首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe two experiments that investigate the roles of polarity and symmetry in the perceptual grouping of contour fragments. Observers viewed, for one second on each presentation, arrays of oriented, spatial-frequency band-pass, elements, in which a subset of the elements was aligned along a twisting curve. In each of five conditions we measured observers' ability to detect aligned combinations of even- and odd-symmetric elements, of the same and different polarities, against a background of 'noise' elements. As with previous experiments we found that the 'path' could be reliably detected, even when the elements of the path were oriented at angles of up to +/- 60 deg relative to each other. Detection of the path was still possible when the polarity of path elements alternated. However, the probability of detection of the path was raised significantly when the path elements were all of the same polarity. Perceptual grouping of even-symmetric elements was no different to perceptual grouping of odd-symmetric elements. The results provide evidence, that in achieving integration of contour fragments, the visual system uses a process that is to some degree phase selective. We use the results to describe how the visual system may resolve natural contours when they occur against backgrounds that vary over a wide range of intensities. The data presented here have been published in conference-abstract form (Hayes et al., 1993; Field et al., 1997).  相似文献   

2.
We investigated the applicability of the Gestalt principle of perceptual grouping by proximity in the haptic modality. To do so, we investigated the influence of element proximity on haptic contour detection. In the course of four sessions ten participants performed a haptic contour detection task in which they freely explored a haptic random dot display that contained a contour in 50% of the trials. A contour was defined by a higher density of elements (raised dots), relative to the background surface. Proximity of the contour elements as well as the average proximity of background elements was systematically varied. We hypothesized that if proximity of contour elements influences haptic contour detection, detection will be more likely when contour elements are in closer proximity. This should be irrespective of the ratio with the proximity of the background elements. Results showed indeed that the closer the contour elements were, the higher the detection rates. Moreover, this was the case independent of the contour/background ratio. We conclude that the Gestalt law of proximity applies to haptic contour detection.  相似文献   

3.
Human observers tend to group oriented line segments into full contours if they follow the Gestalt rule of ''good continuation''. It is commonly assumed that contour grouping emerges automatically in early visual cortex. In contrast, recent work in animal models suggests that contour grouping requires learning and thus involves top-down control from higher brain structures. Here we explore mechanisms of top-down control in perceptual grouping by investigating synchronicity within EEG oscillations. Human participants saw two micro-Gabor arrays in a random order, with the task to indicate whether the first (S1) or the second stimulus (S2) contained a contour of collinearly aligned elements. Contour compared to non-contour S1 produced a larger posterior post-stimulus beta power (15–21 Hz). Contour S2 was associated with a pre-stimulus decrease in posterior alpha power (11–12 Hz) and in fronto-posterior theta (4–5 Hz) phase couplings, but not with a post-stimulus increase in beta power. The results indicate that subjects used prior knowledge from S1 processing for S2 contour grouping. Expanding previous work on theta oscillations, we propose that long-range theta synchrony shapes neural responses to perceptual groupings regulating lateral inhibition in early visual cortex.  相似文献   

4.
The question of how local image features on the retina are integrated into perceived global shapes is central to our understanding of human visual perception. Psychophysical investigations have suggested that the emergence of a coherent visual percept, or a "good-Gestalt", is mediated by the perceptual organization of local features based on their similarity. However, the neural mechanisms that mediate unified shape perception in the human brain remain largely unknown. Using human fMRI, we demonstrate that not only higher occipitotemporal but also early retinotopic areas are involved in the perceptual organization and detection of global shapes. Specifically, these areas showed stronger fMRI responses to global contours consisting of collinear elements than to patterns of randomly oriented local elements. More importantly, decreased detection performance and fMRI activations were observed when misalignment of the contour elements disturbed the perceptual coherence of the contours. However, grouping of the misaligned contour elements by disparity resulted in increased performance and fMRI activations, suggesting that similar neural mechanisms may underlie grouping of local elements to global shapes by different visual features (orientation or disparity). Thus, these findings provide novel evidence for the role of both early feature integration processes and higher stages of visual analysis in coherent visual perception.  相似文献   

