首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D C Mitchell  B J Litman 《Biochemistry》1999,38(24):7617-7623
Neutral solutes were used to investigate the effects of osmotic stress both on the ability of rhodopsin to undergo its activating conformation change and on acyl chain packing in the rod outer segment (ROS) disk membrane. The equilibrium concentration of metarhodopsin II (MII), the conformation of photoactivated rhodopsin, which binds and activates transducin, was increased by glycerol, sucrose, and stachyose in a manner which was linear with osmolality. Analysis of this shift in equilibrium in terms of the dependence of ln(Keq) on osmolality revealed that 20 +/- 1 water molecules are released during the MI-to-MII transition at 20 degrees C, and at 35 degrees C 13 +/- 1 waters are released. At 35 degrees C the average time constant for MII formation was increased from 1.20 +/- 0.09 ms to 1.63 +/- 0.09 ms by addition of 1 osmolal sucrose or glycerol. The effect of the neutral solutes on acyl chain packing in the ROS disk membrane was assessed via measurements of the fluorescence lifetime and anisotropy decay of 1,6-diphenyl-1,3,5-hexatriene (DPH). Analysis of the anisotropy decay of DPH in terms of the rotational diffusion model showed that the angular width of the equilibrium orientational distribution of DPH about the membrane normal was progressively narrowed by increased osmolality. The parameter fv, which is proportional to the overlap between the DPH orientational probability distribution and a random orientational distribution, was reduced by the osmolytes in a manner which was linear with osmolality. This study highlights the potentially opposing interplay between the effect of membrane surface hydration on both the lipid bilayer and integral membrane protein structure. Our results further demonstrate that the binding and release of water molecules play an important role in modulating functional conformational changes for integral membrane proteins, as well as for soluble globular proteins.  相似文献   

2.
Large "anomalous" heat capacity (DeltaC(p)) effects are a common feature of the thermodynamics of biomolecular interactions in aqueous solution and, as a result of the improved facility for direct calorimetric measurements, there is a growing body of experimental data for such effects in protein folding, protein-protein and protein-ligand interactions. Conventionally such heat capacity effects have been ascribed to hydrophobic interactions, and there are some remarkably convincing demonstrations of the usefulness of this concept. Nonetheless, there is also increasing evidence that hydrophobic interactions are not the only possible source of such effects. Here we re-evaluate the possible contributions of other interactions to the heat capacity changes to be expected for cooperative biomolecular folding and binding processes, with particular reference to the role of hydrogen bonding and solvent water interactions. Simple models based on the hydrogen-bonding propensity of water as a function of temperature give quantitative estimates of DeltaC(p) that compare well with experimental observations for both protein folding and ligand binding. The thermodynamic contribution of bound waters in protein complexes is also estimated. The prediction from simple lattice models is that trapping of water in a complex should give more exothermic binding (DeltaDeltaH-6 to -12 kJ mol(-1)) with lower entropy (DeltaDeltaS(0) approximately -11 J mol(-1) K(-1)) and more negative DeltaC(p) (by about -75 J mol(-1) K(-1)) per water molecule. More generally, it is clear that significant DeltaC(p) effects are to be expected for any macromolecular process involving a multiplicity of cooperative weak interactions of whatever kind.  相似文献   

3.
We use the osmotic pressure dependence of dissociation rates and relative binding constants to infer differences in sequestered water among complexes of lambda Cro repressor with varied DNA recognition sequences. For over a 1000-fold change in association constant, the number of water molecules sequestered by non-cognate complexes varies linearly with binding free energy. One extra bound water molecule is coupled with the loss of approximately 150 cal/mol complex in binding free energy. Equivalently, every tenfold decrease in binding constant at constant salt and temperature is associated with eight to nine additional water molecules sequestered in the non-cognate complex. The relative insensitivity of the difference in water molecules to the nature of the osmolyte used to probe the reaction suggests that the water is sterically sequestered. If the previously measured changes in heat capacity for lambda Cro binding to different non-cognate sequences are attributed solely to this change in water, then the heat capacity change per incorporated water is almost the same as the difference between ice and water. The associated changes in enthalpies and entropies, however, indicate that the change in complex structure involves more than a simple incorporation of fixed water molecules that act as adaptors between non-complementary surfaces.  相似文献   

