首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The patch-clamp technique was used to investigate ionic channels in the apical membrane of rabbit proximal tubule cells in primary culture. Cell-attached recordings revealed the presence of a highly selective K+ channel with a conductance of 130 pS. The channel activity was increased with membrane depolarization. Experiments performed on excised patches showed that the channel activity depended on the free Ca2+ concentration on the cytoplasmic face of the membrane and that decreasing the cytoplasmic pH from 7.2 to 6.0 also decreased the channel activity. In symmetrical 140 mM KCl solutions the channel conductance was 200 pS. The channel was blocked by barium, tetraethylammonium and Leiurus quinquestriatus scorpion venom (from which charybdotoxin is extracted) when applied to the extracellular face of the channel. Barium and quinidine also blocked the channel when applied to the cytoplasmic face of the membrane. Another K+ channel with a conductance of 42 pS in symmetrical KCl solutions was also observed in excised patches. The channel was blocked by barium and apamin, but not by tetraethylammonium applied to the extracellular face of the membrane. Using the whole-cell recording configuration we determined a K+ conductance of 4.96 nS per cell that was blocked by 65% when 10 mM tetraethylammonium was applied to the bathing medium.  相似文献   

2.
We report here that large conductance K(+) selective channel in adrenal chromaffin granules is controlled by pH. We measured electrogenic influx of (86)Rb(+) into chromaffin granules prepared from bovine adrenal gland medulla. The (86)Rb(+) influx was inhibited by acidic pH. Purified chromaffin granule membranes were also fused with planar lipid bilayer. A potassium channel with conductance of 432+/-9 pS in symmetric 450 mM KCl was observed after reconstitution into lipid bilayer. The channel activity was unaffected by charybdotoxin, a blocker of the Ca(2+)-activated K(+) channel of large conductance. It was observed that acidification to pH 6.4 cis side of the membrane lowered the channel open probability and single channel conductance. Whereas only weak influence on the single channel current amplitude and open probability were observed upon lowering of the pH at the trans side. We conclude that a pH-sensitive large conductance potassium channel operates in the chromaffin granule membrane.  相似文献   

3.
We have applied patch-clamp techniques to on-cell and excised-membrane patches from human retinal pigment epithelial cells in tissue culture. Single-channel currents from at least four ion channel types were observed: three or more potassium-selective channels with single-channel slope conductances near 100, 45, and 25 pS as measured in on-cell patches with physiological saline in the pipette, and a relatively nonselective channel with subconductance states, which has a main-state conductance of approximately 300 pS at physiological ion concentrations. The permeability ratios, PK/PNa, measured in excised patches were 21 for the 100-pS channels, 3 for the 25-pS channels, and 0.8 for the 300-pS nonselective channel. The 45-pS channels appeared to be of at least two types, with PK/PNa's of approximately 41 for one type and 3 for the other. The potassium-selective channels were spontaneously active at all potentials examined. The average open time for these channels ranged from a few milliseconds to many tens of milliseconds. No consistent trend relating potassium-selective channel kinetics to membrane potential was apparent, which suggests that channel activity was not regulated by the membrane potential. In contrast to the potassium-selective channels, the activity of the nonselective channel was voltage dependent: the open probability of this channel declined to low values at large positive or negative membrane potentials and was maximal near zero. Single-channel conductances observed at several symmetrical KCl concentrations have been fitted with Michaelis-Menten curves in order to estimate maximum channel conductances and ion-binding constants for the different channel types. The channels we have recorded are probably responsible for the previously observed potassium permeability of the retinal pigment epithelium apical membrane.  相似文献   

