首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila shaggy gene product is a mammalian glycogen synthase kinase-3beta (GSK-3beta) homologue that contributes to the circadian clock of the Drosophila through TIMELESS phosphorylation, and it regulates nuclear translocation of the PERIOD/TIMELESS heterodimer. We found that mammalian GSK-3beta is expressed in the suprachiasmatic nucleus and liver of mice and that GSK-3beta phosphorylation exhibits robust circadian oscillation. Rhythmic GSK-3beta phosphorylation is also observed in serum-shocked NIH3T3 cells. Exposing serum-shocked NIH3T3 cells to lithium chloride, a specific inhibitor of GSK-3beta, increases GSK-3beta phosphorylation and delays the phase of rhythmic clock gene expression. On the other hand, GSK-3beta overexpression advances the phase of clock gene expression. We also found that GSK-3beta interacts with PERIOD2 (PER2) in vitro and in vivo. Recombinant GSK-3beta can phosphorylate PER2 in vitro. GSK-3beta promotes the nuclear translocation of PER2 in COS1 cells. The present data suggest that GSK-3beta plays important roles in mammalian circadian clock.  相似文献   

2.
3.
4.
5.
PML regulates PER2 nuclear localization and circadian function   总被引:1,自引:0,他引:1  
  相似文献   

6.
7.
The mammalian circadian regulatory proteins PER1 and PER2 undergo a daily cycle of accumulation followed by phosphorylation and degradation. Although phosphorylation-regulated proteolysis of these inhibitors is postulated to be essential for the function of the clock, inhibition of this process has not yet been shown to alter mammalian circadian rhythm. We have developed a cell-based model of PER2 degradation. Murine PER2 (mPER2) hyperphosphorylation induced by the cell-permeable protein phosphatase inhibitor calyculin A is rapidly followed by ubiquitination and degradation by the 26S proteasome. Proteasome-mediated degradation is critically important in the circadian clock, as proteasome inhibitors cause a significant lengthening of the circadian period in Rat-1 cells. CKIepsilon (casein kinase Iepsilon) has been postulated to prime PER2 for degradation. Supporting this idea, CKIepsilon inhibition also causes a significant lengthening of circadian period in synchronized Rat-1 cells. CKIepsilon inhibition also slows the degradation of PER2 in cells. CKIepsilon-mediated phosphorylation of PER2 recruits the ubiquitin ligase adapter protein beta-TrCP to a specific site, and dominant negative beta-TrCP blocks phosphorylation-dependent degradation of mPER2. These results provide a biochemical mechanism and functional relevance for the observed phosphorylation-degradation cycle of mammalian PER2. Cell culture-based biochemical assays combined with measurement of cell-based rhythm complement genetic studies to elucidate basic mechanisms controlling the mammalian clock.  相似文献   

8.
MPer1 and mper2 are essential for normal resetting of the circadian clock   总被引:8,自引:0,他引:8  
Mammalian Per1 and Per2 genes are involved in the mechanism of the circadian clock and are inducible by light. A light pulse can evoke a change in the onset of wheel-running activity in mice by shifting the onset of activity to earlier times (phase advance) or later times (phase delays) thereby advancing or delaying the clock (clock resetting). To assess the role of mouse Per (mPer) genes in circadian clock resetting, mice carrying mutant mPer1 or mPer2 genes were tested for responses to a light pulse at ZT 14 and ZT 22, respectively. The authors found that mPer1 mutants did not advance and mPer2 mutants did not delay the clock. They conclude that the mammalian Per genes are not only light-responsive components of the circadian oscillator but also are involved in resetting of the circadian clock.  相似文献   