4.
In vitro binding of Hoechst 33258 to the promoter region of human c-myc, d(GG GGAGGG TGG GGA GGG TGG GGA AGG TGG GG) which forms G-quadruplex, both in vitro and in vivo in the presence of metal ions, was investigated by equilibrium absorption, fluorescence, and kinetic surface plasmon resonance methods. Hypochromic effect in UV absorption spectra and blue shift in fluorescence emission maxima of Hoechst in the presence of quadruplex revealed that Hoechst binds to the quadruplex. Analysis of UV and fluorescence titration data revealed that Hoechst binds to quadruplex with binding affinity of the order of 10(6). Anisotropy measurements and higher lifetime obtained from time-resolved decay experiments revealed that quadruplex-bound Hoechst is rotationally restricted in a less polar environment than the bulk buffer medium. From surface plasmon resonance studies, we obtained kinetic association (k(a)) and dissociation (k(d)) of 1.23+/-0.04 x 10(5)M(-1)s(-1) and 0.686+/-0.009 s(-1), respectively. As Hoechst is known to bind A-T-rich region of duplex DNA, here we propose the likelihood of Hoechst interacting with the AAGGT loop of the quadruplex.  相似文献   

5.
The thermodynamics of 5'-ATGCTGATGC-3' binding to its complementary DNA and RNA strands was determined in sodium phosphate buffer under varying conditions of temperature and salt concentration from isothermal titration calorimetry (ITC). The Gibbs free energy change, DeltaG degrees of the DNA hybridization reactions increased by about 6 kJ mol(-1) from 20 degrees C to 37 degrees C and exhibited heat capacity changes of -1.42 +/- 0.09 kJ mol(-1) K(-1) for DNA/DNA and -0.87 +/- 0.05 kJ mol(-1) K(-1) for DNA/RNA. Values of DeltaG degrees decreased non-linearly by 3.5 kJ mol(-1) at 25 degrees C and 6.0 kJ mol(-1) at 37 degrees C with increase in the log of the sodium chloride concentration from 0.10 M to 1.0 M. A near-linear relationship was observed, however, between DeltaG degrees and the activity coefficient of the water component of the salt solutions. The thermodynamic parameters of the hybridization reaction along with the heat capacity changes were combined with thermodynamic contributions from the stacking to unstacking transitions of the single-stranded oligonucleotides from differential scanning calorimetry (DSC) measurements, resulting in good agreement with extrapolation of the free energy changes to 37 degrees C from the melting transition at 56 degrees C.  相似文献   

6.
P H Yang  J A Rupley 《Biochemistry》1979,18(12):2654-2661
Calorimetric measurements of the heat capacity of the lysozyme-water system have been carried out over the full range of system composition at 25 degrees C. The partial specific heat capacity of the protein in dilute solution is 1.483 +/- 0.009 J K-1 g-1. The heat capacity of the dry protein is 1.26 +/- 0.01 J K-1 g-1. The system heat capacity responds linearly to change in composition from dilute solution to 0.38 g of water per g of protein (h) and is an irregular function at lower water content. The break in the heat capacity function at 0.38 h defines the amount of water needed to develop the equilibrium solution properties of lysozyme as being 300 molecules of water/protein molecule, just sufficient for monolayer coverage. The heat capacity behavior at low water content describes three hydration regions. The most tightly bound water (0-0.07 h), probably principally bound to charged groups, is characterized by a partial specific heat capacity of 2.3 J K-1 g-1, a value close to that for ice. A heat of reaction associated with proton redistribution is reflected in the heat capacity function for the low-hydration region. Between 0.07 and 0.25 h the heat capacity increases strongly, which is understood to reflect the growth of patches of water covering polar and adjacent nonpolar portions of the protein surface. The hydration shell is completed by condensation of solvent over the weak-interacting portions of the surface, in a process displaying a transition heat.  相似文献   

