首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EGF-mediated stimulation of the EGF receptor activates a plethora of signaling cascades followed by receptor down regulation. Preventing down regulation leads to increased mitogenic signaling and potentially, cancer. Cbl and Endophilin are two key proteins required for EGF receptor down regulation and both become ubiquitylated and subject to proteasome-mediated degradation following EGF activation, providing a negative feedback loop for EGF receptor down regulation. The mechanism of this pathway is unknown. Here, we demonstrate that treatment of cells with EGF leads to JNK-dependent phosphorylation of the ubiquitin ligase Itch, stimulating Itch ligase activity. EGF-stimulated JNK activation causes an increased interaction between Itch and the de-ubiquitylating enzyme FAM, limiting the influence of Itch auto-ubiquitylation on its own degradation. Finally, JNK activation stimulates the association of Itch with its substrates. These effects combine to cause increased ubiquitylation of Itch substrates including Endophilin and Cbl, resulting in the proteasome-dependent down regulation of these key trafficking proteins. Thus, Itch is a key regulatory locus for EGF receptor degradation.  相似文献   

2.
Evolutionarily conserved sequences of the E3/protein-ubiquitin ligase Cbl regulate epidermal growth factor receptor (EGF-R) signaling and degradation. These sequences encompass Cbl's tyrosine kinase-binding domain, linker region, RING finger (RF), and an uncharacterized flank C-terminal to the RF (residues 420-436). The latter domain, designated the RF tail, extends beyond Cbl's ubiquitin-conjugating enzyme (Ubc)-binding domain and has no known function. We report structure-function studies evaluating the impact of Cbl RF tail truncations on EGF-R fate in HEK 293 cells. All of the truncation mutants exhibit greatly reduced binding to activated EGF-R and lack proline-rich sequences that mediate direct Cbl association with SH3 proteins such as Grb2, yet a subset of mutants collectively enhances EGF-R ubiquitination, downregulation, and degradation. Significantly, EGF-R degradation correlates better with RF tail-dependent degradation of the Cbl substrate Sprouty2 than with EGF-R ubiquitination: expression of the RF tail truncation mutant Cbl 1-433 enhanced EGF-R ubiquitination while impeding Sprouty2 degradation, and Cbl 1-433 failed to enhance EGF-R downregulation or degradation. Our results suggest that EGF-R fate is controlled by a checkpoint downstream of receptor ubiquitination whose regulation by the Cbl RF tail may require Sprouty2 degradation.  相似文献   

3.
Receptor desensitization is accomplished by accelerated endocytosis and degradation of ligand-receptor complexes. An in vitro reconstituted system indicates that Cbl adaptor proteins directly control downregulation of the receptor for the epidermal growth factor (EGFR) by recruiting ubiquitin-activating and -conjugating enzymes. We infer a sequential process initiated by autophosphorylation of EGFR at a previously identified lysosome-targeting motif that subsequently recruits Cbl. This is followed by tyrosine phosphorylation of c-Cbl at a site flanking its RING finger, which enables receptor ubiquitination and degradation. Whereas all three members of the Cbl family can enhance ubiquitination, two oncogenic Cbl variants, whose RING fingers are defective and phosphorylation sites are missing, are unable to desensitize EGFR. Our study identifies Cbl proteins as components of the ubiquitin ligation machinery and implies that they similarly suppress many other signaling pathways.  相似文献   