9.
B Kloss  A Rothenfluh  M W Young  L Saez 《Neuron》2001,30(3):699-706
The clock gene double-time (dbt) encodes an ortholog of casein kinase Iepsilon that promotes phosphorylation and turnover of the PERIOD protein. Whereas the period (per), timeless (tim), and dClock (dClk) genes of Drosophila each contribute cycling mRNA and protein to a circadian clock, dbt RNA and DBT protein are constitutively expressed. Robust circadian changes in DBT subcellular localization are nevertheless observed in clock-containing cells of the fly head. These localization rhythms accompany formation of protein complexes that include PER, TIM, and DBT, and reflect periodic redistribution between the nucleus and the cytoplasm. Nuclear phosphorylation of PER is strongly enhanced when TIM is removed from PER/TIM/DBT complexes. The varying associations of PER, DBT and TIM appear to determine the onset and duration of nuclear PER function within the Drosophila clock.  相似文献   

10.
The circadian clock is finely regulated by posttranslational modifications of clock components. Mouse CRY2, a critical player in the mammalian clock, is phosphorylated at Ser557 for proteasome-mediated degradation, but its in vivo role in circadian organization was not revealed. Here, we generated CRY2(S557A) mutant mice, in which Ser557 phosphorylation is specifically abolished. The mutation lengthened free-running periods of the behavioral rhythms and PER2::LUC bioluminescence rhythms of cultured liver. In livers from mutant mice, the nuclear CRY2 level was elevated, with enhanced PER2 nuclear occupancy and suppression of E-box-regulated genes. Thus, Ser557 phosphorylation-dependent regulation of CRY2 is essential for proper clock oscillation in vivo.  相似文献   

11.
12.
13.
The mammalian circadian clock proteins undergo a daily cycle of accumulation followed by phosphorylation and degradation. The mechanism by which clock proteins undergo degradation has not been fully understood. Circadian clock protein PERIOD2 (PER2) is shown to be the potential target of F-box protein beta-TrCP1, a component of ubiquitin E3 ligase. Here, we show that beta-TrCP2 as well as beta-TrCP1 target PER2 protein in vitro. We also identified beta-TrCP binding site (m2) of PER2 being recognized by both beta-TrCP1 and beta-TrCP2. Luciferase-PER2 fusion system revealed that m2 site was responsible for the stability of PER2. The role of beta-TrCP1 and beta-TrCP2 in circadian rhythm generation was analysed by real-time reporter assay revealing that siRNA-mediated suppressions of beta-TrCP1 and/or beta-TrCP2 attenuate circadian oscillations in NIH3T3 cell. beta-TrCP1-deficient mice, however, showed normal period length, light-induced phase-shift response in behaviour and normal expression of PER2, suggesting that beta-TrCP1 is dispensable for the central clock in the suprachiasmatic nucleus. Our study indicates that beta-TrCP1 and beta-TrCP2 were involved in the cell autonomous circadian rhythm generation in culture cells, although the role of beta-TrCP2 in the central clock in the suprachiasmatic nucleus remains to be elucidated.  相似文献   

14.
15.
The influence of the mammalian retinal circadian clock on retinal physiology and function is widely recognized, yet the cellular elements and neural regulation of retinal circadian pacemaking remain unclear due to the challenge of long-term culture of adult mammalian retina and the lack of an ideal experimental measure of the retinal circadian clock. In the current study, we developed a protocol for long-term culture of intact mouse retinas, which allows retinal circadian rhythms to be monitored in real time as luminescence rhythms from a PERIOD2::LUCIFERASE (PER2::LUC) clock gene reporter. With this in vitro assay, we studied the characteristics and location within the retina of circadian PER2::LUC rhythms, the influence of major retinal neurotransmitters, and the resetting of the retinal circadian clock by light. Retinal PER2::LUC rhythms were routinely measured from whole-mount retinal explants for 10 d and for up to 30 d. Imaging of vertical retinal slices demonstrated that the rhythmic luminescence signals were concentrated in the inner nuclear layer. Interruption of cell communication via the major neurotransmitter systems of photoreceptors and ganglion cells (melatonin and glutamate) and the inner nuclear layer (dopamine, acetylcholine, GABA, glycine, and glutamate) did not disrupt generation of retinal circadian PER2::LUC rhythms, nor did interruption of intercellular communication through sodium-dependent action potentials or connexin 36 (cx36)-containing gap junctions, indicating that PER2::LUC rhythms generation in the inner nuclear layer is likely cell autonomous. However, dopamine, acting through D1 receptors, and GABA, acting through membrane hyperpolarization and casein kinase, set the phase and amplitude of retinal PER2::LUC rhythms, respectively. Light pulses reset the phase of the in vitro retinal oscillator and dopamine D1 receptor antagonists attenuated these phase shifts. Thus, dopamine and GABA act at the molecular level of PER proteins to play key roles in the organization of the retinal circadian clock.  相似文献   

