首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both Escherichia coli B and a proflavine-resistant mutant, E. coli B/Pr, took up the same amounts of proflavine when suspended in buffer containing the dye. In growth media, however, sensitive cells took up more proflavine than did resistant cells. Adding growth media or any one of several constituents of these media, including amino acids, glycerol, pyruvic acid, and metabolizable sugars, to resistant cells that had taken up proflavine in buffer caused them to lose the dye, but had less or no effect on sensitive cells. Certian salts caused an equal release of proflavine from resistant and sensitive cells. Proflavine released from resistant cells by glucose was not changed chemically. The effects of temperature and metabolic inhibitors suggest that proflavine uptake is a passive process but that its release may be an active one, dependent on metabolism. Glucose had more effect on the proflavine binding of E. coli B grown in a minimal medium than on that of cells grown in a complex medium. E. coli B was less susceptible to proflavine when growing in a minimal medium. The effects of other synthetic media on proflavine susceptibility of E. coli B were also studied. Deoxyribonucleic acid and envelopes from sensitive and resistant cells bound the same amounts of proflavine, and no difference was seen in the site of dye binding when sensitive and resistant cells that had taken up proflavine in buffer were sonically broken and fractionated. The results suggest that sensitive and resistant cells are equally permeable to proflavine but differ in the ease with which metabolites cause them to release bound proflavine. So far, however, these differences do not account completely for the ability of resistant cells to grow in high proflavine concentrations.  相似文献   

2.
Uptake and degradation of EDTA by Escherichia coli   总被引:1,自引:0,他引:1  
It was found that Escherichia coli exhibited a growth by utilization of Fe(III)EDTA as a sole nitrogen source. No significant growth was detected when Fe(III)EDTA was replaced by EDTA complexes with other metal ions such as Ca2+, Co2+, Cu2+, Mg2+, Mn2+, and Zn2+. When EDTA uptake was measured in the presence of various ions, it was remarkable only when Fe3+ was present. The cell extract of E. coli exhibited a significant degradation of EDTA only in the presence of Fe3+. It is likely that the capability of E. coli for the growth by utilization of Fe(III)EDTA results from the Fe3+-dependent uptake and degradation of EDTA.  相似文献   

3.
4.
Coggin, Joseph H. (University of Chicago, Chicago, Ill.), Muriel Loosemore, and William R. Martin. Metabolism of 6-mercaptopurine by resistant Escherichia coli cells. J. Bacteriol. 92:446-454. 1966.-6-Mercaptopurine (MP) utilization as a source of purine in MP-sensitive and -resistant cultures of Escherichia coli was investigated. The label of MP-8-C(14) appeared in adenine and guanine of ribonucleic acid and deoxyribonucleic acid in sensitive and resistant cultures. Studies using MP-S(35) further demonstrated that the MP moiety was degraded, as shown by a rapid decrease in radioactivity from cells upon exposure to MP for 20 min. Enzymatic analysis showed that MP was converted to 6-mercaptopurine ribonucleotide (MPRP) by extracts derived from both sensitive and resistant cells. Resistant cell preparations, however, degraded MPRP to inosine monophosphate (IMP) rapidly when compared with analogue degradation by sensitive cells. Inosineguanosine-5'-phosphate pyrophosphorylase from resistant cells did not catalyze the synthesis of IMP from hypoxanthine when the cells were cultured in the presence of MP, but these enzyme preparations actively converted guanine to guanosine monophosphate (GMP). Pyrophosphorylase derived from resistant cells cultured in medium without MP catalyzed the conversion of hypoxanthine to IMP and also guanine to GMP. These observations suggest that inosine-guanosine-5'-phosphate pyrophosphorylase is composed of two distinct enzymes. The mode of resistance to MP in E. coli is related to an enhancement of the enzymatic degradation of MPRP to the pivotal purine intermediate, IMP.  相似文献   

5.
L Hsu  S Jackowski    C O Rock 《Journal of bacteriology》1989,171(2):1203-1205
The efficiency of extracellular 2-acyl-lysophospholipid incorporation into Escherichia coli membranes and the acyl donor utilized to acylate the 2-acyl-lysophospholipid was determined. Exogenous 2-acyl-lysophospholipids were acylated via the acyl-acyl carrier protein synthetase/2-acylglycerophosphoethanolamine acyltransferase pathway. The maximum extent of 2-acyl-lysophospholipid incorporation into the membrane was approximately 2.5% of the normal phospholipid biosynthetic rate.  相似文献   