4.
After the incorporation of the tracheal microsomal membrane into bilayer lipid membrane (BLM), a new single channel permeable for calcium was observed. Using the BLM conditions, 53 mM Ca2+ in trans solution versus 200 nM Ca2+ in cis solution, the single calcium channel current at 0 mV was 1.4-2.1 pA and conductance was 62-75 pS. The channel Ca2+/K+ permeability ratio was 4.8. The open probability (P-open) was in the range of 0.7-0.97. The P-open, measured at -10 mV to +30 mV (trans-cis), was not voltage dependent. The channel was neither inhibited by 10-20 microM ruthenium red, a specific blocker of ryanodine calcium release channel, nor by 10-50 microM heparin, a specific blocker of IP3 receptor calcium release channel, and its activity was not influenced by addition of 0.1 mM MgATP. We suggest that the observed new channel is permeable for calcium, and it is neither identical with the known type 1 or 2 ryanodine calcium release channel, nor type 1 or 2 IP3 receptor calcium release channel.  相似文献   

5.
Applying the technique of 'tip-dip' to mitochondria, we have shown the existence in this organelle of a cationic channel of large conductance, which is blocked by a 13-residue peptide possessing the sequence of the N-terminal extremity of the cytochrome c oxidase subunit IV precursor. To study the submitochondrial localization of the channel, the effect of trypsin on isolated channels and on entire mitochondria were compared. One side of isolated channels is sensitive to trypsin, which eliminates the voltage dependence. Channels isolated from trypsinized mitochondria were devoid of voltage dependence and were blocked by the peptide. This suggests a localization of the channel on the outer membrane. Consistent with this hypothesis, the channel was observed with the highest frequency in outer membrane fractions purified by different procedures, either from bovine adrenal cortex or from rat liver mitochondria. Such a localization is also consistent with digitonin solubilization experiments. The channel was solubilized before the inner membrane marker, cytochrome c oxidase. The orientation of the channel was inferred from its trypsin sensitivity and its potential dependence: a transmembrane potential (inside negative) will close the channel.  相似文献   

6.
Sodium channel activity was determined by measuring the veratridine-tetrodotoxin-sensitive sodium influx in reconstituted vesicles prepared from lobster nerve membrane and soybean lipids. The sodium channel activity was abolished by treatment of membranes, prior to reconstitution, with purified phospholipase A2. When the treatment with phospholipase A2 was carried out in the presence of bovine serum albumin the channel activity was fully preserved. Electron microscopy revealed that the normal vesicular appearance of the membranes was changed to an amorphous mass by treatment of the membranes with enzyme alone. A population of preserved vesicular structures was observed when bovine serum albumin was present during the enzyme treatment. Analysis of the membrane components indicate that there is no relationship between phospholipid composition and sodium channel activity.  相似文献   

7.
When phospholipid vesicles bound to a planar membrane are osmotically swollen, they develop a hydrostatic pressure (delta P) and fuse with the membrane. We have calculated the steady-state delta P, from the equations of irreversible thermodynamics governing water and solute flows, for two general methods of osmotic swelling. In the first method, vesicles are swollen by adding a solute to the vesicle-containing compartment to make it hyperosmotic. delta P is determined by the vesicle membrane's permeabilities to solute and water. If the vesicle membrane is devoid of open channels, then delta P is zero. When the vesicle membrane contains open channels, then delta P peaks at a channel density unique to the solute permeability properties of both the channel and the membrane. The solute enters the vesicle through the channels but leaks out through the region of vesicle-planar membrane contact. delta P is largest for channels having high permeabilities to the solute and for solutes with low membrane permeabilities in the contact region. The model predicts the following order of solutes producing pressures of decreasing magnitude: KCl greater than urea greater than formamide greater than or equal to ethylene glycol. Differences between osmoticants quantitatively depend on the solute permeability of the channel and the density of channels in the vesicle membrane. The order of effectiveness is the same as that experimentally observed for solutes promoting fusion. Therefore, delta P drives fusion. When channels with small permeabilities are used, coupling between solute and water flows within the channel has a significant effect on delta P. In the second method, an impermeant solute bathing the vesicles is isosmotically replaced by a solute which permeates the channels in the vesicle membrane. delta P resulting from this method is much less sensitive to the permeabilities of the channel and membrane to the solute. delta P approaches the theoretical limit set by the concentration of the impermeant solute.  相似文献   