5.
Visual perceptual learning, a manifestation of neural plasticity, refers to improvements in performance on a visual task achieved by training. Attention is known to play an important role in perceptual learning, given that the observer''s discriminative ability improves only for those stimulus feature that are attended. However, the distribution of attention can be severely constrained by perceptual grouping, a process whereby the visual system organizes the initial retinal input into candidate objects. Taken together, these two pieces of evidence suggest the interesting possibility that perceptual grouping might also affect perceptual learning, either directly or via attentional mechanisms. To address this issue, we conducted two experiments. During the training phase, participants attended to the contrast of the task-relevant stimulus (oriented grating), while two similar task-irrelevant stimuli were presented in the adjacent positions. One of the two flanking stimuli was perceptually grouped with the attended stimulus as a consequence of its similar orientation (Experiment 1) or because it was part of the same perceptual object (Experiment 2). A test phase followed the training phase at each location. Compared to the task-irrelevant no-grouping stimulus, orientation discrimination improved at the attended location. Critically, a perceptual learning effect equivalent to the one observed for the attended location also emerged for the task-irrelevant grouping stimulus, indicating that perceptual grouping induced a transfer of learning to the stimulus (or feature) being perceptually grouped with the task-relevant one. Our findings indicate that no voluntary effort to direct attention to the grouping stimulus or feature is necessary to enhance visual plasticity.  相似文献   

6.
Collinear interactions and contour integration   总被引:1,自引:0,他引:1  
Polat U  Bonneh Y 《Spatial Vision》2000,13(4):393-401
The visibility of a local target is influenced by the global configuration of the stimulus. Collinear configurations are a specific case in which facilitation or suppression of the target has been found to be dependent on the contrast threshold of the target. The role of collinear interactions in perceptual grouping, especially in contour integration, is still controversial. In the current study, the role of collinear interactions in noise was investigated using experimental conditions similar to those utilized in studies of contour integration. The contrast detection paradigm in the presence of similar Gabor elements presented in the background was used. The results show that contrast detection threshold of the target alone is increased (suppression) when it is embedded in randomly oriented background elements. However, when the target is flanked by two collinear Gabor elements, the target is facilitated even at higher target contrast levels. Facilitation is not found for orthogonal configurations. The results suggest that the response to a local element in a contour is modified by lateral facilitative and suppressive inputs from elements comprising the smooth contour and randomly oriented background elements, respectively. Thus, detection of elements along a contour should be considered as integration of global neuronal activity rather than as the output of local and individual neurons.  相似文献   

7.
Li W  Piëch V  Gilbert CD 《Neuron》2006,50(6):951-962
Contour integration is an important intermediate stage of object recognition, in which line segments belonging to an object boundary are perceptually linked and segmented from complex backgrounds. Contextual influences observed in primary visual cortex (V1) suggest the involvement of V1 in contour integration. Here, we provide direct evidence that, in monkeys performing a contour detection task, there was a close correlation between the responses of V1 neurons and the perceptual saliency of contours. Receiver operating characteristic analysis showed that single neuronal responses encode the presence or absence of a contour as reliably as the animal's behavioral responses. We also show that the same visual contours elicited significantly weaker neuronal responses when they were not detected in the detection task, or when they were unattended. Our results demonstrate that contextual interactions in V1 play a pivotal role in contour integration and saliency.  相似文献   

8.
Learning to link visual contours   总被引:1,自引:0,他引:1  
Li W  Piëch V  Gilbert CD 《Neuron》2008,57(3):442-451
In complex visual scenes, linking related contour elements is important for object recognition. This process, thought to be stimulus driven and hard wired, has substrates in primary visual cortex (V1). Here, however, we find contour integration in V1 to depend strongly on perceptual learning and top-down influences that are specific to contour detection. In naive monkeys, the information about contours embedded in complex backgrounds is absent in V1 neuronal responses and is independent of the locus of spatial attention. Training animals to find embedded contours induces strong contour-related responses specific to the trained retinotopic region. These responses are most robust when animals perform the contour detection task but disappear under anesthesia. Our findings suggest that top-down influences dynamically adapt neural circuits according to specific perceptual tasks. This may serve as a general neuronal mechanism of perceptual learning and reflect top-down mediated changes in cortical states.  相似文献   