7.
The energetics of the Sox-5 HMG box interaction with DNA duplexes, containing the recognition sequence AACAAT, were studied by fluorescence spectroscopy, isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). Fluorescence titration showed that the association constant of this HMG box with the duplexes is of the order 4x10(7) M(-1), increasing somewhat with temperature rise, i.e. the Gibbs energy is -40 kJ mol(-1) at 5 degrees C, decreasing to -48 kJ mol(-1) at 32 degrees C. ITC measurements of the enthalpy of association over this temperature range showed an endothermic effect below 17 degrees C and an exothermic effect above, suggesting a heat capacity change on binding of about -4 kJ K(-1) mol(-1), a value twice larger than expected from structural considerations. A straightforward interpretation of ITC data in heat capacity terms assumes, however, that the heat capacities of all participants in the association reaction do not change over the considered temperature range. Our previous studies showed that over the temperature range of the ITC experiments the HMG box of Sox-5 starts to unfold, absorbing heat and the heat capacities of the DNA duplexes also increase significantly. These heat capacity effects differ from that of the DNA/Sox-5 complex. Correcting the ITC measured binding enthalpies for the heat capacity changes of the components and complex yielded the net enthalpies which exhibit a temperature dependence of about -2 kJ K(-1) mol(-1), in good agreement with that predicted on the basis of dehydration of the protein-DNA interface. Using the derived heat capacity change and the enthalpy and Gibbs energy of association measured at 5 degrees C, the net enthalpy and entropy of association of the fully folded HMG box with the target DNA duplexes was determined over a broad temperature range. These functions were compared with those for other known cases of sequence specific DNA/protein association. It appears that the enthalpy and entropy of association of minor groove binding proteins are more positive than for proteins binding in the major groove. The observed thermodynamic characteristics of protein binding to the A+T-rich minor groove of DNA might result from dehydration of both polar and non-polar groups at the interface and release of counterions. The expected entropy of dehydration was calculated and found to be too large to be compensated by the negative entropy of reduction of translational/rotational freedom. This implies that DNA/HMG box association proceeds with significant decrease of conformational entropy, i.e. reduction in conformational mobility.  相似文献   

8.
4',6-diamidino-2-phenylindole (DAPI), netropsin, and pentamidine are minor groove binders that have terminal -C(NH2)2+ groups. The hydration changes that accompany their binding to the minor groove of the (AATT)2 sequence have been studied using the osmotic stress technique with fluorescence spectroscopy. The affinity of DAPI for the binding site decreases with the increasing osmolality of the solution, resulting in acquisition of 35+/-1 waters upon binding. A competition fluorescence assay was utilized to measure the binding constants and hydration changes of the other two ligands, using the DNA-DAPI complex as the fluorescence reporter. Upon their association to the (AATT)2 binding site, netropsin and pentamidine acquire 26+/-3 and 34+/-2 additional waters of hydration, respectively. The hydration changes are discussed in the context of the terminal functional groups of the ligands and conformational changes in the DNA.  相似文献   

9.
Poland D 《Biophysical chemistry》2007,125(2-3):497-507
In this article we use the published heat capacity data of Dragan et al. [A.I. Dragan, et al., The energetics of specific binding of AT-hooks from HMGA1 to target DNA, J. Mol. Biol. 327 (2003) 393-411] on the association of proteins with DNA duplexes to construct enthalpy probability distributions for the protein/DNA complexes formed in these systems. We first analyze the multistep equilibrium that determines the species concentrations in this system to determine whether or not the DNA-peptide complex goes cleanly to DNA single-strands and peptide. Using the heat capacity data for this case we employ the maximum-entropy method to construct enthalpy probability distribution functions for the species involved in this equilibrium. We find that the distribution functions for this system clearly show bimodal behavior indicating a two-state transition from complex to non-complex form.  相似文献   

10.
At 0 degrees C, pH 7.3, palmitate (PA) binds to human erythrocyte ghosts suspended in 0.2% bovine serum albumin (BSA) solution with molar ratios of PA to BSA, v, between 0.2 and 1.3. The binding depends on the water phase PA concentration, measured in equilibrium experiments, using BSA-filled ghosts as semipermeable bags. The saturable binding has a capacity of 19.4 +/- 7.5 nmol g-1 packed ghosts (7.2 x 10(9) cells) and Kd = 13.5 +/- 5 nM. PA exchange efflux kinetics to 0.2% BSA is recorded from ghosts without and with 0.2% BSA with a resolution time of about 1 s. Data are analyzed in terms of compartmental models. Using BSA-free ghosts the kinetics is essentially monoexponential. The rate constant is 0.0287 +/- 0.0022 s-1. Using ghosts with BSA, the kinetics is biexponential with widely different rate constants. Extrapolated zero-time values reflect, according to additional investigations, 'instantaneous' release of PA from the outer surface of the ghosts. Analyses of the biexponential curve up to about 55% tracer efflux assign unequivocally values to three model parameters. (1) k1, the dissociation rate constant of the PA-BSA complex is (1.47 +/- 0.03) x 10(-3) s-1 and (2.56 +/- 0.08) x 10(-3) s-1 and (4.08 +/- 0.13) x 10(-3) s-1 at v = 0.2, 0.6 and 1.4, respectively. (2) k3*, the overall rate constant of PA transport from the inside of the ghost membrane to the medium is 0.0269 +/- 0.0020 s-1 independent of v. (3) Qkin, the ratio of PA on the inside of the membrane to PA on BSA within the ghosts is v dependent and smaller than a corresponding ratio Qeq measured in equilibrium by a value corresponding to PA on the outer surface. This fraction is released with a rate constant, k5, which is of the order of 1 s-1. The data suggest a maximum PA transport capacity, Jmax, of 2 pmol min-1 cm-2, 0 degrees C, pH 7.3.  相似文献   