8.
We report here that large conductance K+ selective channel in adrenal chromaffin granules is controlled by pH. We measured electrogenic influx of 86Rb+ into chromaffin granules prepared from bovine adrenal gland medulla. The 86Rb+ influx was inhibited by acidic pH. Purified chromaffin granule membranes were also fused with planar lipid bilayer. A potassium channel with conductance of 432±9 pS in symmetric 450 mM KCl was observed after reconstitution into lipid bilayer. The channel activity was unaffected by charybdotoxin, a blocker of the Ca2+-activated K+ channel of large conductance. It was observed that acidification to pH 6.4 cis side of the membrane lowered the channel open probability and single channel conductance. Whereas only weak influence on the single channel current amplitude and open probability were observed upon lowering of the pH at the trans side. We conclude that a pH-sensitive large conductance potassium channel operates in the chromaffin granule membrane.  相似文献   

9.
A novel potassium channel in lymphocyte mitochondria   总被引:4,自引:0,他引:4  
The margatoxin-sensitive Kv1.3 is the major potassium channel in the plasma membrane of T lymphocytes. Electron microscopy, patch clamp, and immunological studies identified the potassium channel Kv1.3, thought to be localized exclusively in the cell membrane, in the inner mitochondrial membrane of T lymphocytes. Patch clamp of mitoplasts and mitochondrial membrane potential measurements disclose the functional expression of a mitochondrial margatoxin-sensitive potassium channel. To identify unambiguously the mitochondrial localization of Kv1.3, we employed a genetic model and stably transfected CTLL-2 cells, which are genetically deficient for this channel, with Kv1.3. Mitochondria isolated from Kv1.3-reconstituted CTLL-2 expressed the channel protein and displayed an activity, which was identical to that observed in Jurkat mitochondria, whereas mitochondria of mock-transfected cells lacked a channel with the characteristics of Kv1.3. Our data provide the first molecular identification of a mitochondrial potassium conductance.  相似文献   

10.
The electrical properties of Escherichia coli cells were examined by the patch-clamp technique. Giant cells or giant spheroplasts were generated by five different methods. By electron micrographic and other criteria we determined that the patches are most likely from the outer membrane. We regularly observed currents through at least two types of channels in this membrane. The first current is mechanosensitive and voltage-dependent, and can be observed in single gene mutants of the known major porins (ompF, ompC, phoE, lamB); this channel may represent a minor porin or a new class of outer membrane protein. The possible identity of the second, voltage-sensitive channel with one of the known outer membrane proteins is being explored. The high-resistance seals consistently formed on these patches and the presence of gated ion channels suggest that most of the pores of the outer membrane are not statically open, as commonly held, but are closed at rest and may be openable by physiological stimuli.  相似文献   

11.
In the plasma membranes of mammalian proximal renal tubules single ion channels were investigated mainly in isolated tubules perfused on one side, in isolated nonperfused (collapsed) tubules and in primary cell cultures. With these techniques, the following results were obtained: in the luminal membrane of isolated one-sided perfused tubules of rabbit and mouse S3 segments, K(+)-selective channels with single-channel conductance (g) of 33 pS and 63 pS, respectively, were recorded. In primary cultures of rabbit S1 segments, a small-conductance (42 pS) as well as a large-conductance (200 pS) K+ channel were observed. The latter was Ca2(+)- and voltage-sensitive. In cultured cells a Ca2(+)-activated, nonselective cation channel with g = 25 pS was also recorded. On the other hand, an amiloride-sensitive channel with g = 12 pS, which was highly selective for Na+ over K+, was observed in the isolated perfused S3 segment. In the basolateral membrane of isolated perfused S3 segments, two types of K+ channels with g = 46 pS and 36 pS, respectively, were observed. The latter channel was not dependent on cytosolic Ca2+ in cell-excised patches. A K+ channel with g = 54 pS was recorded in isolated nonperfused S1 segments. This channel showed inward rectification and was more active at depolarizing potentials. In isolated perfused S3 segments, in addition to the K+ channels also a nonselective cation channel with g = 28 pS was observed. This channel was highly dependent on cytosolic Ca2+ in cell-free patches. It can be concluded that the K+ channels both in the luminal and contraluminal cell membrane are involved in the generation of the cell potential. Na+ channels in the luminal membrane may participate in Na+ reabsorption, whereas the function of a basolateral cation channel remains unclear. Recently, single anion-selective channels were recorded in membranes of endocytotic vesicles, isolated from rat proximal tubules. Vesicles were enlarged by the dehydration/rehydration method and investigated with the patch clamp technique. The Cl- channel had a conductance of 73 pS, the current-voltage curve was linear and the channel inactivated at high negative clamp potentials. It is suggested that this channel is responsible for charge neutrality during active H+ uptake into the endosomes.  相似文献   