9.
Here, we report a novel social orienting response that occurs after viewing averted gaze. We show, in three experiments, that when a person looks from one location to an object, attention then shifts towards the face of an individual who has subsequently followed the person''s gaze to that same object. That is, contrary to ‘gaze following’, attention instead orients in the opposite direction to observed gaze and towards the gazing face. The magnitude of attentional orienting towards a face that ‘follows’ the participant''s gaze is also associated with self-reported autism-like traits. We propose that this gaze leading phenomenon implies the existence of a mechanism in the human social cognitive system for detecting when one''s gaze has been followed, in order to establish ‘shared attention’ and maintain the ongoing interaction.  相似文献   

10.
Crowding is the impairment of peripheral target perception by nearby flankers. A number of recent studies have shown that crowding shares many features with grouping. Here, we investigate whether effects of crowding and grouping on target perception are related by asking whether they operate over the same spatial scale. A target letter T had two sets of flanking Ts of varying orientations. The first set was presented close to the target, yielding strong crowding. The second set was either close enough to cause crowding on their own or too far to cause crowding on their own. The Ts of the second set had the same orientation that either matched the target’s orientation (Grouped condition) or not (Ungrouped condition). In Experiment 1, the Grouped flankers reduced crowding independently of their distance from the target, suggesting that grouping operated over larger distances than crowding. In Experiments 2 and 3 we found that grouping did not affect sensitivity but produced a strong bias to report that the grouped orientation was present at the target location whether or not it was. Finally, we investigated whether this bias was a response or perceptual bias, rejecting the former in favor of a perceptual grouping explanation. We suggest that the effect of grouping is to assimilate the target to the identity of surrounding flankers when they are all the same, and that this shape assimilation effect differs in its spatial scale from the integration effect of crowding.  相似文献   

11.
In this article, we review a combined experimental-neuromodeling framework for understanding brain function with a specific application to auditory object processing. Within this framework, a model is constructed using the best available experimental data and is used to make predictions. The predictions are verified by conducting specific or directed experiments and the resulting data are matched with the simulated data. The model is refined or tested on new data and generates new predictions. The predictions in turn lead to better-focused experiments. The auditory object processing model was constructed using available neurophysiological and neuroanatomical data from mammalian studies of auditory object processing in the cortex. Auditory objects are brief sounds such as syllables, words, melodic fragments, etc. The model can simultaneously simulate neuronal activity at a columnar level and neuroimaging activity at a systems level while processing frequency-modulated tones in a delayed-match-to-sample task. The simulated neuroimaging activity was quantitatively matched with neuroimaging data obtained from experiments; both the simulations and the experiments used similar tasks, sounds, and other experimental parameters. We then used the model to investigate the neural bases of the auditory continuity illusion, a type of perceptual grouping phenomenon, without changing any of its parameters. Perceptual grouping enables the auditory system to integrate brief, disparate sounds into cohesive perceptual units. The neural mechanisms underlying auditory continuity illusion have not been studied extensively with conventional neuroimaging or electrophysiological techniques. Our modeling results agree with behavioral studies in humans and an electrophysiological study in cats. The results predict a particular set of bottom-up cortical processing mechanisms that implement perceptual grouping, and also attest to the robustness of our model.  相似文献   

12.
A majority of cortical areas are connected via feedforward and feedback fiber projections. In feedforward pathways we mainly observe stages of feature detection and integration. The computational role of the descending pathways at different stages of processing remains mainly unknown. Based on empirical findings we suggest that the top-down feedback pathways subserve a context-dependent gain control mechanism. We propose a new computational model for recurrent contour processing in which normalized activities of orientation selective contrast cells are fed forward to the next processing stage. There, the arrangement of input activation is matched against local patterns of contour shape. The resulting activities are subsequently fed back to the previous stage to locally enhance those initial measurements that are consistent with the top-down generated responses. In all, we suggest a computational theory for recurrent processing in the visual cortex in which the significance of local measurements is evaluated on the basis of a broader visual context that is represented in terms of contour code patterns. The model serves as a framework to link physiological with perceptual data gathered in psychophysical experiments. It handles a variety of perceptual phenomena, such as the local grouping of fragmented shape outline, texture surround and density effects, and the interpolation of illusory contours. Received: 28 October 1998 / Accepted in revised form: 19 March 1999  相似文献   

