首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ScaA lipoprotein in Streptococcus gordonii is a member of the LraI family of homologous polypeptides found among streptococci, pneumococci, and enterococci. It is the product of the third gene within the scaCBA operon encoding the components of an ATP-binding cassette (ABC) transporter system. Inactivation of scaC (ATP-binding protein) or scaA (substrate-binding protein) genes resulted in both impaired growth of cells and >70% inhibition of 54Mn2+ uptake in media containing <0.5 μM Mn2+. In wild-type and scaC mutant cells, production of ScaA was induced at low concentrations of extracellular Mn2+ (<0.5 μM) and by the addition of ≥20 μM Zn2+. Sca permease-mediated uptake of 54Mn2+ was inhibited by Zn2+ but not by Ca2+, Mg2+, Fe2+, or Cu2+. Reduced uptake of 54Mn2+ by sca mutants and by wild-type cells in the presence of Zn2+ was abrogated by the uncoupler carbonylcyanide m-chlorophenylhydrazone, suggesting that Mn2+ uptake under these conditions was proton motive force dependent. The frequency of DNA-mediated transformation was reduced >20-fold in sca mutants. The addition of 0.1 mM Mn2+ to the transformation medium restored only partly the transformability of mutant cells, implying an alternate role for Sca proteins in the transformation process. Cells of sca mutants were unaffected in other binding properties tested and were unaffected in sensitivity to oxidants. The results show that Sca permease is a high-affinity mechanism for the acquisition of Mn2+ and is essential for growth of streptococci under Mn2+-limiting conditions.  相似文献   

2.
During anaerobic growth of Klebsiella pneumoniae on citrate, 9.4 mmol of H2/mol of citrate (4-kPa partial pressure) was formed at the end of growth besides acetate, formate, and CO2. Upon addition of NiCl2 (36 μM) to the growth medium, hydrogen formation increased about 36% to 14.8 mmol/mol of citrate (6 kPa), and the cell yield increased about 15%. Cells that had been harvested and washed under anoxic conditions exhibited an H2-dependent formation of NAD(P)H in vivo. The reduction of internal NAD(P)+ was also achieved by the addition of formate. In crude extracts, the H2:NAD+ oxidoreductase activity was 0.13 μmol min−1 mg−1, and 76% of this activity was found in the washed membrane fraction. The highest specific activities of the membrane fraction were observed in 50 mM potassium phosphate, with 1.6 μmol of NADPH formed min−1 mg−1 at pH 7.0 and 1.7 μmol of NADH formed min−1 mg−1 at pH 9.5. In the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone and the Na+/H+ antiporter monensin, the H2-dependent reduction of NAD+ by membrane vesicles decreased only slightly (about 16%). The NADP+- or NAD+-reducing hydrogenases were solubilized from the membranes with the detergent lauryldimethylamine-N-oxide or Triton X-100. NAD(P)H formation with H2 as electron donor, therefore, does not depend on an energized state of the membrane. It is proposed that hydrogen which is formed by K. pneumoniae during citrate fermentation is recaptured by a novel membrane-bound, oxygen-sensitive H2:NAD(P)+ oxidoreductase that provides reducing equivalents for the synthesis of cell material.  相似文献   

3.
A Cd2+-selective vibrating microelectrode was constructed using a neutral carrier-based Cd ionophore to investigate ion-transport processes along the roots of wheat (Triticum aestivum L.) and two species of Thlaspi, one a Zn/Cd hyperaccumulator and the other a related nonaccumulator. In simple Cd(NO3)2 solutions, the electrode exhibited a Nernstian response in solutions with Cd2+ activities as low as 50 nm. Addition of Ca2+ to the calibration solutions did not influence the slope of the calibration curve but reduced the detection limit to a solution activity of 1 μm Cd2+. Addition of high concentrations of K+ and Mg2+ to the calibration solution to mimic the ionic composition of the cytoplasm affected neither the slope nor the sensitivity of the electrode, demonstrating the pH-insensitive electrode's potential for intracellular investigations. The electrode was assayed for selectivity and was shown to be at least 1000 times more selective for Cd2+ than for any of those potentially interfering ions tested. Flux measurements along the roots of the two Thlaspi species showed no differences in the pattern or the magnitude of Cd2+ uptake within the time frame considered. The Cd2+-selective microelectrode will permit detailed investigations of heavy-metal ion transport in plant roots, especially in the area of phytoremediation.  相似文献   