4.
The proto-oncogenic protein c-Cbl was discovered as the cellular form of v-Cbl, a retroviral transforming protein. This was followed over the years by important discoveries, which identified c-Cbl and other Cbl-family proteins as key players in several signaling pathways. c-Cbl has donned the role of a multivalent adaptor protein, capable of interacting with a plethora of proteins, and has been shown to positively influence certain biological processes. The identity of c-Cbl as an E3 ubiquitin ligase unveiled the existence of an important negative regulatory pathway involved in maintaining homeostasis in protein tyrosine kinase (PTK) signaling. Recent years have also seen the emergence of novel regulators of Cbl, which have provided further insights into the complexity of Cbl-influenced pathways. This review will endeavor to provide a summary of current studies focused on the effects of Cbl proteins on various biological processes and the mechanism of these effects. The major sections of the review are as follows: Structure and genomic organization of Cbl proteins; Phosphorylation of Cbl; Interactions of Cbl; Localization of Cbl; Mechanism of effects of Cbl: (a) Ubiquitylation-dependent events: This section elucidates the mechanism of Cbl-mediated downregulation of EGFR and details the PTK and non-PTKs targeted by Cbl. In addition, it addresses the functional requirements for E3 Ubiquitin ligase activity of Cbl and negative regulation of Cbl-mediated downregulation of PTKs, (b) Adaptor functions: This section discusses the mechanisms of adaptor functions of Cbl in mitogen-activated protein kinase (MAPK) activation, insulin signaling, regulation of Ras-related protein 1 (Rap1), PI-3' kinase signaling, and regulation of Rho-family GTPases and cytoskeleton; Biological functions: This section gives an account of the diverse biological functions of Cbl and includes the role of Cbl in transformation, T-cell signaling and thymus development, B-cell signaling, mast-cell degranulation, macrophage functions, bone development, neurite growth, platelet activation, muscle degeneration, and bacterial invasion; Conclusions and perspectives.  相似文献   

5.
The regulation of NFATc1 expression is important for osteoclast differentiation and function. Herein, we demonstrate that macrophage-colony-stimulating factor induces NFATc1 degradation via Cbl proteins in a Src kinase-dependent manner. NFATc1 proteins are ubiquitinated and rapidly degraded during late stage osteoclastogenesis, and this degradation is mediated by Cbl-b and c-Cbl ubiquitin ligases in a Src-dependent manner. In addition, NFATc1 interacts endogenously with c-Src, c-Cbl, and Cbl-b in osteoclasts. Overexpression of c-Src induces down-regulation of NFATc1, and depletion of Cbl proteins blocks NFATc1 degradation during late stage osteoclastogenesis. Taken together, our data provide a negative regulatory mechanism by which macrophage-colony-stimulating factor activates Src family kinases and Cbl proteins, and subsequently, induces NFATc1 degradation during osteoclast differentiation.  相似文献   

6.
Cbl proteins have RING finger-dependent ubiquitin ligase (E3) activity that is essential for down-regulation of tyrosine kinases. Here we establish that two WW domain HECT E3s, Nedd4 and Itch, bind Cbl proteins and target them for proteasomal degradation. This is dependent on the E3 activity of the HECT E3s but not on that of Cbl. Consistent with these observations, in cells expressing the epidermal growth factor receptor, Nedd4 reverses Cbl-b effects on receptor down-regulation, ubiquitylation, and proximal events in signaling. Cbl-b also targets active Src for degradation in cells, and Nedd4 similarly reverses Cbl-mediated Src degradation. These findings establish that RING finger E3s can be substrates, not only for autoubiquitylation but also for ubiquitylation by HECT E3s and suggest an additional level of regulation for Cbl substrates including protein-tyrosine kinases.  相似文献   

7.
Cbl proteins are E3 ubiquitin ligases specialized for the regulation of tyrosine kinases by ubiquitylation. Human Cbl proteins are activated by tyrosine phosphorylation, thus setting up a feedback loop whereby the activation of tyrosine kinases triggers their own degradation. Cbl proteins are targeted to their substrates by a phosphotyrosine‐binding SH2 domain. Choanoflagellates, unicellular eukaryotes that are closely related to metazoans, also contain Cbl. The tyrosine kinase complement of choanoflagellates is distinct from that of metazoans, and it is unclear if choanoflagellate Cbl is regulated similarly to metazoan Cbl. Here, we performed structure‐function studies on Cbl from the choanoflagellate species Salpingoeca rosetta and found that it undergoes phosphorylation‐dependent activation. We show that S. rosetta Cbl can be phosphorylated by S. rosetta Src kinase, and that it can ubiquitylate S. rosetta Src. We also compared the substrate selectivity of human and S. rosetta Cbl by measuring ubiquitylation of Src constructs in which Cbl‐recruitment sites are placed in different contexts with respect to the kinase domain. Our results indicate that for both human and S. rosetta Cbl, ubiquitylation depends on proximity and accessibility, rather than being targeted toward specific lysine residues. Our results point to an ancient interplay between phosphotyrosine and ubiquitin signaling in the metazoan lineage.  相似文献   