13.
Humans use various cues to understand the structure of the world from images. One such cue is the contours of an object formed by occlusion or from surface discontinuities. It is known that contours in the image of an object provide various amounts of information about the shape of the object in view, depending on assumptions that the observer makes. Another powerful cue is motion. The ability of the human visual system to discern structure from a motion stimulus is well known and has a solid theoretical and experimental foundation. However, when humans interpret a visual scene they use various cues to understand what they observe, and the interpretation comes from combining the information acquired from the various modules devoted to specific cues. In such an integration of modules it seems that each cue carries a different weight and importance. We performed several experiments where we made sure that the only cues available to the observer were contour and motion. It turns out that when humans combine information from contour and motion to reconstruct the shape of an object in view, if the results of the two modules--shape from contour and structure from motion--are inconsistent, they experience a perceptual result which is due to the combination of the two modules, with the influence of the contour dominating, thus giving rise to the illusion. We describe here examples of such illusions and identify the conditions under which they happen. Finally, we introduce a computational theory for combining contour and motion using the theory of regularization. The theory explains such illusions and predicts many more.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The activity of a border ownership selective (BOS) neuron indicates where a foreground object is located relative to its (classical) receptive field (RF). A population of BOS neurons thus provides an important component of perceptual grouping, the organization of the visual scene into objects. In previous theoretical work, it has been suggested that this grouping mechanism is implemented by a population of dedicated grouping (“G”) cells that integrate the activity of the distributed feature cells representing an object and, by feedback, modulate the same cells, thus making them border ownership selective. The feedback modulation by G cells is thought to also provide the mechanism for object-based attention. A recent modeling study showed that modulatory common feedback, implemented by synapses with N-methyl-D-aspartate (NMDA)-type glutamate receptors, accounts for the experimentally observed synchrony in spike trains of BOS neurons and the shape of cross-correlations between them, including its dependence on the attentional state. However, that study was limited to pairs of BOS neurons with consistent border ownership preferences, defined as two neurons tuned to respond to the same visual object, in which attention decreases synchrony. But attention has also been shown to increase synchrony in neurons with inconsistent border ownership selectivity. Here we extend the computational model from the previous study to fully understand these effects of attention. We postulate the existence of a second type of G-cell that represents spatial attention by modulating the activity of all BOS cells in a spatially defined area. Simulations of this model show that a combination of spatial and object-based mechanisms fully accounts for the observed pattern of synchrony between BOS neurons. Our results suggest that modulatory feedback from G-cells may underlie both spatial and object-based attention.  相似文献   

15.

Background

Can hearing a word change what one sees? Although visual sensitivity is known to be enhanced by attending to the location of the target, perceptual enhancements of following cues to the identity of an object have been difficult to find. Here, we show that perceptual sensitivity is enhanced by verbal, but not visual cues.

Methodology/Principal Findings

Participants completed an object detection task in which they made an object-presence or -absence decision to briefly-presented letters. Hearing the letter name prior to the detection task increased perceptual sensitivity (d′). A visual cue in the form of a preview of the to-be-detected letter did not. Follow-up experiments found that the auditory cuing effect was specific to validly cued stimuli. The magnitude of the cuing effect positively correlated with an individual measure of vividness of mental imagery; introducing uncertainty into the position of the stimulus did not reduce the magnitude of the cuing effect, but eliminated the correlation with mental imagery.