6.
7.
Uptake of adenosine 5'-monophosphate by Escherichia coli.   总被引:18,自引:14,他引:4       下载免费PDF全文
Adenosine 5'-monophosphate is dephosphorylated before its uptake by cells of Escherichia coli. This is demonstrated by using a radioactive double-labeled culture, and with a 5'-nucleotidase-deficient, mutant strain. The adenosine formed is further phosphorolyzed to adenine as a prerequisite for its uptake and incorporation. The cellular localization of the enzymes involved in the catabolism of adenosine 5'-monophosphate is discussed.  相似文献   

8.
Radiation Inhibition of Amino Acid Uptake by Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
The inhibition of macromolecular synthesis in Escherichia coli by ionizing radiation has been investigated. The survival of the ability to incorporate arginine, leucine, isoleucine, histidine, uracil, and glucose after various doses of gamma radiation, deuteron and alpha particle bombardment has been measured. All amino acids are incorporated by processes which show the same radiation sensitivity. The sensitivity of uracil corresponds to a volume which is roughly spherical, of radius about 160A, whereas the amino acids possess sensitive regions which are long and thin in character. The uptake of glucose is concerned with a smaller, roughly spherical unit. The possible identification of the radiation-sensitive targets with cellular constituents is discussed. The long thin character observed for amino acids suggests that the sensitive region affected by radiation is an unfolded form of a ribosome, or alternatively a long nucleic acid molecule. For uracil the sensitive region fits with a 70S ribosome, while for glucose a smaller particle would fit the data.  相似文献   

9.
1. A membrane fraction from Escherichia coli has been prepared essentially free from ribosomes by treatment of the membranes with Triton X-100 at 0 degrees C followed by differential centrifugation. 2. The ribosome-free membrane vesicles absorbed tetracycline by a reversible temperature-dependent process with an apparent K(m) of 0.029mm at pH7.5 and 37 degrees C. 3. The absorption process was negligible below 25 degrees C and had an optimum at 40 degrees C; a pH optimum at 7.5 was observed. 4. The absorption of tetracycline was strongly inhibited by EDTA and ATP; ADP inhibited less strongly and AMP had no effect. 5. There was no significant difference in the rates or extent of uptake of tetracycline by membranes prepared from tetracycline-sensitive and tetracycline-resistant, R-factor-bearing E. coli.  相似文献   

10.
Mutants of Escherichia coli Sensitive to Antibiotics   总被引:9,自引:3,他引:6       下载免费PDF全文
Mutants of Escherichia coli sensitive to the antibiotic synergistin A, an inhibitor of protein synthesis, were isolated. These mutants were pleiotropic, being also sensitive to a large number of unrelated antibiotics and to lysis by detergents. These pleiotropic responses indicated that the mutations affected cell wall or membrane synthesis. Consequently, selection for antibiotic-sensitive mutants constitutes a useful means for isolating cell wall or membrane mutants.  相似文献   

11.
The uptake of the aminoacid biosynthesis inhibitor, used as the broad-spectrum herbicide ingredient, glyphosate (N-[phosphonomethyl]-glycine) was investigated in E. coli as a model to study mechanisms of cell resistance to antimetabolites as drugs and pesticides. Unlike the glyphosate-degrading Arthrobacter sp. strain for which the first successful measurement of glyphosate uptake and its inhibition by orthophosphate was reported [15], E. coli K-12 cannot take up this inhibitor either in the presence of orthophosphate, or after a prolonged starvation for it. However, cells made competent after an overnight cold CaCl2 exposure followed by dimethyl sulfoxide (DMSO) treatment could take up this compound (K m for glyphosate uptake, 274 M). Neither amino acids, belonging to a single transport system, nor orthophosphate gave essential inhibition of glyphosate uptake by these cells.  相似文献   

12.
Mutant strains of Escherichia coli K-12 were shown to be impaired in their ability to assimilate glycolate-2-(14)C. One strain (Glc-103) has lost the ability to oxidize glycolate; another strain (Glc-102) was relatively impermeable to the compound. A third strain (Glc-104) had undergone a similar loss in permeability, and, in addition, was deranged in the synthesis of either glyoxylate reductase or malate synthase G.  相似文献   