4.
In Lactococcus lactis, the interactions between oxidative defense, metal metabolism, and respiratory metabolism are not fully understood. To provide an insight into these processes, we isolated and characterized mutants of L. lactis resistant to the oxidizing agent tellurite (TeO32−), which generates superoxide radicals intracellularly. A collection of tellurite-resistant mutants was obtained using random transposon mutagenesis of L. lactis. These contained insertions in genes encoding a proton-coupled Mn2+/Fe2+ transport homolog (mntH), the high-affinity phosphate transport system (pstABCDEF), a putative osmoprotectant uptake system (choQ), and a homolog of the oxidative defense regulator spx (trmA). The tellurite-resistant mutants all had better survival than the wild type following aerated growth. The mntH mutant was found to be impaired in Fe2+ uptake, suggesting that MntH is a Fe2+ transporter in L. lactis. This mutant is capable of carrying out respiration but does not generate as high a final pH and does not exhibit the long lag phase in the presence of hemin and oxygen that is characteristic of wild-type L. lactis. This study suggests that tellurite-resistant mutants also have increased resistance to oxidative stress and that intracellular Fe2+ can heighten tellurite and oxygen toxicity.  相似文献   

5.
The product of pxcA (formerly known as cotA) is involved in light-induced Na+-dependent proton extrusion. In the presence of 2,5-dimethyl-p-benzoquinone, net proton extrusion by Synechocystis sp. strain PCC6803 ceased after 1 min of illumination and a postillumination influx of protons was observed, suggesting that the PxcA-dependent, light-dependent proton extrusion equilibrates with a light-independent influx of protons. A photosystem I (PS I) deletion mutant extruded a large number of protons in the light. Thus, PS II-dependent electron transfer and proton translocation are major factors in light-driven proton extrusion, presumably mediated by ATP synthesis. Inhibition of CO2 fixation by glyceraldehyde in a cytochrome c oxidase (COX) deletion mutant strongly inhibited the proton extrusion. Leakage of PS II-generated electrons to oxygen via COX appears to be required for proton extrusion when CO2 fixation is inhibited. At pH 8.0, NO3 uptake activity was very low in the pxcA mutant at low [Na+] (~100 μM). At pH 6.5, the pxcA strain did not take up CO2 or NO3 at low [Na+] and showed very low CO2 uptake activity even at 15 mM Na+. A possible role of PxcA-dependent proton exchange in charge and pH homeostasis during uptake of CO2, HCO3, and NO3 is discussed.  相似文献   

6.
We have used the patch clamp technique to characterize whole-cell currents in spheroplasts isolated from a trk1Δ trk2Δ strain of Saccharomyces cerevisiae which lacks high- and moderate-affinity K+ uptake capacity. In solutions in which extracellular divalent cation concentrations were 0.1 mM, cells exhibited a large inward current. This current was not the result of increasing leak between the glass pipette and membrane, as there was no effect on the outward current. The inward current comprised both instantaneous and time-dependent components. The magnitude of the inward current increased with increasing extracellular K+ and negative membrane potential but was insensitive to extracellular anions. Replacing extracellular K+ with Rb+, Cs+, or Na+ only slightly modulated the magnitude of the inward current, whereas replacement with Li+ reduced the inward current by approximately 50%, and tetraethylammonium (TEA+) and choline were relatively impermeant. The inward current was blocked by extracellular Ca2+ and Mg2+ with apparent Kis (at −140 mV) of 363 ± 78 and 96 ± 14 μM, respectively. Furthermore, decreasing cytosolic K+ increased the magnitude of the inward current independently of the electrochemical driving force for K+ influx, consistent with regulation of the inward current by cytosolic K+. Uptake of 86Rb+ by intact trk1Δ trk2Δ cells was inhibited by extracellular Ca2+ with a Ki within the range observed for the inward current. Furthermore, increasing extracellular Ca2+ from 0.1 to 20 mM significantly inhibited the growth of these cells. These results are consistent with those of the patch clamp experiments in suggesting that low-affinity uptake of alkali cations in yeast is mediated by a transport system sensitive to divalent cations.  相似文献   