16.
Nuclear export of mammalian PERIOD proteins   总被引:6,自引:0,他引:6  
  相似文献   

17.
Saez L  Derasmo M  Meyer P  Stieglitz J  Young MW 《Genetics》2011,188(3):591-600
Regulated nuclear entry of the Period (PER) and Timeless (TIM) proteins, two components of the Drosophila circadian clock, is essential for the generation and maintenance of circadian behavior. PER and TIM shift from the cytoplasm to the nucleus daily, and the length of time that PER and TIM reside in the cytoplasm is an important determinant of the period length of the circadian rhythm. Here we identify a TIM nuclear localization signal (NLS) that is required for appropriately timed nuclear accumulation of both TIM and PER. Transgenic flies with a mutated TIM NLS produced circadian rhythms with a period of ~30 hr. In pacemaker cells of the brain, PER and TIM proteins rise to abnormally high levels in the cytoplasm of tim(ΔNLS) mutants, but show substantially reduced nuclear accumulation. In cultured S2 cells, the mutant TIM(ΔNLS) protein significantly delays nuclear accumulation of both TIM and wild-type PER proteins. These studies confirm that TIM is required for the nuclear localization of PER and point to a key role for the TIM NLS in the regulated nuclear accumulation of both proteins.  相似文献   

18.
The mammalian circadian clock component PERIOD2 (PER2) plays a critical role in circadian rhythm entrainment. Recently, a missense mutation at a putative phosphorylation site in hPER2, Ser-662, was identified in patients that suffer from familial advanced sleep phase syndrome (FASPS). Patients with FASPS display abnormal sleep-wake patterns characterized by a lifelong pattern of sleep onset in the early evening and offset in the early morning. Although the phosphorylation of PER2 is strongly implied from functional studies, it has not been possible to study the site-specific phosphorylation of PER2 on Ser-662, and the biochemical functions of this residue are unclear. Here, we used phospho-specific antibodies to show that PER2 is phosphorylated on Ser-662 and flanking casein kinase (CK) sites in vivo. The phosphorylation of PER2 was carried out by the combined activities of casein kinase 1δ (CK1 δ) and casein kinase 1ε (CK1ε) and was antagonized by protein phosphatase 1. PER2 phosphorylation was rapidly induced in response to circadian entrainment of mammalian cell lines and occurred in both cytosolic and nuclear compartments. Importantly, we found that the pool of Ser-662-phosphorylated PER2 proteins was more stable than the pool of total PER2 molecules, implying that the FASPS phosphorylation cluster antagonizes PER2 degradation. Consistent with this idea, a Ser-662→Ala mutation that abrogated PER2 phosphorylation significantly reduced its half-life, whereas a phosphomimetic Ser-662→Asp substitution led to an elevation in half-life. Our combined findings provide new insights into PER2 regulation and the biochemical basis of FASPS.  相似文献   

19.
Reischl S  Kramer A 《FEBS letters》2011,585(10):1393-1399
Posttranslational modifications of circadian oscillator components are crucial for the generation of circadian rhythms. Among those phosphorylation plays key roles ranging from regulating degradation, complex formation, subcellular localization and activity. Although most of the known clock proteins are phosphoproteins in vivo, a comprehensive view about the regulation of clock protein phosphorylation is still missing. Here, we review our current knowledge about the role of clock protein phosphorylation and its regulation by kinases and phosphatases in eukaryotes with a major focus on the mammalian circadian clock.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号