首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lipid composition and level of unsaturation of fatty acids has been determined for chloroplast thylakoid membranes isolated from Pisum sativum grown under cold (4°/7°C) or warm (14°/17°C) conditions. Both the relative amounts of lipid classes and degree of saturation were not greatly changed for the two growth conditions. In cold-grown plants, there was a slightly higher linolenic and lower linoleic acid content for the glycolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol. In contrast to thylakoid membranes, a non-thylakoid leaf membrane fraction including the chloroplast envelope, had a higher overall level of fatty acid unsaturation in cold-grown plants due mainly to an increase in the linolenic acid content of MGDG, DGDG, phosphatidylglycerol, and phosphatidylcholine. The most clear cut change in the thylakoid membrane composition was the lipid to protein ratio which was higher in the cold-grown plants.  相似文献   

2.
Frost hardening of seedlings of Scots pine (Pinus sylvestris) at a non-freezing temperature of 4°C resulted in a 2-fold increase of the acyl lipids of the needles. This was because of increases in phospholipids and triglycerides. The galactolipid content of the needles was almost the same in unhardened and frost-hardened seedlings. In unhardened seedlings the mol ratio of monogalactosyl diacylglycerol (MGDG) to digalactosyl diacylglycerol (DGDG) was 1.7 ± 0.3 and 0.9 ± 0.2 in needles and isolated thylakoids, respectively. Corresponding ratios for frost-hardened seedlings were 1.5 ± 0.2 and 0.3 ± 0.03. The lower ratios found in isolated thylakoids, particularly in thylakoids from frost-hardened seedlings, are suggested to depend on the enzyme galactolipid: galactolipid galactosyltransferase being active during the isolation procedure. This is deduced from the result that the content of MGDG decreased and that of DGDG and 1.2 diglycerides increased. Needles of Scots pine also contain phospholipidase D. This enzyme was active during thylakoid preparation, particularly after frost hardening, as judged from the large amount of phosphatidic acid found the in thylakoid fraction isolated from frost-hardening needles. The fatty acid composition of the acyl lipids showed no major changes due to hardening at non-freezing temperature.  相似文献   

3.
Green and white leaves of the barley mutant line `albostrians' were compared for their polar lipid content and fatty acid composition. The mutant plastids of the white leaves have a double-layered envelope, but in contrast with the normal chloroplasts, lack 70 S ribosomes and thylakoids. In the green leaves, the amount of monogalactosyldiacylglycerol (MGDG) consistently exceeds the amount of digalactosyldiacylglycerol (DGDG) and the amount of galactolipids exceeds the amount of phospholipids. In contrast, in white leaves the amount of DGDG exceeds the amount of MGDG and the amount of phospholipids exceeds the amount of galactolipids. In white leaves, the galactolipid composition reflects the plastid envelope composition which is rich in DGDG, whereas in green leaves the galactolipid composition reflects the thylakoid composition which is rich in MGDG. These results demonstrate the likelihood that all the enzymes involved in galactolipid, sulfolipid and fatty acid synthesis are coded by the nuclear genome.  相似文献   

4.
The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the predominant lipids in thylakoid membranes and indispensable for photosynthesis. Among the three isoforms that catalyze MGDG synthesis in Arabidopsis thaliana, MGD1 is responsible for most galactolipid synthesis in chloroplasts, whereas MGD2 and MGD3 are required for DGDG accumulation during phosphate (Pi) starvation. A null mutant of Arabidopsis MGD1 (mgd12), which lacks both galactolipids and shows a severe defect in chloroplast biogenesis under nutrient‐sufficient conditions, accumulated large amounts of DGDG, with a strong induction of MGD2/3 expression, during Pi starvation. In plastids of Pi‐starved mgd1‐2 leaves, biogenesis of thylakoid‐like internal membranes, occasionally associated with invagination of the inner envelope, was observed, together with chlorophyll accumulation. Moreover, the mutant accumulated photosynthetic membrane proteins upon Pi starvation, indicating a compensation for MGD1 deficiency by Pi stress‐induced galactolipid biosynthesis. However, photosynthetic activity in the mutant was still abolished, and light‐harvesting/photosystem core complexes were improperly formed, suggesting a requirement for MGDG for proper assembly of these complexes. During Pi starvation, distribution of plastid nucleoids changed concomitantly with internal membrane biogenesis in the mgd1‐2 mutant. Moreover, the reduced expression of nuclear‐ and plastid‐encoded photosynthetic genes observed in the mgd1‐2 mutant under Pi‐sufficient conditions was restored after Pi starvation. In contrast, Pi starvation had no such positive effects in mutants lacking chlorophyll biosynthesis. These observations demonstrate that galactolipid biosynthesis and subsequent membrane biogenesis inside the plastid strongly influence nucleoid distribution and the expression of both plastid‐ and nuclear‐encoded photosynthetic genes, independently of photosynthesis.  相似文献   

