hospitals in Niigata now mainly includes the New York/Japan clone (undergoing genomic divergence and clonal expansion) and other minor types (e.g. ST8) as well as the community type.  相似文献   

12.
Although the staphylococcal methicillin resistance determinant, mecA, resides on a mobile genetic element, staphylococcus cassette chromosome mec (SCCmec), its distribution in nature is limited to as few as five clusters of related methicillin-resistant Staphylococcus aureus (MRSA) clones. To investigate the potential role of the host chromosome in clonal restriction of the methicillin resistance determinant, we constructed plasmid pYK20, carrying intact mecA, and introduced it into several methicillin-susceptible Staphylococcus aureus strains, five of which were naive hosts (i.e., mecA not previously resident on the host chromosome) and five of which were experienced hosts (i.e., methicillin-susceptible variants of MRSA strains from which SCCmec was excised). We next assessed the effect of the recipient background on the methicillin resistance phenotype by population analysis, by assaying the mecA expression of PBP2a by Western blot analysis, and by screening for mutations affecting mecA. Each experienced host transformed with pYK20 had a resistance phenotype and expressed PBP2a similar to that of the parent with chromosomal SCCmec, but naive hosts transformed with pYK20 selected against its expression, indicative of a host barrier. Either inducible beta-lactamase regulatory genes blaR1-blaI or homologous regulatory genes mecR1-mecI, which control mecA expression, acted as compensatory elements, permitting the maintenance and expression of plasmid-carried mecA.  相似文献   

13.
Virulence and antibiotic resistance are significant determinants of the types of infections caused by Staphylococcus aureus and paediatric groups remain among the most commonly affected populations. The goal of this study was to characterise virulence genes of methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains isolated from a paediatric population of a Colombian University Hospital during 2009. Sixty MSSA and MRSA isolates were obtained from paediatric patients between zero-14 years. We identified the genes encoding virulence factors, which included Panton-Valentine leucocidine (PVL), staphylococcal enterotoxins A-E, exfoliative toxins A and B and toxic shock syndrome toxin 1. Typing of the staphylococcal chromosome cassette mec (SCCmec) was performed in MRSA strains. The virulence genes were more diverse and frequent in MSSA than in MRSA isolates (83% vs. 73%). MRSA strains harboured SCCmec types IVc (60%), I (30%), IVa (7%) and V (3%). SCCmec type IVc isolates frequently carried the PVL encoding genes and harboured virulence determinants resembling susceptible strains while SCCmec type I isolates were often negative. PVL was not exclusive to skin and soft tissue infections. As previously suggested, these differences in the distribution of virulence factor genes may be due to the fitness cost associated with methicillin resistance.  相似文献   

14.
S Sau  C Y Lee 《Journal of bacteriology》1996,178(7):2118-2126
Eleven serotypes of capsular polysaccharide from Staphylococcus aureus have been reported. We have previously cloned a cluster of type 1 capsule (cap1) genes responsible for type 1 capsular polysaccharide biosynthesis in S. aureus M. To clone the type 8 capsule (cap8) genes, a plasmid library of type 8 strain Becker was screened with a labelled DNA fragment containing the cap1 genes under low-stringency conditions. One recombinant plasmid containing a 14-kb insert was chosen for further study and found to complement 14 of the 18 type 8 capsule-negative (Cap8-) mutants used in the study. Additional library screening, subcloning, and complementation experiments showed that all of the 18 Cap8- mutants were complemented by DNA fragments derived from a 20.5-kb contiguous region of the Becker chromosome. The mutants were mapped into six complementation groups, indicating that the cap8 genes are clustered. By Southern hybridization analyses under high-stringency conditions, we found that DNA fragments containing the cap8 gene cluster show extensive homology with all 17 strains tested, including type 1 strains. By further Southern analyses and cloning of the cap8-related homolog from strain M, we show that strain M carries an additional capsule gene cluster different from the cap1 gene cluster. In addition, by using DNA fragments containing different regions of the cap8 gene cluster as probes to hybridize DNA from different strains, we found that the central region of the cap8 gene cluster hybridizes only to DNAs from certain strains tested whereas the flanking regions hybridize to DNAs of all strains tested. Thus, the cap8 gene clusters and its closely related homologs are likely to have organizations similar to those of the encapsulation genes of other bacterial systems.  相似文献   