7.
Laccase is a copper-containing phenoloxidase, involved in lignin degradation by white rot fungi. The laccase substrate range can be extended to include nonphenolic lignin subunits in the presence of a noncatalytic cooxidant such as 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS), with ABTS being oxidized to the stable cation radical, ABTS·+, which accumulates. In this report, we demonstrate that the ABTS·+ can be efficiently reduced back to ABTS by physiologically occurring organic acids such as oxalate, glyoxylate, and malonate. The reduction of the radical by oxalate results in the formation of H2O2, indicating the formation of O2·− as an intermediate. O2·− itself was shown to act as an ABTS·+ reductant. ABTS·+ reduction and H2O2 formation are strongly stimulated by the presence of Mn2+, with accumulation of Mn3+ being observed. Additionally, 4-methyl-O-isoeugenol, an unsaturated lignin monomer model, is capable of directly reducing ABTS·+. These data suggest several mechanisms for the reduction of ABTS·+ which would permit the effective use of ABTS as a laccase cooxidant at catalytic concentrations.  相似文献   

8.
It was previously shown that a number of sulfhydryl [SH] group reagents (N-ethylmaleimide [NEM], iodoacetate, Ag+, HgCl2, etc.) can induce a marked, transitory stimulation of O2 uptake (QO2) in Egeria densa leaves, insensitive to CN and salicylhydroxamic acid and inhibited by diphenylene iodonium and quinacrine. The phytotoxin fusicoccin (FC) also induces a marked increase in O2 consumption in E. densa leaves, apparently independent of the recognized stimulating action on the H+-ATPase. In this investigation we compared the FC-induced increase in O2 consumption with those induced by NEM and Ag+, and we tested for a possible interaction between FC and the two SH blockers in the activation of QO2. The results show (a) the different nature of the FC- and NEM- or Ag+-induced increases of QO2; (b) that FC counteracts the NEM- (and Ag+)-induced respiratory burst; and (c) that FC strongly reduces the damaging effects on plasma membrane permeability observed in E. densa leaves treated with the two SH reagents. Two alternative models of interpretation of the action of FC, in activating a CN-sensitive respiratory pathway and in suppressing the SH blocker-induced respiratory burst, are proposed.  相似文献   

9.
Two membrane proteins encoded by the malonate fermentation gene cluster of Malonomonas rubra, MadL and MadM, have been synthesized in Escherichia coli. MadL and MadM were shown to function together as a malonate transport system, whereas each protein alone was unable to catalyze malonate transport. Malonate transport by MadLM is Na+ dependent, and imposition of a ΔpNa+ markedly enhanced the rate of malonate uptake. The kinetics of malonate uptake into E. coli BL21(DE3) cells synthesizing MadLM at different pH values indicated that Hmalonate is the transported malonate species. The stimulation of malonate uptake by Na+ ions showed Michaelis-Menten kinetics, and a Km for Na+ of 1.2 mM was determined. These results suggest that MadLM is an electroneutral Na+/Hmalonate symporter and that it is dependent on two separate genes.  相似文献   

10.
The sensitivity of 12 Frankia strains to heavy metals was determined by a growth inhibition assay. In general, all of the strains were sensitive to low concentrations (<0.5 mM) of Ag1+, AsO21−, Cd2+, SbO21−, and Ni2+, but most of the strains were less sensitive to Pb2+ (6 to 8 mM), CrO42− (1.0 to 1.75 mM), AsO43− (>50 mM), and SeO22− (1.5 to 3.5 mM). While most strains were sensitive to 0.1 mM Cu2+, four strains were resistant to elevated levels of Cu2+ (2 to 5 mM and concentrations as high as 20 mM). The mechanism of SeO22− resistance seems to involve reduction of the selenite oxyanion to insoluble elemental selenium, whereas Pb2+ resistance and Cu2+ resistance may involve sequestration or binding mechanisms. Indications of the resistance mechanisms for the other heavy metals were not as clear.  相似文献   

11.
Candida albicans and Candida tropicalis are polymorphic fungi that develop antimicrobial-resistant biofilm communities that are characterized by multiple cell morphotypes. This study investigated cell type interconversion and drug and metal resistance as well as community organization in biofilms of these microorganisms that were exposed to metal ions. To study this, Candida biofilms were grown either in microtiter plates containing gradient arrays of metal ions or in the Calgary Biofilm Device for high-throughput susceptibility testing. Biofilm formation and antifungal resistance were evaluated by viable cell counts, tetrazolium salt reduction, light microscopy, and confocal laser scanning microscopy in conjunction with three-dimensional visualization. We discovered that subinhibitory concentrations of certain metal ions (CrO42−, Co2+, Cu2+, Ag+, Zn2+, Cd2+, Hg2+, Pb2+, AsO2, and SeO32−) caused changes in biofilm structure by blocking or eliciting the transition between yeast and hyphal cell types. Four distinct biofilm community structure types were discerned from these data, which were designated “domed,” “layer cake,” “flat,” and “mycelial.” This study suggests that Candida biofilm populations may respond to metal ions to form cell-cell and solid-surface-attached assemblages with distinct patterns of cellular differentiation.  相似文献   