11.
Using the osmotic stress technique together with a self-cleavage assay we measure directly differences in sequestered water between specific and nonspecific DNA-BamHI complexes as well as the numbers of water molecules released coupled to specific complex formation. The difference between specific and nonspecific binding free energy of the BamHI scales linearly with solute osmolal concentration for seven neutral solutes used to set water activity. The observed osmotic dependence indicates that the nonspecific DNA-BamHI complex sequesters some 120-150 more water molecules than the specific complex. The weak sensitivity of the difference in number of waters to the solute identity suggests that these waters are sterically inaccessible to solutes. This result is in close agreement with differences in the structures determined by x-ray crystallography. We demonstrate additionally that when the same solutes that were used in competition experiments are used to probe changes accompanying the binding of free BamHI to its specific DNA sequence, the measured number of water molecules released in the binding process is strikingly solute-dependent (with up to 10-fold difference between solutes). This result is expected for reactions resulting in a large change in a surface exposed area.  相似文献   

12.
13.
Thermodynamics of the hydrolysis of sucrose   总被引:1,自引:0,他引:1  
A thermodynamic investigation of the hydrolysis of sucrose to fructose and glucose has been performed using microcalorimetry and high-pressure liquid chromatography. The calorimetric measurements were carried out over the temperature range 298-316 K and in sodium acetate buffer (0.1 M, pH 5.65). Enthalpy and heat capacity changes were obtained for the hydrolysis of aqueous sucrose (process A): sucrose(aq) + H2O(liq) = glucose(aq) + fructose (aq). The determination of the equilibrium constant required the use of a thermochemical cycle calculation involving the following processes: (B) glucose 1-phosphate2-(aq) = glucose 6-phosphate2-(aq); (C) sucrose(aq) + HPO4(2-)(aq) = glucose 1-phosphate2-(aq) + fructose(aq); and (D) glucose 6-phosphate2-(aq) + H2O(liq) = glucose(aq) + HPO4(2-)(aq). The equilibrium constants determined at 298.15 K for processes B and C are 17.1 +/- 1.0 and 32.4 +/- 3.0, respectively. Equilibrium data for process D was obtained from the literature, and in conjunction with the data for processes B and C, used to calculate a value of the equilibrium constant for the hydrolysis of aqueous sucrose. Thus, for process A, delta G0 = -26.53 +/- 0.30 kJ mol-1, K0 = (4.44 +/- 0.54) x 10(4), delta H0 = -14.93 +/- 0.16 kJ mol-1, delta So = 38.9 +/- 1.2 J mol-1 K-1, and delta CoP = 57 +/- 14 J mol-1 K-1 at 298.15 K. Additional thermochemical cycles that bear upon the accuracy of these results are examined.  相似文献   

14.
The interaction between the dimer structure of ibuprofen drug (D-IB) and calf thymus DNA under simulative physiological conditions was investigated with the use of Hoechst 33258 and methylene blue dye as spectral probes by the methods of UV-visible absorption, fluorescence spectroscopy, circular dichroism spectroscopy and molecular modeling study.Using the Job's plot, a single class of binding sites for theD-IB on DNA was put in evidence. The Stern–Volmer analysis of fluorescence quenching data shows the presence of both the static and dynamic quenching mechanisms. The binding constants, Kb were calculated at different temperatures, and the thermodynamic parameters ?G°, ?H° and ?S° were given. The experimental results showed that D-IB molecules could bind with DNA via groove binding mode as evidenced by: I. DNA binding constant from spectrophotometric studies of the interaction of D-IB with DNA is comparable to groove binding drugs. II. Competitive fluorimetric studies with Hoechst 33258 have shown that D-IB exhibits the ability of this complex to displace with DNA-bounded Hoechst, indicating that it binds to DNA in strong competition with Hoechst for the groove binding. III. There is no significantly change in the absorption of the MB-DNA system upon adding the D-IB, indicates that MB molecules are not released from the DNA helix after addition of the D-IB and are indicative of a non-intercalative mode of binding. IV. Small changes in DNA viscosity in the presence of D-IB, indicating weak link to DNA, which is consistent with DNA groove binding. As well as, induced CD spectral changes, and the docking results revealed that groove mechanism is followed by D-IB to bind with DNA.  相似文献   