5.
Intact chloroplasts isolated from leaves of eight species of 16:3 and 18:3 plants and chromoplasts isolated from Narcissus pseudonarcissus L. flowers synthesize galactose-labeled mono-, di-, and trigalactosyldiacylglycerol (MGDG, DGDG, and TGDG) when incubated with UDP-[6-3H]galactose. In all plastids, galactolipid synthesis, and especially synthesis of DGDG and TGDG, is reduced by treatment of the organelles with the nonpenetrating protease thermolysin. Envelope membranes isolated from thermolysin-treated chloroplasts of Spinacia oleracea L. (16:3 plant) and Pisum sativum L. (18:3 plant) or membranes isolated from thermolysin-treated chromoplasts are strongly reduced in galactolipid:galactolipid galactosyltransferase activity, but not with regard to UDP-Gal:diacylglycerol galactosyltransferase. For the intact plastids, this indicates that thermolysin treatment specifically blocks DGDG (and TGDG) synthesis, whereas MGDG synthesis is not affected. Neither in chloroplast nor in chromoplast membranes is DGDG synthesis stimulated by UDP-Gal. DGDG synthesis in S. oleracea chloroplasts is not stimulated by nucleoside 5′-diphospho digalactosides. Therefore, galactolipid:galactolipid galactosyltransferase is so far the only detectable enzyme synthesizing DGDG. These results conclusively suggest that the latter enzyme is located in the outer envelope membrane of different types of plastids and has a general function in DGDG synthesis, both in 16:3 and 18:3 plants.  相似文献   

6.
Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the major lipid components of photosynthetic membranes, and hence the most abundant lipids in the biosphere. They are essential for assembly and function of the photosynthetic apparatus. In Arabidopsis, the first step of galactolipid synthesis is catalyzed by MGDG synthase 1 (MGD1), which transfers a galactosyl residue from UDP‐galactose to diacylglycerol (DAG). MGD1 is a monotopic protein that is embedded in the inner envelope membrane of chloroplasts. Once produced, MGDG is transferred to the outer envelope membrane, where DGDG synthesis occurs, and to thylakoids. Here we present two crystal structures of MGD1: one unliganded and one complexed with UDP. MGD1 has a long and flexible region (approximately 50 amino acids) that is required for DAG binding. The structures reveal critical features of the MGD1 catalytic mechanism and its membrane binding mode, tested on biomimetic Langmuir monolayers, giving insights into chloroplast membrane biogenesis. The structural plasticity of MGD1, ensuring very rapid capture and utilization of DAG, and its interaction with anionic lipids, possibly driving the construction of lipoproteic clusters, are consistent with the role of this enzyme, not only in expansion of the inner envelope membrane, but also in supplying MGDG to the outer envelope and nascent thylakoid membranes.  相似文献   

7.
Purified, intact chloroplasts of Spinacia oleracea L. synthesize galactose-labeled mono- and digalactosyldiacylglycerol (MGDG and DGDG) from UDP-[U-14C]galactose. In the presence of high concentrations of unchelated divalent cations they also synthesize tri- and tetra-galactosyldiacylglycerol. The acyl chains of galactose-labeled MGDG are strongly desaturated and such MGDG is a good precursor for DGDG and higher oligogalactolipids. The synthesis of MGDG is catalyzed by UDP-Gal:sn-1,2-diacylglycerol galactosyltransferase, and synthesis of DGDG and the oligogalactolipids is exclusively catalyzed by galactolipid:galactolipid galactosyltransferase. The content of diacylglycerol in chloroplasts remains low during UDP-Gal incorporation. This indicates that formation of diacylglycerol by galactolipid:galactolipid galactosyltransferase is balanced with diacylglycerol consumption by UDP-Gal:diacylglycerol galactosyltransferase for MGDG synthesis. Incubation of intact spinach chloroplasts with [2-14C]acetate or sn-[U-14C]glycerol-3-P in the presence of Mg2+ and unlabeled UDP-Gal resulted in high 14C incorporation into MGDG, while DGDG labeling was low. This de novo made MGDG is mainly oligoene. Its conversion into DGDG is also catalyzed, at least in part, by galactolipid:galactolipid galactosyltransferase.  相似文献   

