首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Fatty acid embolism of the lung results in pulmonary edema. Isolated lung lobes ventilated and blood perfused at constant pressure were treated with 1 (n = 6) or 45 microliter/kg body wt (n = 6 oleic acid or saline (n = 7). Lobe weight increase linearly over 1-3 h following oleic with regression slopes indicating a more rapid rate of weight gain at the higher oleic acid dosage. Total lobe weight gain was greater in the 45 than in the 1 microliter/kg group (0.60 +/- 0.10 vs. 0.31 +/- 0.07 g/g initial lobe wt) and greater in the acid-treated lobes than in the controls (0.13 +/- 0.05 g/g initial lobe wt). Pulmonary vascular resistance increased 79% after 45 microliter/kg oleic acid but appeared unchanged following 1 microliter/kg oleic acid or saline. The decrease in arterial O2 partial pressure was greater in the 45 microliter/kg group than in the controls, 47 vs 22 Torr. High vascular pressures and increased flow velocities in patent vessels are not essential for oleic acid-associated edema, since weight increased at constant pressure perfusion. Weight gain related to oleic acid dosage suggests that oleic acid increases permeability by affecting the vascular endothelium either directly or through biochemical intermediates endogenous to the lung or blood.  相似文献   

4.
5.
With an isolated perfused canine lung, the compliance of pulmonary circulation was measured and partitioned into components corresponding to alveolar and extra-alveolar compartments. When the lungs were in zone 3, changes in outflow pressure (delta Po) affected all portions of the vasculature causing a change in lung blood volume (delta V). Thus the ratio delta V/delta Po in zone 3 represented the compliance of the entire pulmonary circulation (Cp) plus that of the left atrium (Cla). When the lungs were in zone 2, changes in Po affected only the extra-alveolar vessels that were downstream from the site of critical closure in the alveolar vessels. Thus the ratio delta V/delta Po with forward flow in zone 2 represented the compliance of the venous extra-alveolar vessels (Cv) plus Cla. With reverse flow in zone 2, delta V/delta Po represented the compliance of the arterial extra-alveolar vessels (Ca). The compliance of the alveolar compartment (Calv) was calculated from the difference between Cp and the sum of Ca + Cv. When Po was 6-11 mmHg, Cp was 0.393 +/- 0.0380 (SE) ml X mmHg-1 X kg-1 with forward perfusion and 0.263 +/- 0.0206 (SE) ml X mmHg-1 X kg-1 with reverse perfusion. Calv was 79 and 68% of Cp with forward and reverse perfusion, respectively. When Po was raised to 16-21 mmHg, Cp decreased to 0.225 +/- 0.0235 (SE) ml X mmHg-1 X kg-1 and 0.183 +/- 0.0133 (SE) ml X mmHg-1 X kg-1 with forward and reverse perfusion, respectively. Calv also decreased but remained the largest contributor to Cp. We conclude that the major site of pulmonary vascular compliance in the canine lung is the alveolar compartment, with minor contributions from the arterial and venous extra-alveolar segments.  相似文献   

6.
7.
8.
9.
The low-viscosity bolus method was used to determine the longitudinal distributions of vascular resistance and intravascular pressure with respect to cumulative vascular volume from the lobar artery to the lobar vein in isolated dog lung lobes near functional residual capacity under zone 3 conditions. We found that the resistance distribution had two modes, a larger one upstream and a smaller one downstream from a local minimum. Over the range of vascular pressures studied the total vascular resistance decreased and the vascular volume increased with increasing vascular pressure. However, the shape of the normalized resistance distribution was independent of vascular pressure. Comparisons of the resistance distributions with the distributions of arterial, capillary, and venous volumes suggest that the modes represent regions of relatively high resistance proximal and distal to the capillary bed. These results are consistent with the concept that within the lobar vascular bed the highest resistance per unit blood volume is in the smallest arteries and veins, as suggested by morphometric data from other sources.  相似文献   

10.
A radioaerosol scanning technique measuring regional clearance of sodium pertechnetate (99mTcO-4) and 99mTc-labeled diethylenetriaminepentaacetate (99mTc-DTPA) was used to assess changes in canine pulmonary epithelial permeability following lung irradiation. Doses of 2,000 cGy (11 dogs), 1,000 cGy (2 dogs), and 500 cGy (2 dogs) were given in one fraction to either the entire right hemithorax (500 cGy) or the right lower lung (1,000 and 2,000 cGy). Radioaerosol scans, chest roentgenograms, and computerized tomograms (CT) were obtained before and serially after irradiation. A dose of 2,000 cGy resulted in a decrease in regional pulmonary epithelial permeability to both 99mTcO4- and 99mTc-DTPA; both showed significant decreases from the 2nd wk postirradiation onward. In comparison, CT and chest roentgenogram did not become abnormal until 7.1 +/- 2.8 (SD) and 8.2 +/- 2.6 wk, respectively. Doses of 1,000 and 500 cGy produced reversible decreases in 99mTcO4- clearance. Lung morphology showed definite changes of radiation pneumonitis after 2,000 and 1,000 cGy but not after 500 cGy at approximately 9, 17, and 12 wk postirradiation, respectively. These results suggest that dose-dependent changes in pulmonary physiology may precede obvious structural alterations in radiation lung injury.  相似文献   