15.
SCCmec in staphylococci: genes on the move   总被引:3,自引:0,他引:3  
Staphylococcal cassette chromosome (SCC) elements are, so far, the only vectors described for the mecA gene encoding methicillin resistance in staphylococci. SCCmec elements are classified according to the type of recombinase they carry and their general genetic composition. SCCmec types I-V have been described, and SCC elements lacking mecA have also been reported. In this review, we summarize the current knowledge about SCC structure and distribution, including genetic variants and rudiments of the elements. Its origin is still unknown, but one assumes that staphylococcal cassette chromosome is transferred between staphylococci, and mecA-positive coagulase-negative staphylococci may be a potential reservoir for these elements. Staphylococcal genomes seem to change continuously as genetic elements move in and out, but no mechanism of transfer has been found responsible for moving SCC elements between different staphylococcal species. Observations suggesting de novo production of methicillin-resistant staphylococci and horizontal gene transfer of SCCmec will be discussed.  相似文献   

16.
杨延成  程航  周人杰  饶贤才 《遗传》2015,37(5):442-451
携带mec基因簇的葡萄球菌盒式染色体(Staphylococcal chromosome cassette mec, SCCmec)遗传元件的获得是耐甲氧西林金黄色葡萄球菌(Methicillin-resistant Staphylococcus aureus, MRSA)耐药的主要原因。SCCmec由一个mec基因簇、一个染色体重组酶(ccr)基因簇及3个J区组成。mec基因簇含有mecA及其调控基因,mecA基因编码的耐药决定簇使MRSA对β-内酰胺类抗生素耐药;ccr基因簇编码的重组酶负责SCCmec元件的整合与切离;J区差异大,导致不同来源MRSA菌株携带SCCmec的大小不一,在组成上也具有多样性。这些特征为利用SCCmec元件进行MRSA分型创造了条件。文章介绍了SCCmec元件的结构和功能,综述了基于SCCmec的MRSA分型研究。  相似文献   

17.
In a previous study, transformation demonstrated that a gene governing enterotoxin A production (entA+) in Staphylococcus aureus strain S-6 was located on the chromosome between the purB110 and ilv-129 markers; in contrast, the entA+ gene of strain FRI-196E was shown not to be located in the same position. In the current study, 54 enterotoxin A-producing strains of S. aureus were examined to locate the entA+ gene. Conventional transformation procedures and a series of multiply marked derivatives of NCTC 8325 were used as recipients for chromosomal mapping. Of the 54 strains tested, 23 were found to contain the entA+ gene at the original locus between the purB110 and ilv-129 markers. Twenty-seven strains could not be analyzed either because their DNA was genetically ineffective in transforming strain 8325 (23 strains), or Pur+ Ilv+ transformants could not be recovered (four strains). Four other strains contained an entA+ gene that could not be located in any of the chromosomal linkage groups. A new insertion site for Tn551 was located within the hla+ gene involved in alpha-toxin production. It eliminated alpha-toxin production and was used to separate the entA+ gene from the hla+ marker in the purB110-ilv-129 region. This segment of the chromosome is shown to consist of the purB110, entA+, hla+, and ilv-129 markers in that order.  相似文献   