8.
The plant galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), are the most abundant lipids in chloroplast membranes, and they constitute the majority of total membrane lipids in plants. MGDG is synthesized by two types of MGDG synthase, type-A (MGD1) and type-B (MGD2, MGD3). These MGDG synthases have distinct roles in Arabidopsis. In photosynthetic organs, Type A MGD is responsible for the bulk of MGDG synthesis, whereas Type B MGD is expressed in non-photosynthetic organs such as roots and flowers and mainly contributes to DGDG accumulation under phosphate deficiency. Similar to MGDG synthesis, DGDG is synthesized by two synthases, DGD1 and DGD2; DGD1 is responsible for the majority of DGDG synthesis, whereas DGD2 makes its main contribution under phosphate deficiency. These galactolipid synthases are regulated by light, plant hormones, redox state, phosphatidic acid levels, and various stress conditions such as drought and nutrient limitation. Maintaining the appropriate ratio of these two galactolipids in chloroplasts is important for stabilizing thylakoid membranes and maximizing the efficiency of photosynthesis. Here we review progress made in the last decade towards a better understanding of the pathways regulating plant galactolipid biosynthesis.  相似文献   

9.
10.
The effect of light intensity upon galactolipid synthesis in Vicia faba leaf tissue was studied at two CO2 concentrations, 0.03 and 1%. The rates of galactolipid synthesis were estimated by determining the amount of radioactivity in each of the two galactoses of digalactosyl diacylglycerol (DGDG) and the single galactose of monogalactosyl diacylglycerol (MGDG), a technique based upon the accepted pathway for galactolipid synthesis in which galactosylation is the terminal step in biosynthesis. The results suggest that the rates of MGDG and DGDG synthesis were similar under all conditions and that galactolipid synthesis was not directly affected by light intensity. The quantity of radioactivity incorporated into the galactoses of individual molecular species of MGDG and DGDG were similar under the light conditions used.  相似文献   

11.
Mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively) constitute the bulk of membrane lipids in plant chloroplasts. The final step in MGDG biosynthesis occurs in the plastid envelope and is catalyzed by MGDG synthase. In Arabidopsis, the three MGDG synthases are classified into type A (atMGD1) and type B MGD isoforms (atMGD2 and atMGD3). atMGD1 is an inner envelope membrane-associated protein of chloroplasts and is responsible for the bulk of galactolipid biosynthesis in green tissues. MGD1 function is indispensable for thylakoid membrane biogenesis and embryogenesis. By contrast, type B atMGD2 and atMGD3 are localized in the outer envelopes and have no important role in chloroplast biogenesis or plant development under nutrient-sufficient conditions. These type B MGD genes are, however, strongly induced by phosphate (Pi) starvation and are essential for alternative galactolipid biosynthesis during Pi starvation. MGD1 gene expression is up-regulated by light and cytokinins. By contrast, Pi starvation-dependent expression of atMGD2/3 is suppressed by cytokinins but induced through auxin signaling pathways. These growth factors may control the functional sharing of the inner envelope pathway by atMGD1 and the outer envelope pathway by atMGD2/3 according to the growth environment.  相似文献   

12.
Galactolipids rule in seed plants   总被引:1,自引:0,他引:1  
Chloroplast membranes contain high levels of the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). The isolation of the genes involved in the biosynthesis of MGDG and DGDG, and the identification of galactolipid-deficient Arabidopsis mutants has greatly facilitated the analysis of galactolipid biosynthesis and function. Galactolipids are found in X-ray structures of photosynthetic complexes, suggesting a direct role in photosynthesis. Furthermore, galactolipids can substitute for phospholipids, as suggested by increases in the galactolipid:phospholipid ratio after phosphate deprivation. The ratio of MGDG to DGDG is also crucial for the physical phase of thylakoid membranes and might be regulated.  相似文献   