12.
Plant accumulation of Fe and other metals can be enhanced under Fe deficiency. We investigated the influence of Fe status on heavy-metal and divalent-cation uptake in roots of pea (Pisum sativum L. cv Sparkle) seedlings using Cd2+ uptake as a model system. Radiotracer techniques were used to quantify unidirectional 109Cd influx into roots of Fe-deficient and Fe-sufficient pea seedlings. The concentration-dependent kinetics for 109Cd influx were graphically complex and nonsaturating but could be resolved into a linear component and a saturable component exhibiting Michaelis-Menten kinetics. We demonstrated that the linear component was apoplastically bound Cd2+ remaining in the root cell wall after desorption, whereas the saturable component was transporter-mediated Cd2+ influx across the root-cell plasma membrane. The Cd2+ transport system in roots of both Fe-deficient and Fe-sufficient seedlings exhibited similar Michaelis constant values, 1.5 and 0.6 μm, respectively, for saturable Cd2+ influx, whereas the maximum initial velocity for Cd2+ uptake in Fe-deficient seedlings was nearly 7-fold higher than that in Fe-grown seedlings. Investigations into the mechanistic basis for this response demonstrated that Fe-deficiency-induced stimulation of the plasma membrane H+-ATPase did not play a role in the enhanced Cd2+ uptake. Expression studies with the Fe2+ transporter cloned from Arabidopsis, IRT1, indicated that Fe deficiency induced the expression of this transporter, which might facilitate the transport of heavy-metal divalent cations such as Cd2+ and Zn2+, in addition to Fe2+.  相似文献   

13.
14.
The Arabidopsis (Arabidopsis thaliana) cation calcium exchangers (CCXs) were recently identified as a subfamily of cation transporters; however, no plant CCXs have been functionally characterized. Here, we show that Arabidopsis AtCCX3 (At3g14070) and AtCCX4 (At1g54115) can suppress yeast mutants defective in Na+, K+, and Mn2+ transport. We also report high-capacity uptake of 86Rb+ in tonoplast-enriched vesicles from yeast expressing AtCCX3. Cation competition studies showed inhibition of 86Rb+ uptake in AtCCX3 cells by excess Na+, K+, and Mn2+. Functional epitope-tagged AtCCX3 fusion proteins were localized to endomembranes in plants and yeast. In Arabidopsis, AtCCX3 is primarily expressed in flowers, while AtCCX4 is expressed throughout the plant. Quantitative polymerase chain reaction showed that expression of AtCCX3 increased in plants treated with NaCl, KCl, and MnCl2. Insertional mutant lines of AtCCX3 and AtCCX4 displayed no apparent growth defects; however, overexpression of AtCCX3 caused increased Na+ accumulation and increased 86Rb+ transport. Uptake of 86Rb+ increased in tonoplast-enriched membranes isolated from Arabidopsis lines expressing CCX3 driven by the cauliflower mosaic virus 35S promoter. Overexpression of AtCCX3 in tobacco (Nicotiana tabacum) produced lesions in the leaves, stunted growth, and resulted in the accumulation of higher levels of numerous cations. In summary, these findings suggest that AtCCX3 is an endomembrane-localized H+-dependent K+ transporter with apparent Na+ and Mn2+ transport properties distinct from those of previously characterized plant transporters.  相似文献   