Conclusions/Significance

Hearing a word made otherwise invisible objects visible. Interestingly, seeing a preview of the target stimulus did not similarly enhance detection of the target. These results are compatible with an account in which auditory verbal labels modulate lower-level visual processing. The findings show that a verbal cue in the form of hearing a word can influence even the most elementary visual processing and inform our understanding of how language affects perception.  相似文献   

16.
In humans and some other species perceptual decision-making is complemented by the ability to make confidence judgements about the certainty of sensory evidence. While both forms of decision process have been studied empirically, the precise relationship between them remains poorly understood. We performed an experiment that combined a perceptual decision-making task (identifying the category of a faint visual stimulus) with a confidence-judgement task (wagering on the accuracy of each perceptual decision). The visual stimulation paradigm required steady fixation, so we used eye-tracking to control for stray eye movements. Our data analyses revealed an unexpected and counterintuitive interaction between the steadiness of fixation (prior to and during stimulation), perceptual decision making, and post-decision wagering: greater variability in gaze direction during fixation was associated with significantly increased visual-perceptual sensitivity, but significantly decreased reliability of confidence judgements. The latter effect could not be explained by a simple change in overall confidence (i.e. a criterion artifact), but rather was tied to a change in the degree to which high wagers predicted correct decisions (i.e. the sensitivity of the confidence judgement). We found no evidence of a differential change in pupil diameter that could account for the effect and thus our results are consistent with fixational eye movements being the relevant covariate. However, we note that small changes in pupil diameter can sometimes cause artefactual fluctuations in measured gaze direction and this possibility could not be fully ruled out. In either case, our results suggest that perceptual decisions and confidence judgements can be processed independently and point toward a new avenue of research into the relationship between them.  相似文献   

17.
We examined temporal dynamics of EEG phase-locked alpha oscillations during perception of illusory (Kanizsa square) and non-illusory images in boys with autism and age-matched typically developing boys. In typically developing boys the illusory contour (IC) as compared to the control stimulus provoked an increased alpha response at the parietal scalp areas. This IC effect demonstrated continuity within the time window of 133-267 ms after the stimulus onset. Although boys with autism did not display this effect at the group level, part of the sample showed an atypical two-stage pattern of illusory contour effect. The first early stage of IC effect (50-133 ms) was pronounced at the midline occipital electrode localized in the vicinity of the primary visual cortex. The localization and the early onset time suggest that this early IC effect is related to abnormally enhanced "low-level" locally-oriented processes of contour completion in autism. The second stage of IC effect (267-400 ms) was observed at the left parietal region only, and was delayed comparatively to that in healthy boys, suggesting the deficit of "intermediate" processes of perceptual grouping linked to the higher-order visual areas.  相似文献   

18.
Two experiments are reported examining the effects of colour grouping, colour change and target colour foreknowledge under preview search conditions (Watson and Humphreys, 1997). In Experiment 1 we manipulated the colour homogeneity of the old items at initial presentation, and the colour these items subsequently changed into. In all cases participants knew the colour of the target. We found that when the old items changed into the same colour as the new search set, search performance was affected. In Experiment 2 participants did not know the colour of the target. Here we found evidence for a negative colour-based carry-over effect that slowed search for new targets carrying the colour of the old items. This occurred even when the old items changed their original colour and the new target was a singleton. Collectively the results suggest an important role for both colour grouping and colour-based inhibition in the successful rejection of old distractors. The consequence of this, however, is that new stimuli that may carry the critical attribute may take longer to detect. We discuss the results in relation to prior 'feature-blind' accounts of preview effects on visual search.  相似文献   

19.
20.
眼睛注视作为一种重要的非语言社会线索,不仅可以传达他人丰富的注意方向信息,并且能够诱发独特的社会性注意行为. 近年来,研究者利用改编的社会性注意任务发现,眼睛注视线索还可以进一步影响我们对各种不同种类物体(用具、符号、面孔等)的感知觉加工,以及主观评价、记忆等其他高级认知加工过程. 眼睛注视线索对物体加工的这种影响受到诸多因素的调节,如面孔属性、数量以及注视模式等. 特别地,眼睛注视线索对物体加工的这一调制作用能够在无意识水平发生,具有一定的特异性. 此外,针对这一调制作用背后机制的研究暗示心理理论和观点采择可能参与其中,但仍有待进一步探究. 眼睛注视对物体加工影响的研究有助于我们深入理解社会互动的方式以及人类与环境的交互过程,因此具有重要的理论意义和社会应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号