12.
Previous studies using the patch-clamp technique demonstrated the presence of a small conductance Cl(-) channel in the apical membrane of respiratory gill cells in primary culture originating from sea bass Dicentrarchus labrax. We used the same technique here to characterize potassium channels in this model. A K(+) channel of 123 +/- 3 pS was identified in the cell-attached configuration with 140 mM KCl in the bath and in the pipette. The activity of the channel declined rapidly with time and could be restored by the application of a negative pressure to the pipette (suction) or by substitution of the bath solution with a hypotonic solution (cell swelling). In the excised patch inside-out configuration, ionic substitution demonstrated a high selectivity of this channel for K(+) over Na(+) and Ca(2+). The mechanosensitivity of this channel to membrane stretching via suction was also observed in this configuration. Pharmacological studies demonstrated that this channel was inhibited by barium (5 mM), quinidine (500 microM), and gadolinium (500 microM). Channel activity decreased when cytoplasmic pH was decreased from 7.7 to 6.8. The effect of membrane distension by suction and exposure to hypotonic solutions on K(+) channel activity is consistent with the hypothesis that stretch-activated K(+) channels could mediate an increase in K(+) conductance during cell swelling.  相似文献   

13.
In leaf mesophyll cells of pea (Pisum sativum) light induces a transient depolarization that is at least partly due to an increased plasma membrane conductance for anions. Several channel types were identified in the plasma membrane of protoplasts from mesophyll cells using the patch-clamp technique. One of these was an anion channel with a single-channel conductance of 32 picasiemens in symmetrical 100/100 KCl solutions. In asymmetrical solutions the reversal potential indicates a high selectivity for Cl- over K+ at high cytoplasmic Cl-. At negative membrane voltages the channel openings were interrupted by very short closures. In the open channel conductance several substrates were identified. At a cytoplasmic negative logarithm of Ca concentration higher than 6.3, no channel openings were observed. When the protoplast was illuminated in the cell-attached configuration, at least one channel type had a higher opening probability. This channel can tentatively be identified as the above-described anion channel based on conductance and the characteristic short closures at negative membrane potentials. This light activation of the 32-picasiemen anion channel is a strong indication that this channel conducts the light-induced depolarizing current. Because channel activity is strongly Ca2+-dependent, a role of cytoplasmic Ca2+ concentration changes in the light activation of the conductance is discussed.  相似文献   

14.
Structural determinants of lateral gate opening in the protein translocon   总被引:4,自引:0,他引:4  
Gumbart J  Schulten K 《Biochemistry》2007,46(39):11147-11157
The heterotrimeric SecY/Sec61 complex is a protein-conducting channel that provides a passage for proteins across the membrane as well as a means to integrate nascent proteins into the membrane. While the first function is common among membrane protein channels and transporters, the latter is unique. Insertion of nascent membrane proteins, one transmembrane segment at a time, by SecY likely occurs through a lateral gate in the channel. Molecular dynamics simulations have been used to investigate the mechanism of gate opening. Opening and closing the gate under different conditions allowed us to identify structural elements that resist opening as well as those that aid closure. SecE, considered to act as a clamp keeping the lateral gate closed, was found to play no such role. Loosening of the plug by lateral gate opening, a potential step in channel gating, was also observed. The simulations revealed that lipids on time scales of up to 1 micros do not flood channels with an open lateral gate.  相似文献   