15.
热应激抑制神经元凋亡与核因子kappaB活性之间的关系   总被引:2,自引:1,他引:1  
Zheng SQ  Su XW  Qiu PX  Chen LJ  Wan X  Yan GM 《生理学报》2001,53(3):193-197
实验采用低钾诱导大鼠小脑颗粒神经元凋亡模型,观察核因子kappaB(NF-kappaB)活性与热应激抑制神经元凋亡之间的关系,迁移率改变法(EMSA)检测结果显示:神经元经低钾处理16h可见NF-kappaB活性明显升高,热应激处理可减弱低钾诱发的NF-kappaB激活,并呈时间依赖性,Hoechst33258荧光素核染色,DNA琼脂糖凝胶电泳和流式细胞(FCM)检测均发现低钾16h可诱发神经元凋亡,预先用热处理60或90min可明显减弱低钾诱发的神经元凋亡,用佛波酯(PMA)激活NF-kappaB,可进一步增强60min热应激抑制精经元凋亡的作用,而用吡咯烷二硫代氨基甲酸盐(PDTC)选择性阻断NF-kappaB活性后,热应激抑制神经元凋亡的作用明显减弱。上述结果提示,热应激的神经保护作用与减弱NF-kappaB活性无关,而NF-ksppaB激活可能参与热应激抑制神经元凋亡的作用。  相似文献   

16.
Thermodynamic quantities for the binding of Mg2+ (in the presence of Ca2+) and Pi (in the presence of Mg2+ and absence of Ca2+) to sarcoplasmic reticulum ATPase were determined from isothermal titration calorimetry measurements at 25 degrees C. Mg2+ and Pi are involved in reversal of the ATPase hydrolytic reaction, and their interactions with the ATPase are conveniently studied under equilibrium conditions. We found that the Mg2+ binding reaction is endothermic with a binding constant (Kb) = 142 +/- 4 M(-1), a binding enthalpy of 180 +/- 3 kJ mol(-1), and an entropy contribution (TdeltaSb) = 192 +/- 3 kJ mol(-1). Similarly, Pi binding is also an endothermic reaction with Kb = 167 +/- 17 M(-1), deltaHb = 65.3 +/- 5.4 kJ mol(-1), and TdeltaSb = 77.9 +/- 5.4 kJ mol(-1). Our measurements demonstrate that the ATPase can absorb heat from the environment upon ligand binding, and emphasize the important role of entropic mechanisms in energy transduction by this enzyme.  相似文献   

17.
Sequence-specific DNA recognition by bacterial integrase Tn916 involves structural rearrangements of both the protein and the DNA duplex. Energetic contributions from changes of conformation, thermal motions and soft vibrational modi of the protein, the DNA, and the complex significantly influence the energetic profile of protein-DNA association. Understanding the energetics of such a complicated system requires not only a detailed calorimetric investigation of the association reaction but also of the components in isolation. Here we report on the conformational stability of the integrase Tn916 DNA binding domain and its cognate 13 base pair target DNA duplex. Using a combination of temperature and denaturant induced unfolding experiments, we find that the 74-residue DNA binding domain is compact and unfolds cooperatively with only small deviation from two-state behavior. Scanning calorimetry reveals an increase of the heat capacity of the native protein attributable to increased thermal fluctuations. From the combined calorimetric and spectroscopic experiments, the parameters of protein unfolding are T(m) = 43.8 +/- 0.3 degrees C, DeltaH(m) = 255 +/- 18 kJ mol(-1), DeltaS(m) = 0.80 +/- 0.06 kJ mol(-1), and DeltaC(p) = 5.0 +/- 0.8 kJ K(-1) mol(-1). The DNA target duplex displays a thermodynamic signature typical of short oligonucleotide duplexes: significant heat absorption due to end fraying and twisting precedes cooperative unfolding and dissociation. The parameters for DNA unfolding and dissociation are DeltaH(m) = 335 +/- 4 kJ mol(-1) and DeltaC(p) = 2.7 +/- 0.9 kJ K(-(1) mol(-1). The results reported here have been instrumental in interpreting the thermodynamic features of the association reaction of the integrase with its 13 base pair target DNA duplex reported in the accompanying paper [Milev et al. (2003) Biochemistry 42, 3481-3491].  相似文献   