15.
We compared growth kinetics of Prorocentrum donghaiense cultures on different nitrogen (N) compounds including nitrate (NO3 ), ammonium (NH4 +), urea, glutamic acid (glu), dialanine (diala) and cyanate. P. donghaiense exhibited standard Monod-type growth kinetics over a range of N concentraions (0.5–500 μmol N L−1 for NO3 and NH4 +, 0.5–50 μmol N L−1 for urea, 0.5–100 μmol N L−1 for glu and cyanate, and 0.5–200 μmol N L−1 for diala) for all of the N compounds tested. Cultures grown on glu and urea had the highest maximum growth rates (μm, 1.51±0.06 d−1 and 1.50±0.05 d−1, respectively). However, cultures grown on cyanate, NO3 , and NH4 + had lower half saturation constants (Kμ, 0.28–0.51 μmol N L−1). N uptake kinetics were measured in NO3 -deplete and -replete batch cultures of P. donghaiense. In NO3 -deplete batch cultures, P. donghaiense exhibited Michaelis-Menten type uptake kinetics for NO3 , NH4 +, urea and algal amino acids; uptake was saturated at or below 50 μmol N L−1. In NO3 -replete batch cultures, NH4 +, urea, and algal amino acid uptake kinetics were similar to those measured in NO3 -deplete batch cultures. Together, our results demonstrate that P. donghaiense can grow well on a variety of N sources, and exhibits similar uptake kinetics under both nutrient replete and deplete conditions. This may be an important factor facilitating their growth during bloom initiation and development in N-enriched estuaries where many algae compete for bioavailable N and the nutrient environment changes as a result of algal growth.  相似文献   

16.
The induction of hydroxyl radical (OH) production via quinone redox cycling in white-rot fungi was investigated to improve pollutant degradation. In particular, we examined the influence of 4-methoxybenzaldehyde (anisaldehyde), Mn2+, and oxalate on Pleurotus eryngii OH generation. Our standard quinone redox cycling conditions combined mycelium from laccase-producing cultures with 2,6-dimethoxy-1,4-benzoquinone (DBQ) and Fe3+-EDTA. The main reactions involved in OH production under these conditions have been shown to be (i) DBQ reduction to hydroquinone (DBQH2) by cell-bound dehydrogenase activities; (ii) DBQH2 oxidation to semiquinone (DBQ) by laccase; (iii) DBQ autoxidation, catalyzed by Fe3+-EDTA, producing superoxide (O2) and Fe2+-EDTA; (iv) O2 dismutation, generating H2O2; and (v) the Fenton reaction. Compared to standard quinone redox cycling conditions, OH production was increased 1.2- and 3.0-fold by the presence of anisaldehyde and Mn2+, respectively, and 3.1-fold by substituting Fe3+-EDTA with Fe3+-oxalate. A 6.3-fold increase was obtained by combining Mn2+ and Fe3+-oxalate. These increases were due to enhanced production of H2O2 via anisaldehyde redox cycling and O2 reduction by Mn2+. They were also caused by the acceleration of the DBQ redox cycle as a consequence of DBQH2 oxidation by both Fe3+-oxalate and the Mn3+ generated during O2 reduction. Finally, induction of OH production through quinone redox cycling enabled P. eryngii to oxidize phenol and the dye reactive black 5, obtaining a high correlation between the rates of OH production and pollutant oxidation.The degradation of lignin and pollutants by white-rot fungi is an oxidative and rather nonspecific process based on the production of substrate free radicals (36). These radicals are produced by ligninolytic enzymes, including laccase and three kinds of peroxidases: lignin peroxidase, manganese peroxidase, and versatile peroxidase (VP) (23). The H2O2 required for peroxidase activities is provided by several oxidases, such as glyoxal oxidase and aryl-alcohol oxidase (AAO) (9, 18). This free-radical-based degradative mechanism leads to the production of a broad variety of oxidized compounds. Common lignin depolymerization products are aromatic aldehydes and acids, and quinones (34). In addition to their high extracellular oxidation potential, white-rot fungi show strong ability to reduce these lignin depolymerization products, using different intracellular and membrane-bound systems (4, 25, 39). Since reduced electron acceptors of oxidized compounds are donor substrates for the above-mentioned oxidative enzymes, the simultaneous actions of both systems lead to the establishment of redox cycles (35). Although the function of these redox cycles is not fully understood, they have been hypothesized to be related to further metabolism of lignin depolymerization products that require reduction to be converted in substrates of the ligninolytic enzymes (34). A second function attributed to these redox cycles is the production of reactive oxygen species, i.e., superoxide anion radicals (O2), H2O2, and hydroxyl radicals (OH), where lignin depolymerization products and fungal metabolites act as electron carriers between intracellular reducing equivalents and extracellular oxygen. This function has been studied in Pleurotus eryngii, whose ligninolytic system is composed of laccase (26), VP (24), and AAO (9). Incubation of this fungus with different aromatic aldehydes has been shown to provide extracellular H2O2 on a constant basis, due to the establishment of a redox cycle catalyzed by an intracellular aryl-alcohol dehydrogenase (AAD) and the extracellular AAO (7, 10). The process was termed aromatic aldehyde redox cycling, and 4-methoxybenzaldehyde (anisaldehyde) serves as the main Pleurotus metabolite acting as a cycle electron carrier (13). A second cyclic system, involving a cell-bound quinone reductase activity (QR) and laccase, was found to produce O2 and H2O2 during incubation of P. eryngii with different quinones (11). The process was described as the cell-bound divalent reduction of quinones (Q) by QR, followed by extracellular laccase oxidation of hydroquinones (QH2) into semiquinones (Q), which autoxidized to some extent, producing O2 (Q + O2 ⇆ Q + O2). H2O2 was formed by O2 dismutation (O2 + HO2 + H+ → O2 + H2O2). In an accompanying paper, we describe the extension of this O2 and H2O2 generation mechanism to OH radical production by the addition of Fe3+-EDTA to incubation mixtures of several white-rot fungi with different quinones (6). Among them, those derived from 4-hydroxyphenyl, guaiacyl, and syringyl lignin units were used: 1,4-benzoquinone (BQ), 2-methoxy-1,4-benzoquinone (MBQ), and 2,6-dimethoxy-1,4-benzoquinone (DBQ), respectively. Semiquinone autoxidation under these conditions was catalyzed by Fe3+-EDTA instead of being a direct electron transfer to O2. The intermediate Fe2+-EDTA reduced not only O2, but also H2O2, leading to OH radical production by the Fenton reaction (H2O2 + Fe2+ → OH + OH + Fe3+).Although OH radicals are the strongest oxidants produced by white-rot fungi (2, 14), studies of their involvement in pollutant degradation are quite scarce. In this context, the objectives of this study were to (i) determine possible factors enhancing the production of OH radicals by P. eryngii via quinone redox cycling and (ii) test the validity of this inducible OH production mechanism as a strategy for pollutant degradation. Our selection of possible OH production promoters was guided by two observations (6). First, the redox cycle of benzoquinones working with washed P. eryngii mycelium is rate limited by hydroquinone oxidation, since the amounts of the ligninolytic enzymes that remained bound to the fungus under these conditions were not large. Second, H2O2 is the limiting reagent for OH production by the Fenton reaction.With these considerations in mind, anisaldehyde and Mn2+ were selected to increase H2O2 production. As mentioned above, anisaldehyde induces H2O2 production in P. eryngii via aromatic aldehyde redox cycling (7). Mn2+ has been shown to enhance H2O2 production during the oxidation of QH2 by P. eryngii laccase by reducing the O2 produced in the semiquinone autoxidation reaction (Mn2+ + O2 → Mn3+ + H2O2 + 2 H+) (26). Mn2+ was also selected to increase the hydroquinone oxidation rate, since this reaction has been shown to be propagated by the Mn3+ generated in the latter reaction (QH2 + Mn3+ → Q + Mn2+ + 2 H+). The replacement of Fe3+-EDTA by Fe3+-oxalate was also planned in order to increase the QH2 oxidation rate above that resulting from the action of laccase. Oxalate is a common extracellular metabolite of wood-rotting fungi to which the function of chelating iron and manganese has been attributed (16, 45). The use of Fe3+-oxalate and nonchelated Fe3+, both QH2 oxidants, has been proven to enable quinone redox cycling in fungi that do not produce ligninolytic enzymes, such as the brown-rot fungus Gloeophyllum trabeum (17, 40, 41). Finally, phenol and the azo dye reactive black 5 (RB5) were selected as model pollutants.  相似文献   