13.
Uptake of exogenous biotin by two Escherichia coli biotin prototroph strains, K-12 and Crookes, appeared to involve incorporation at a fixed number of binding sites located at the cell membrane. Incorporation was characterized as a binding process specific for biotin, not requiring energy, and stimulated by acidic pH. Constant saturation quantities of exogenous biotin were incorporated by these cells, and the amounts, which were titrated, depended on whether the cells were resting or dividing. Resting cells incorporated exogenous biotin amounting to 2% of their total intracellular biotin content. Fifty percent of the exogenous biotin was incorporated into their free biotin fraction, and 50% was incorporated into their bound biotin fraction. On the other hand, dividing cells incorporated exogenous biotin into all of their intracellular sites, 88% going into the intracellular-bound biotin fraction, and 12% going into the free biotin fraction. Calculations suggested that each cell contained approximately 3,000 binding sites for biotin. It was postulated that biotin incorporation sites might have been components of acetyl coenzyme A carboxylase located at or near the membrane.  相似文献   

14.
When arabinose-grown Escherichia coli B/r is ultraviolet (UV) irradiated in the logarithmic phase of growth, the dose inactivation curve for both colony formation and deoxyribonucleic acid (DNA) synthesis (based on the relative rates of synthesis) is exponential in nature. When protein synthesis is inhibited before UV-irradiation, both inactivation curves have a large shoulder. Pre-irradiation inhibition of protein synthesis increases considerably the colony-forming ability of a UV-irradiated Hcr(-) and Rec(-) strain of E. coli B/r. However, with the repair-deficient strains, both the shoulder and slope of the survival curve are affected. We investigated the effect of UV irradiation on DNA synthesis in Hcr(-) bacteria and found that pre-irradiation inhibition of protein synthesis increases UV resistance of DNA replication in this strain also. The results suggest that inhibition of protein synthesis before irradiation increases UV resistance in E. coli B/r by a mechanism which is independent of both the excision and recombination repair systems.  相似文献   

15.
Attempts to limit the use of antibiotics have not, in general, resulted in the gut flora in farm animals becoming predominantly sensitive. Partial success has been demonstrated, however, by feeding chickens with antibiotic sensitive Escherichia coli known to be good colonizers of the chicken gut. Where feeding was done prior to slaughter a corresponding reduction in carcass contamination by resistant E. coli was observed.  相似文献   

16.
Mouse fibroblasts (L-cells) in suspension culture take up exogenous Escherichia coli tRNA in the presence of DEAE-Dextran. Tritium-labeled formylmethionine tRNA and valine tRNA are both taken up at very low levels. Tritium activity is associated solely with 4S material as judged by chromatography of cell extracts on Sephadex G-100. Further analysis of this material on a dihydroxyboryl-substituted cellulose indicates that a small portion of the tRNA taken up is acylated by the L-cells.  相似文献   

17.
During bacterial growth, cell wall peptides are released from the murein and reused for the synthesis of new cell wall material. Mutants defective in peptide transport were unable to reutilize cell wall peptides, demonstrating that these peptides are taken up intact into the cytoplasm prior to reincorporation into murein. Furthermore, cell wall peptide recycling was shown to play an important physiological role; peptide transport mutants which were unable to recycle these peptides showed growth defects under appropriate conditions. Using mutants specifically defective in each of the three peptide transport systems, we showed that the uptake of cell wall peptides was mediated solely by the oligopeptide permease (Opp) and that neither the dipeptide permease (Dpp) nor the tripeptide permease (Tpp) played a significant role in this process. Our data indicate that the periplasmic oligopeptide-binding protein has more than one substrate-binding site, each with different though overlapping specificities.  相似文献   

18.
19.
A majority of antibiotic-resistant bacterial infections in the United States are associated with biofilms. Nanoscale biophysical measures are increasingly revealing that adhesive and viscoelastic properties of bacteria play essential roles across multiple stages of biofilm development. Atomic Force Microscopy (AFM) applied to strains with variation in antimicrobial resistance enables new opportunities for investigating the function of adhesive forces (stickiness) in biofilm formation. AFM force spectroscopy analysis of a field strain of Listeria innocua and the strain Escherichia coli K-12 MG1655 revealed differing adhesive forces between antimicrobial resistant and nonresistant strains. Significant increases in stickiness were found at the nanonewton level for strains of Listeria innocua and Escherichia coli in association with benzalkonium chloride and silver nanoparticle resistance respectively. This advancement in the usage of AFM provides for a fast and reliable avenue for analyzing antimicrobial resistant cells and the molecular dynamics of biofilm formation as a protective mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号