15.
Rod and cone photoreceptor cyclic nucleotide-gated (CNG) channels play pivotal roles in phototransduction. This work investigates the functional significance of photoreceptor CNG channel association with membrane microdomains enriched in raft lipids, cholesterol and sphingolipids. The primary subunits of cone and rod CNG channels, CNGA3 and CNGA1, respectively, were heterologously expressed in HEK 293 cells, and channel activity was determined by ratiometric measurement of [Ca (2+)] i in response to cyclic guanosine monophosphate (cGMP) stimulation. CNGA3 was found to be largely insoluble following Triton X-100 extraction and cofractionationed with biochemically isolated membrane domains enriched in caveolin-1. Cofractionation of both natively expressed CNGA3 and CNGB1 (the modulatory subunit of the rod CNG channel) with the low buoyant density, caveolin-1-enriched membranes was also confirmed in mouse retinas. The functional significance of this association was established by the observed negative effects of depletion of raft lipids on the channel activity. Treatment with the cholesterol depleting agent, methyl-beta-cyclodextrin (MCD), significantly inhibited CNGA3 and CNGA1 activation in response to cGMP stimulation. MCD treatment lowered cellular cholesterol levels by approximately 45% without altering fatty acid composition, suggesting that the inhibition of channel activity by MCD treatment is not due to perturbation of other membrane lipids. Treatment with the sphingolipid biosynthesis inhibitor myriocin resulted in impaired activation and cytosolic redistribution of CNGA3, suggesting that the integrity of the membrane domains is critical for the channel cellular processing and plasma membrane localization. This study demonstrates the association of photoreceptor CNG channels with membrane domains enriched in raft lipids and indicates, for the first time, that raft lipids modulate the plasma membrane localization and functional activity of photoreceptor CNG channels.  相似文献   

16.
In a 1969 experiment, Palti and Adelman reported that the capacitance of squid axon membrane rises sharply with temperature between 40 and 50 degrees C. This phenomenon is here explained by the ferroelectric-superionic transition hypothesis, which also explains channel gating and other phenomena observed in excitable membranes. According to this hypothesis gating in the Na channel is due to a first-order phase transition from a ferroelectric (closed) state to a superionic (open) state. From it, the dielectric permittivity of the Na channel, and hence the temperature-dependent component of membrane capacitance, is predicted to obey the ferroelectric Curie-Weiss law near the transition (heat-block) temperature. The Palti-Adelman data are fitted accurately by the predicted relationship. The parameters obtained permit an estimate to be made of the Curie constant of the channel, approximately 6400 K, consistent with an order-disorder ferroelectric. The Na channel appears to be a ferroelectric polymer component of a lyotropic lamellar liquid crystal.  相似文献   

17.
The nematode Caenorhabditis elegans offers unique experimental advantages for defining the molecular basis of anion channel function and regulation. However, the relative inaccessibility of somatic cells in adult animals greatly limits direct electrophysiological studies of channel activity. We developed methods to routinely isolate and patch clamp C. elegans embryo cells and oocytes and to culture and patch clamp neurons and muscle cells. Dissociated embryonic cells express a robust outwardly rectifying anion current that is activated by membrane stretch and depolarization. This current, termed I(Cl,mec), is inhibited by anion and mechanosensitive channel inhibitors. I(Cl,mec) has broad anion selectivity and the channel has a unitary conductance of 5-7 picosiemens. I(Cl,mec) is not detectable in whole-cell or isolated patch recordings from oocytes, cultured muscle cells, and cultured neurons but is expressed in single cell and later embryos. Channel density is high, and the current is observed in >80% of membrane patches. Macroscopic currents of 40-120 pA at +100 mV are typically observed in inside-out membrane patches formed using low resistance patch pipettes. Isolated membrane patches of early embryonic cells therefore contain 60-200 I(Cl,mec) channels. The apparent activation of I(Cl,mec) shortly after fertilization and its down-regulation in terminally differentiated cells suggests that the channel may play important roles in embryogenesis and/or cytokinesis.  相似文献   