17.
An NADPH-dependent NO2-reducing system was reconstituted in vitro using ferredoxin (Fd) NADP+ oxidoreductase (FNR), Fd, and nitrite reductase (NiR) from the green alga Chlamydomonas reinhardtii. NO2 reduction was dependent on all protein components and was operated under either aerobic or anaerobic conditions. NO2 reduction by this in vitro pathway was inhibited up to 63% by 1 mm NADP+. NADP+ did not affect either methyl viologen-NiR or Fd-NiR activity, indicating that inhibition was mediated through FNR. When NADPH was replaced with a glucose-6-phosphate dehydrogenase (G6PDH)-dependent NADPH-generating system, rates of NO2 reduction reached approximately 10 times that of the NADPH-dependent system. G6PDH could be replaced by either 6-phosphogluconate dehydrogenase or isocitrate dehydrogenase, indicating that G6PDH functioned to: (a) regenerate NADPH to support NO2 reduction and (b) consume NADP+, releasing FNR from NADP+ inhibition. These results demonstrate the ability of FNR to facilitate the transfer of reducing power from NADPH to Fd in the direction opposite to that which occurs in photosynthesis. The rate of G6PDH-dependent NO2 reduction observed in vitro is capable of accounting for the observed rates of dark NO3 assimilation by C. reinhardtii.  相似文献   