18.
DNA extracts from sediment and water samples are often contaminated with coextracted humic-like impurities. Estuarine humic substances and vascular plant extract were used to evaluate the effect of the presence of such impurities on DNA hybridization and quantification. The presence of humic substances and vascular plant extract interfered with the fluorometric measurement of DNA concentration using Hoechst dye H33258 and PicoGreen reagent. Quantification of DNA amended with humic substances (20-80 ng/microl) using the Hoechst dye assay was more reliable than with PicoGreen reagent. A simple procedure was developed to improve the accuracy for determining the DNA concentration in the presence of humic substances. In samples containing up to 80 ng/microl of humic acids, the fluorescence of the samples were measured twice: first without Hoechst dye to ascertain any fluorescence from impurities in the DNA sample, followed with Hoechst dye addition to obtain the total sample fluorescence. The fluorescence of the Hoechst dye-DNA complex was calculated by subtracting the fluorescence of the impurities from the fluorescence of the sample. Vascular plant extract and humic substances reduced the binding of DNA onto the nylon membrane. Low amounts (<2.0 microg) of humic substances derived from estuarine waters did not affect the binding of 100 ng of target DNA to nylon membranes. DNA samples containing 1.0 microg of humic substances performed well in DNA hybridizations with DIG-labeled oliogonucleotide and chromosomal probes. Therefore, we suggest that DNA samples containing low concentrations of humic substances (<20 ng/microl) could be used in quantitative membrane hybridization without further purification.  相似文献   

19.
The osmotic stress technique was used to measure changes in macromolecular hydration that accompany binding of wild-type Escherichia coli lactose (lac) repressor to its regulatory site (operator O1) in the lac promoter and its transfer from site O1 to nonspecific DNA. Binding at O1 is accompanied by the net release of 260 +/- 32 water molecules. If all are released from macromolecular surfaces, this result is consistent with a net reduction of solvent-accessible surface area of 2370 +/- 550 A. This area is only slightly smaller than the macromolecular interface calculated for a crystalline repressor dimer-O1 complex but is significantly smaller than that for the corresponding complex with the symmetrical optimized O(sym) operator. The transfer of repressor from site O1 to nonspecific DNA is accompanied by the net uptake of 93 +/- 10 water molecules. Together these results imply that formation of a nonspecific complex is accompanied by the net release of 165 +/- 43 water molecules. The enhanced stabilities of repressor-DNA complexes with increasing osmolality may contribute to the ability of Escherichia coli cells to tolerate dehydration and/or high external salt concentrations.  相似文献   

20.
The thermodynamic characteristics of oligosaccharide binding to an antibody binding site that is dominated by aromatic amino acids suggest that the hydrophobic effect contributes substantially to complex formation as well as hydrogen bonding and van der Waals interactions. A detailed titration microcalorimetric study on the temperature dependence of the binding of a trisaccharide, representing the epitope of a Salmonella O-antigen, showed that its maximum binding to the monoclonal antibody Se155-4 occurs just below room temperature and both enthalpy and entropy changes are strongly dependent on temperature in a mutually compensating manner. The heat capacity change also shows an unusually strong temperature dependence being large and negative above room temperature and positive below. van't Hoff analysis of the temperature dependence of the binding constant yielded a biphasic curve with two apparent intrinsic enthalpy estimations (approximately -100 kJ mol-1 above 18 degrees C and approximately +100 kJ mol-1 below), each very different from the calorimetrically determined enthalpies (ranging from about -60 kJ mol-1 to -20 kJ mol-1). This was interpreted as being due to large enthalpy contributions from concomitant reactions, most notably changes in solvation. Linear plots, -delta H0 versus -T delta S0, observed for temperature-dependent measurements mirror the behavior seen for a series of functional group replacements, suggesting that the molecular and physical origin of these phenomena are closely related and linked to the role of water in complex formation. The thermodynamic results are compared to the mode of binding determined from a 2.05-A resolution structure of the Fab-oligosaccharide complex, and with literature data for the heat capacities of sugars in aqueous solution and for the thermodynamics of carbohydrate binding to transport proteins and lectins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号