11.
Changes in intrathoracic pressure produced by the various inspiratory intercostals are essentially additive, but the interaction between these muscles and the diaphragm remains uncertain. In the present study, this interaction was assessed by measuring the changes in airway opening (DeltaPao) or transpulmonary pressure (DeltaPtp) in vagotomized, phrenicotomized dogs during spontaneous inspiration (isolated intercostal contraction), during isolated rectangular or ramp stimulation of the peripheral ends of the transected C(5) phrenic nerve roots (isolated diaphragm contraction), and during spontaneous inspiration with superimposed phrenic nerve stimulation (combined diaphragm-intercostal contraction). With the endotracheal tube occluded at functional residual capacity, DeltaPao during combined diaphragm-intercostal contraction was nearly equal to the sum of the DeltaPao produced by the two muscle groups contracting individually. However, when the endotracheal tube was kept open, DeltaPtp during combined contraction was 123% of the sum of the individual DeltaPtp (P < 0.001). The increase in lung volume during combined contraction was also 109% of the sum of the individual volume increases (P < 0.02). Abdominal pressure during combined contraction was invariably lower than during isolated diaphragm contraction. It is concluded, therefore, that the canine diaphragm and intercostal muscles act synergistically during lung expansion and that this synergism is primarily due to the fact that the intercostal muscles reduce shortening of the diaphragm. When the lung is maintained at functional residual capacity, however, the synergism is obscured because the greater stiffness of the rib cage during diaphragm contraction enhances the DeltaPao produced by the isolated diaphragm and reduces the DeltaPao produced by the intercostal muscles.  相似文献   

12.
13.
In view of the complexity of the regulation of gastric acid secretion, isolated parietal cells offer the appealing prospect of studying the receptors and mechanisms activating this cell after it has been removed from the confusing milieu of the intact mucosa. Histamine and cholinergic agents stimulate the function of canine parietal cells by interacting with typical H2 and muscarinic receptors. Gastrin produces only a small stimulation, interacting with a third, presumably specific, receptor. Combinations of histamine and carbachol and of histamine and gastrin produce potentiating interactions. When isolated parietal cells are treated with these combinations of agents, cimetidine and atropine display and apparent lack of specificity, reminiscent of that found in vivo, and probably resulting from interference with the histamine and cholinergic components of these potentiating interactions. The action of histamine, but not of carbachol or gastrin, is linked to stimulation of cyclic AMP production by parietal cells. Two potential inhibitors of acid secretion, secretin and prostaglandin E2, also stimulate cyclic AMP production, but these later effects appeared to occur largely in nonparietal cells. PGE2 however specifically inhibits histamine-stimulated parietal cell function, apparently by blocking activation of adenylate cyclase. Cholinergic action on the other hand is closely linked to enhanced influx of extracellular calcium.  相似文献   

14.
15.
16.
Oxygen-dependent reperfusion injury in the isolated rat lung.   总被引:3,自引:0,他引:3  
To further define the relationship between oxygen dependence of lung injury during ischemia and ischemia-reperfusion, we used the isolated, perfused, and ventilated rat lung model, so that oxygenation and perfusion could be separated. During ischemia, lungs were ventilated with various oxygen concentrations and then ventilated with 95% oxygen during the 60-min reperfusion period. Other lungs were ventilated with 0% oxygen (nitrogen) during ischemia, and the reperfusion phase oxygen concentration was varied. Tissue and perfusate lipid peroxidation products (thiobarbituric acid-reactive substances and conjugated dienes), dry-to-wet weight ratio, and lactate dehydrogenase were measured as indexes of lung damage. In addition, electron microscopy of some lungs was performed. Results demonstrate an oxygen dependence of lipid peroxidation in both the ischemic and reperfusion phases, but lipid peroxidation is severalfold greater in the reperfusion than in the ischemic phase. Products of lipid peroxidation closely correlate with indexes of lung injury (dry-to-wet weight ratio, lactate dehydrogenase, and electron microscopy).  相似文献   