18.
Succinate-limited continuous cultures of an Azorhizobium caulinodans strain were grown on ammonia or nitrogen gas as a nitrogen source. Ammonia-grown cells became oxygen limited at 1.7 μM dissolved oxygen, whereas nitrogen-fixing cells remained succinate limited even at dissolved oxygen concentrations as low as 0.9 μM. Nitrogen-fixing cells tolerated dissolved oxygen concentrations as high as 41 μM. Succinate-dependent oxygen uptake rates of cells from the different steady states ranged from 178 to 236 nmol min−1 mg of protein−1 and were not affected by varying chemostat-dissolved oxygen concentration or nitrogen source. When equimolar concentrations of succinate and β-hydroxybutyrate were combined, oxygen uptake rates were greater than when either substrate was used alone. Azide could also used alone as a respiratory substrate regardless of nitrogen source; however, when azide was added following succinate additions, oxygen uptake was inhibited in ammonia-grown cells and stimulated in nitrogen-fixing cells. Use of 25 mM succinate in the chemostat resevoir at a dilution rate of 0.1 h−1 resulted in high levels of background respiration and nitrogenase activity, indicating that the cells were not energy limited. Lowering the reservoir succinate to 5 mM imposed energy limitation. Maximum succinate-dependent nitrogenase activity was 1,741 nmol of C2H4h−1 mg (dry weight)−1, and maximum hydrogen-dependent nitrogenase activity was 949 nmol of C2H4 h−1 mg (dry weight)−1. However, when concentration of 5% (vol/vol) hydrogen or greater were combined with succinate, nitrogenase activity decreased by 35% in comparison to when succinate was used alone. Substitution of argon for nitrogen in the chemostat inflow gas resulted in “washout,” proving that ORS571 can grow on N2 and that there was not a nitrogen source in the medium that could substitute.  相似文献   

19.
High Cd content in durum wheat (Triticum turgidum L. var durum) grain grown in the United States and Canada presents potential health and economic problems for consumers and growers. In an effort to understand the biological processes that result in excess Cd accumulation, root Cd uptake and xylem translocation to shoots in seedlings of bread wheat (Triticum aestivum L.) and durum wheat cultivars were studied. Whole-plant Cd accumulation was somewhat greater in the bread wheat cultivar, but this was probably because of increased apoplastic Cd binding. Concentration-dependent 109Cd2+-influx kinetics in both cultivars were characterized by smooth, nonsaturating curves that could be dissected into linear and saturable components. The saturable component likely represented carrier-mediated Cd influx across root-cell plasma membranes (Michaelis constant, 20–40 nm; maximum initial velocity, 26–29 nmol g−1 fresh weight h−1), whereas linear Cd uptake represented cell wall binding of 109Cd. Cd translocation to shoots was greater in the bread wheat cultivar than in the durum cultivar because a larger proportion of root-absorbed Cd moved to shoots. Our results indicate that excess Cd accumulation in durum wheat grain is not correlated with seedling-root influx rates or root-to-shoot translocation, but may be related to phloem-mediated Cd transport to the grain.  相似文献   