13.
The major light-harvesting chlorophyll a/b complex (LHCIIb) of photosystem (PS) II functions by harvesting light energy and by limiting and balancing the energy flow directed towards the PSI and PSII reaction centers. The complex is predominantly trimeric; however, the monomeric form may play a role in one or several of the regulatory functions of LHCIIb. In this work the dissociation temperature was measured of trimeric LHCIIb isolated from Pisum thylakoids and inserted into liposomes made of various combinations of thylakoid lipids at various protein densities. Dissociation was measured by monitoring a trimer-specific circular dichroism signal in the visible range. The LHCIIb density in the membrane significantly affected the trimer dissociation temperature ranging from 70 °C at an LHCIIb concentration comparable to or higher than the one in thylakoid grana, to 65 °C at the density estimated in stromal lamellae. Omitting one thylakoid lipid from the liposomes had virtually no effect on the thermal trimer stability in most cases except when digalactosyl diacylglycerol (DGDG) was omitted which caused a drop in the apparent dissociation temperature by 2 °C. In liposomes containing only one lipid species, DGDG and, even more so, monogalactosyl diacylglycerol (MGDG) increased the thermal stability of LHCIIb trimers whereas phosphatidyl diacylglycerol (PG) significantly decreased it. The lateral pressure exerted by the non-bilayer lipid MGDG did not significantly influence LHCII trimer stability.  相似文献   

14.
The lipid distribution and function in the thylakoid membranes from a thermophilic cyanobacterium, Mastigocladus laminosus, were investigated. The thylakoid membranes were treated with digitonin and separated on a DEAE-cellulose column into fractions enriched in photosystem I or II complex. Lipid analyses showed a specific distribution of anionic lipids among the fractions. A mild delipidation of the membranes with cholate indicates that monogalactosyl diacylglycerol (MGDG) and sulfoquinovosyl diacylglycerol (SQDG) are released rapidly, while the major parts of digalactosyl diacylglycerol (DGDG) and phosphatidylglycerol (PG) are tightly associated with membranes, suggesting a different distribution between the two groups of lipids. Measurements of fluorescence of delipidated and reconstituted thylakoids showed the contribution of lipids to energy transfer. MGDG enhanced all the original fluorescence of thylakoids, while acidic PG and SQDG stimulated fluorescence of photosystem I and antena chlorophyll-protein complexes. DGDG was less effective under the conditions tested.  相似文献   

15.
Thylakoids isolated from leaves of winter rye (Secale cereale L. cv Puma) grown at either 20 or 5°C were extracted with the nonionic detergents Triton X-100 and octyl glucoside. Less total chlorophyll was extracted from 5°C thylakoids by these detergents under all conditions, including pretreatment with cations. Thylakoids from either 20 or 5°C leaves were solubilized in 0.7% Triton X-100 and centrifuged on sucrose gradients to purify the light harvesting complex (LHCII). Greater yields of LHCII were obtained by cation precipitation of particles derived from 20°C thylakoids than from 5°C thylakoids. When 20 and 5°C thylakoids were phosphorylated and completely solubilized in sodium dodecyl sulfate, no differences were observed in the 32Pi-labeling characteristics of the membrane polypeptides. However, when phosphorylated thylakoids were extracted with octyl glucoside, extraction of LHCII associated with the 5°C thylakoids was markedly reduced in comparison with the extraction of LHCII from 20°C membranes. Since 20 and 5°C thylakoids exhibited significant differences in the Chl content and Chl a/b ratios of membrane fractions produced after solubilization with either Triton X-100 or octyl glucoside, and since few differences between the proteins of the two membranes could be observed following complete denaturation in sodium dodecyl sulfate, we conclude that the integral structure of the thylakoid membrane is affected during rye leaf development at low temperature.  相似文献   