17.
Pulmonary air embolism causes physical obstruction of microvasculature and leads to permeability changes, release of mediators, and injury to lung tissue. In this study we employed an isolated perfused rat lung model to investigate the primary and secondary effects produced by infusion of air into the pulmonary artery. Infusion of various doses of air (0.10-0.25 ml) over a 1-min period produced a dose-dependent increase in pulmonary arterial pressure and lung weight gain. In contrast, when a constant air dose was administered over various periods of time (0.25 ml over 0.5-8.0 min), the pulmonary arterial pressure rose to the same extent regardless of the infusion rate, whereas the lung weight gain increased proportionately with the rate of infusion. Total vascular resistance rose from 1.41 +/- 0.04 to 5.04 +/- 0.09 mmHg.ml-1.min in rats given 0.25 ml air over 1 min (n = 14, P less than 0.001), with greater than or equal to 90% of this increase occurring in the arterial segments. Both thromboxane B2 and endothelin concentrations also increased in the perfusate, suggesting their involvement in this increased resistance. Furthermore the pulmonary filtration coefficient increased from 0.21 +/- 0.05 to 1.28 +/- 0.26 g.min-1.cmH2O-1.100 g (n = 8, P less than 0.001), and the protein concentration in lung lavage fluid also rose, indicating lung injury. Leukocyte counts in the perfusate were unaffected by embolization, but chemiluminescent activity was increased, indicating a possible role for activated leukocytes in lung injury induced by air emboli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
In this study, lung filtration coefficient(Kfc) wasmeasured in eight isolated canine lung preparations by using threemethods: standard gravimetric (Std), blood-corrected gravimetric (BC), and optical. The lungs were held in zone III conditions and were subjected to an average venous pressure increase of 8.79 ± 0.93 (mean ± SD) cmH2O. Thepermeability of the lungs was increased with an infusion of alloxan (75 mg/kg). The resultingKfc values (inmilliliters · min1 · cmH2O1 · 100 g dry lung weight1)measured by using Std and BC gravimetric techniques before vs. afteralloxan infusion were statistically different: Std, 0.527 ± 0.290 vs. 1.966 ± 0.283; BC, 0.313 ± 0.290 vs. 1.384 ± 0.290. However, the optical technique did not show any statisticaldifference between pre- and postinjury with alloxan, 0.280 ± 0.305 vs. 0.483 ± 0.297, respectively. The alloxan injury, quantified byusing multiple-indicator techniques, showed an increase in permeability and a corresponding decrease in reflection coefficient for albumin (f). Because the opticalmethod measures the product ofKfc and f, this study shows thatalbumin should not be used as an intravascular optical filtrationmarker when permeability is elevated. However, the optical technique,along with another means of measuringKfc (such as BC),can be used to calculate the fof a tracer (in this study, fof 0.894 at baseline and 0.348 after injury). Another important findingof this study was that the ratio of baseline-to-injury Kfc values wasnot statistically different for Std and BC techniques, indicating thatthe percent contribution of slow blood-volume increases does not changebecause of injury.

  相似文献   

20.
Klaesner, Joseph W., N. Adrienne Pou, Richard E. Parker,Charlene Finney, and Robert J. Roselli. Optical measurement ofisolated canine lung filtration coefficients at normal hematocrits. J. Appl. Physiol. 83(6):1976-1985, 1997.In this study, lung filtration coefficient(Kfc) valueswere measured in eight isolated canine lung preparations at normalhematocrit values using three methods: gravimetric, blood-correctedgravimetric, and optical. The lungs were kept in zone 3 conditions andsubjected to an average venous pressure increase of 10.24 ± 0.27 (SE) cmH2O. The resulting Kfc(ml · min1 · cmH2O1 · 100 g dry lung wt1) measuredwith the gravimetric technique was 0.420 ± 0.017, which wasstatistically different from theKfc measured bythe blood-corrected gravimetric method (0.273 ± 0.018) or theproduct of the reflection coefficient(f) andKfc measuredoptically (0.272 ± 0.018). The optical method involved the use of aCellco filter cartridge to separate red blood cells from plasma, whichallowed measurement of the concentration of the tracer in plasma atnormal hematocrits (34 ± 1.5). The permeability-surface areaproduct was measured using radioactive multiple indicator-dilutionmethods before, during, and after venous pressure elevations. Resultsshowed that the surface area of the lung did not change significantlyduring the measurement ofKfc. Thesestudies suggest thatfKfccan be measured optically at normal hematocrits, that this measurement is not influenced by blood volume changes that occur during the measurement, and that the opticalfKfcagrees with theKfc obtained viathe blood-corrected gravimetric method.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号