18.
Summary Voltage-dependent K channels could be identified in on-cell and excised patch-clamp records on membranes of isolated plant cell vacuoles. The current through a membrane patch is dominated by a channel population with a conductance of about 121 pS in symmetrical 250mm KCl solution. The single channel adopts at least two conducting levels the 121-pS state being most frequently observed. The channel shows outward rectification, representing a cation flux into the vacuoles. The rectification appears to be caused by a vanishing open probability and a short channel lifetime at hyperpolarizing voltages. A selectivity ratio of potassium over sodium of about 6 was derived as an estimate. Occasionally, an additional population of K channels with a single-channel conductance of approximately 18 pS is observed. This channel type exhibits outward rectification as well.  相似文献   

19.
A Cl channel and two types of K+ channel have been observed,by the use of the patch-clamp technique, in the membrane surroundingcytoplasmic droplets from Chara corallina. Measurements on cell-attachedpatches showed that the channel selective for Cl hada chord conductance of 21 pS at the resting membrane p.d. (mean= 11 mV, n = 19) and when open, passed an outward current of1.4 pA (n = 24 patches) at the resting p.d., with reversal ofthe direction of current at –54 mV (130 mol m–3Cl in the external solution). The Cl concentrationin the cytoplasmic droplet calculated from the reversal p.d.was 15 mol m–3. The channel strongly rectified outwardcurrent flow, but this rectification disappeared with symmetricalCl concentrations across detached patches of membrane.It is concluded that rectification observed in cell-attachedpatches is primarily due to asymmetric Cl– concentrationsrather than an asymmetry in energy barriers to Cl permeationin the channel or any voltage-dependent kinetics of the channel.The channel was rarely observed in detached patches despitebeing commonly observed in cell-attached patches. However, theabsence of Ca2+ at the cytoplasmic face of the membrane allowedobservation of the channel in detached patches for brief periods,during which ion substitution experiments revealed a permeabilitysequence of aspartate (76:33:1). A 100 pS K+ channel previously described by Luhring (1986) wasfrequently observed, in some instances simultaneously, witha channel having a conductance of 60 pS and displaying outwardrectification. This rectification was due to the channel remainingopen almost continuously for positive membrane potential differences(p.d.) and remaining shut almost continuously for negative p.d.'s.The 60 pS channel, like the 100 pS K+ channel, reversed currentflow at the resting p.d., suggesting that it was also permeableto K+. Key words: Plant ion-channels, chloride channel, potassium channel, patch-clamp  相似文献   

20.
The mechanosensitive channel (MscL) is an integral membrane protein which gates in response to membrane tension. Physiological data have shown that the gating transition involves a very large change in the conformation, and that the open state of the channel forms a large non-specific pore with a high conductance. The Escherichia coli channel structure was first modeled by homology modeling, starting with the X-ray structure of the homologous from Mycobacterium tuberculosis. Then, the dynamical and conformational properties of the channel were explored, using normal mode analysis. Such an analysis was also performed with the different structures proposed recently by Sukharev and co-workers. Similar dynamical behaviors are observed, which are characteristic of the channel architecture, subtle differences being due to the different relative positioning of the structural elements. The ability of particular regions of the channel to deform is discussed with respect to the functional and structural properties, implied in the gating process. Our results show that the first step of the gating mechanism can be described with three low-frequency modes only. The movement associated to these modes is clearly an iris-like movement involving both tilt and twist rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号