18.
Methicillin-resistant Staphylococcus aureus (MRSA) likely originated by acquisition of the staphylococcal cassette chromosome mec (SCCmec) from coagulase-negative staphylococci (CNS). However, it is unknown whether the same SCCmec types are present in MRSA and CNS that reside in the same niche. Here we describe a study to determine the presence of a potential mecA reservoir among CNS recovered from 10 pig farms. The 44 strains belonged to 10 different Staphylococcus species. All S. aureus strains belonged to sequence type 398 (ST398), with SCCmec types V and IVa. Type IVc, as well as types III and VI, novel subtypes of type IV, and not-typeable types, were found in CNS. S. aureus, S. epidermidis, and S. haemolyticus shared SCCmec type V. The presence of SCCmec type IVc in several staphylococcal species isolated from one pig farm is noteworthy, suggesting exchange of this SCCmec type in CNS, but the general distribution of this SCCmec type still has to be established. In conclusion, this study shows that SCCmec types among staphylococcal species on pig farms are heterogeneous. On two farms, more than one recovered staphylococcal species harbored the same SCCmec type. We conclude that staphylococci on pig farms act as a reservoir of heterogeneous SCCmec elements. These staphylococci may act as a source for transfer of SCCmec to S. aureus.  相似文献   

19.
In a previous study, transformation demonstrated that a gene governing enterotoxin A production (entA+) in Staphylococcus aureus strain S-6 was located on the chromosome between the purB110 and ilv-129 markers; in contrast, the entA+ gene of strain FRI-196E was shown not to be located in the same position. In the current study, 54 enterotoxin A-producing strains of S. aureus were examined to locate the entA+ gene. Conventional transformation procedures and a series of multiply marked derivatives of NCTC 8325 were used as recipients for chromosomal mapping. Of the 54 strains tested, 23 were found to contain the entA+ gene at the original locus between the purB110 and ilv-129 markers. Twenty-seven strains could not be analyzed either because their DNA was genetically ineffective in transforming strain 8325 (23 strains), or Pur+ Ilv+ transformants could not be recovered (four strains). Four other strains contained an entA+ gene that could not be located in any of the chromosomal linkage groups. A new insertion site for Tn551 was located within the hla+ gene involved in alpha-toxin production. It eliminated alpha-toxin production and was used to separate the entA+ gene from the hla+ marker in the purB110-ilv-129 region. This segment of the chromosome is shown to consist of the purB110, entA+, hla+, and ilv-129 markers in that order.  相似文献   

20.
J C Lee  S Xu  A Albus    P J Livolsi 《Journal of bacteriology》1994,176(16):4883-4889
Capsules are produced by over 90% of Staphylococcus aureus strains, and approximately 25% of clinical isolates express type 5 capsular polysaccharide (CP5). We mutagenized the type 5 strain Reynolds with Tn918 to target genes involved in CP5 expression. From a capsule-deficient mutant, we cloned into a cosmid vector an approximately 26-kb EcoRI fragment containing the transposon insertion. In the absence of tetracycline selection, Tn918 was spontaneously excised, thereby resulting in a plasmid containing 9.4 kb of S. aureus DNA flanking the Tn918 insertion site. The 9.4-kb DNA fragment was used to screen a cosmid library prepared from the wild-type strain. Positive colonies were identified by colony hybridization, and a restriction map of one clone (pJCL19 with an approximately 34-kb insert) carrying the putative capsule gene region was constructed. Fragments of pJCL19 were used to probe genomic DNA digests from S. aureus strains of different capsular serotypes. Fragments on the ends of the cloned DNA hybridized to fragments of similar sizes in most of the strains examined. Blots hybridized to two fragments flanking the central region of the cloned DNA showed restriction fragment length polymorphism. A centrally located DNA fragment hybridized only to DNA from capsular types 2, 4, and 5. DNA from pJCL19 was subcloned to a shuttle vector for complementation studies. A 6.2-kb EcoRI-ClaI fragment complemented CP5 expression in a capsule-negative mutant derived by mutagenesis with ethyl methanesulfonate. These experiments provide the necessary groundwork for identifying genes involved in CP5 expression by S. aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号