16.
Lipid and fatty acid analyses were performed on whole leaf extracts and isolated thylakoids from winter rye (Secale cereale L. cv Puma) grown at 5°C cold-hardened rye (RH) and 20°C nonhardened rye (RNH). Although no significant change in total lipid content was observed, growth at low, cold-hardening temperature resulted in a specific 67% (thylakoids) to 74% (whole leaves) decrease in the trans3-hexadecenoic acid (trans-16:1) level associated with phosphatidyldiacylglycerol (PG). Electron spin resonance and differential scanning calorimetry (DSC) indicated no significant difference in the fluidity of RH and RNH thylakoids. Separation of chlorophyll-protein complexes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the ratio of oligomeric light harvesting complex:monomeric light harvesting complex (LHCII1:LHCII3) was 2-fold higher in RNH than RH thylakoids. The ratio of CP1a:CP1 was also 1.5-fold higher in RNH than RH thylakoids. Analyses of winter rye grown at 20, 15, 10, and 5°C indicated that both, the trans-16:1 acid levels in PG and the LHCII1:LHCII3 decreased concomitantly with a decrease in growth temperature. Above 40°C, differential scanning calorimetry of RNH thylakoids indicated the presence of five major endotherms (47, 60, 67, 73, and 86°C). Although the general features of the temperature transitions observed above 40°C in RH thylakoids were similar to those observed for RNH thylakoids, the transitions at 60 and 73°C were resolved as inflections only and RH thylakoids exhibited transitions at 45 and 84°C which were 2°C lower than those observed in RNH thylakoids. Since polypeptide and lipid compositions of RH and RNH thylakoids were very similar, we suggest that these differences reflect alterations in thylakoid membrane organization. Specifically, it is suggested that low developmental temperature modulates LHCII organization such that oligomeric LHCII predominates in RNH thylakoids whereas a monomeric or an intermediate form of LHCII predominates in RH thylakoids. Furthermore, we conclude that low developmental temperature modulates LHCII organization by specifically altering the fatty composition of thylakoid PG.  相似文献   

17.
Summary Chromoplast internal membranes from Narcissus pseudonarcissus flowers (like chloroplast envelope membranes, as opposed to chloroplast thylakoids) were found to contain high galactolipid synthesizing activities when UDP-galactose plus diglyceride were applied to the purified preparations.Abbreviations MGDG monogalactosyl diglyceride - DGDG digalactosyl diglyceride  相似文献   

18.
Mono- and digalactosyldiacylglycerol (MGDG and DGDG) were isolated from the leaves of sixteen 16:3 plants. In all of these plant species, the sn-2 position of MGDG was more enriched in C16 fatty acids than sn-2 of DGDG. The molar ratios of prokaryotic MGDG to prokaryotic DGDG ranged from 4 to 10. This suggests that 16:3 plants synthesize more prokaryotic MGDG than prokaryotic DGDG. In the 16:3 plant Spinacia oleracea L. (spinach), the formation of prokaryotic galactolipids was studied both in vivo and in vitro. In intact spinach leaves as well as in chloroplasts isolated from these leaves, radioactivity from [1-14C]acetate accumulated 10 times faster in MGDG than in DGDG. After 2 hours of incorporation, most labeled galactolipids from leaves and all labeled galactolipids from isolated chloroplasts were in the prokaryotic configuration. Both in vivo and in vitro, the desaturation of labeled palmitate and oleate to trienoic fatty acids was higher in MGDG than in DGDG. In leaves, palmitate at the sn-2 position was desaturated in MGDG but not in DGDG. In isolated chloroplasts, palmitate at sn-2 similarly was desaturated only in MGDG, but palmitate and oleate at the sn-1 position were desaturated in MGDG as well as in DGDG. Apparently, palmitate desaturase reacts with sn-1 palmitate in either galactolipid, but does not react with the sn-2 fatty acid of DGDG. These results demonstrate that isolated spinach chloroplasts can synthesize and desaturate prokaryotic MGDG and DGDG. The finally accumulating molecular species, MGDG(18:3/16:3) and DGDG(18:3/16:0), are made by the chloroplasts in proportions similar to those found in leaves.  相似文献   

19.
20.
The availability of nitrogen (N) to plants has a profound impact on carbohydrate and protein metabolism, but little is known about its effect on membrane lipid species. This study examines the changes in galactolipid and phospholipid species in soybean as affected by the availability of N, either supplied to soil or obtained through Bradyrhizobium japonicum nodulation. When N was limited in soil, the content of galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacyglycerol (DGDG), decreased drastically in leaves, while a smaller decrease of DGDG was observed in roots. In both leaves and roots, the overall content of different phospholipid classes was largely unchanged by N limitation, although some individual phospholipid molecular species did display significant changes. Nodulation with Bradyrhizobium of soybean grown in N-deficient soil resulted in a large increase in levels of plastidic lipid classes, MGDG, DGDG, and phosphatidylglycerol, along with smaller increases in non-plastidic phospholipids in leaves. Nodulation also led to higher levels of phospholipids in roots without changes in root levels of MGDG and DGDG. Overall, N availability alters lipid content more in leaves than roots and more in galactolipids than phospholipids. Increased N availability leads to increased galactolipid accumulation in leaves, regardless of whether N is supplied from the soil or symbiotic fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号