20.
Identification of mechanisms that decrease cadmium accumulation in plants is a prerequisite for minimizing dietary uptake of cadmium from contaminated crops. Here, we show that cadmium inhibits nitrate transporter 1.1 (NRT1.1)-mediated nitrate (NO3) uptake in Arabidopsis (Arabidopsis thaliana) and impairs NO3 homeostasis in roots. In NO3-containing medium, loss of NRT1.1 function in nrt1.1 mutants leads to decreased levels of cadmium and several other metals in both roots and shoots and results in better biomass production in the presence of cadmium, whereas in NO3-free medium, no difference is seen between nrt1.1 mutants and wild-type plants. These results suggest that inhibition of NRT1.1 activity reduces cadmium uptake, thus enhancing cadmium tolerance in an NO3 uptake-dependent manner. Furthermore, using a treatment rotation system allowing synchronous uptake of NO3 and nutrient cations and asynchronous uptake of cadmium, the nrt1.1 mutants had similar cadmium levels to wild-type plants but lower levels of nutrient metals, whereas the opposite effect was seen using treatment rotation allowing synchronous uptake of NO3 and cadmium and asynchronous uptake of nutrient cations. We conclude that, although inhibition of NRT1.1-mediated NO3 uptake by cadmium might have negative effects on nitrogen nutrition in plants, it has a positive effect on cadmium detoxification by reducing cadmium entry into roots. NRT1.1 may regulate the uptake of cadmium and other cations by a common mechanism.Cadmium is highly toxic to humans (Nicholson et al., 1983), and its primary route of entry into the body is through crops grown in cadmium-contaminated soil (Clemens et al., 2013). A recent survey indicated that vegetables and rice (Oryza sativa) account for approximately 40% and 38%, respectively, of total cadmium exposure in residents of Shanghai, China’s largest city (He et al., 2013). However, cadmium contamination of agricultural soils as a result of rapid industrial development and release of agrochemicals into the environment is an increasingly serious problem. Many strategies have been proposed for remediating cadmium-contaminated soil to prevent cadmium uptake by crops. These strategies include the dig-and-dump method or encapsulation of the contaminated soil, chemical immobilization or extraction of cadmium, and phytoremediation by cadmium-hyperaccumulating plants (Pulford and Watson, 2003). However, the dig-and-dump and chemical methods are expensive, whereas phytoremediation requires several growing seasons to be effective, making it impractical in regions where farmland is limited and food supply insufficient.The shortfalls of these strategies have prompted researchers to develop alternative techniques that are cost-effective and interfere less with crop production. Use of nitrogen fertilizers is one of the most important agronomic practices and it has been suggested that their appropriate use might provide a relatively inexpensive, time-saving, and effective strategy for reducing cadmium entry into, and accumulation in, crops because NO3 facilitates cadmium uptake in hydroponically grown plants (Sarwar et al., 2010; Luo et al., 2012). However, in a preliminary study, we found that, in plants grown in soil, the effect of the nitrogen form on cadmium accumulation was strongly associated with the pH-buffering capacity of the soil. In soil with a lower pH-buffering capacity, application of ammonium (NH4+) resulted in higher cadmium levels in plants than application of NO3, probably as a result of soil acidification by NH4+, and the opposite effect was seen when plants were grown in soil with higher pH-buffering capacity (S.K. Fan, S.T. Du, and C.W. Jin, unpublished data). This suggests that management of the use of nitrogen fertilizers to prevent cadmium entry into crops might be difficult because of the wide variation in soil pH-buffering capacity.Because NO3 facilitates cadmium uptake in hydroponically grown plants as described above, modification of NO3 uptake pathways in plants might also affect cadmium uptake, in which case modifying these pathways to reduce cadmium entry into crops could circumvent the risks and the difficulties involved in nitrogen fertilizer management. Exposure to cadmium has been shown to reduce NO3 uptake by roots (Hernández et al., 1997; Gouia et al., 2000; Rizzardo et al., 2012), but this has been assumed to be deleterious to plant growth (Finkemeier et al., 2003; Rizzardo et al., 2012). The process by which NO3 is taken up across the root plasma membrane is complex, and several nitrate transporters (NRTs) involved in NO3 uptake from the growth medium have been characterized. In Arabidopsis (Arabidopsis thaliana), NRT1.1 is a dual-affinity transporter involved in both high- and low-affinity uptake, NRT1.2 is involved only in low-affinity NO3 uptake, whereas NRT2.1, NRT2.2, and NRT2.4 are only involved in high-affinity NO3 uptake (Wang et al., 2012; Léran et al., 2014). However, the transporter responsible for the cadmium-induced decrease in NO3 uptake remains unknown. Given the presumed association between NO3 uptake and cadmium uptake, it is important to identify the molecular mechanism involved in this process, and it is particularly important to determine whether the modulation of relevant NO3 transporters affects cadmium entry into plants.In this study, we investigated the relationship between NO3 uptake and cadmium uptake in Arabidopsis roots. To our knowledge, our results reveal a new mechanism for resisting cadmium toxicity: Cadmium reduces NO3 uptake by inhibiting NRT1.1 activity, which in turn reduces cadmium entry into root cells. As a result, cadmium levels in plants are lower and plant growth is improved. Our findings may provide a strategy for minimizing cadmium accumulation in crops grown in contaminated soil using biotechnological pathways to decrease NO3 uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号