8.
The Cbl proto-oncogene product has emerged as a novel negative regulator of receptor and non-receptor tyrosine kinases. Our previous observations that Cbl overexpression in NIH3T3 cells enhanced the ubiquitination and degradation of the platelet-derived growth factor receptor-alpha (PDGFRalpha) and that the expression of oncogenic Cbl mutants up-regulated the PDGFRalpha signaling machinery strongly suggested that Cbl negatively regulates PDGFRalpha signaling. Here, we show that, similar to PDGFRalpha, selective stimulation of PDGFRbeta induces Cbl phosphorylation, and its physical association with the receptor. Overexpression of wild type Cbl in NIH3T3 cells led to an enhancement of the ligand-dependent ubiquitination and subsequent degradation of the PDGFRbeta, as observed with PDGFRalpha. We show that Cbl-dependent negative regulation of PDGFRalpha and beta results in a reduction of PDGF-induced cell proliferation and protection against apoptosis. A point mutation (G306E) that inactivates the tyrosine kinase binding domain in the N-terminal transforming region of Cbl compromised the PDGF-inducible tyrosine phosphorylation of Cbl although this mutant could still associate with the PDGFR. More importantly, the G306E mutation abrogated the ability of Cbl to enhance the ligand-induced ubiquitination and degradation of the PDGFR and to inhibit the PDGF-dependent cell proliferation and protection from apoptosis. These results demonstrate that Cbl can negatively regulate PDGFR-dependent biological responses and that this function requires the conserved tyrosine kinase binding domain of Cbl.  相似文献   

9.
The casitas B-lineage lymphoma (Cbl) proteins play an important role in regulating signal transduction pathways by functioning as E3 ubiquitin ligases. The Cbl proteins contain a conserved tyrosine kinase binding (TKB) domain that binds more than a dozen proteins, including protein tyrosine kinases (PTKs), in a phosphorylation-dependent manner. The cell surface expression levels of the PTKs are regulated by Cbl-mediated ubiquitination, internalization, and degradation. Dysfunction in this signaling cascade has resulted in prolonged activation of the PTKs and, therefore, has been implicated in inflammatory diseases and various cancers. Due to this negative regulatory function, Cbl has been largely ignored as a therapeutic target. However, recent studies, such as the identification of (i) gain of function c-Cbl mutations in subsets of myeloid cancer and (ii) c-Cbl as a prostate basal cell marker that correlates with poor clinical outcome, suggest otherwise. Here we report the development of a competitive high-throughput fluorescence polarization assay in a 384-well format to identify inhibitors of Cbl(TKB). The high-throughput screen readiness of the assay was demonstrated by screening the Prestwick Chemical Library.  相似文献   

10.
Ubiquitin conjugation to receptor tyrosine kinases is a critical biochemical step in attenuating their signaling through lysosomal degradation. Our previous studies have established Cbl as an E3 ubiquitin ligase for ubiquitinylation and degradation of platelet-derived growth factor receptor (PDGFR) alpha and PDGFRbeta. However, the role of endogenous Cbl in PDGFR regulation and the molecular mechanisms of this regulation remain unclear. Here, we demonstrate that endogenous Cbl is essential for ligand-induced ubiquitinylation and degradation of PDGFRbeta; this involves the Cbl TKB domain binding to PDGFRbeta phosphotyrosine 1021, a known phospholipase C (PLC) gamma1 SH2 domain-binding site. Lack of Cbl or ablation of the Cbl-binding site on PDGFRbeta impedes receptor sorting to the lysosome. Cbl-deficient cells also show more PDGF-induced PLCgamma1 association with PDGFRbeta and enhanced PLC-mediated cell migration. Thus, Cbl-dependent negative regulation of PDGFRbeta involves a dual mechanism that concurrently promotes ubiquitin-dependent lysosomal sorting of the receptor and competitively reduces the recruitment of a positive mediator of receptor signaling.  相似文献   

11.
Proteins of the Cbl family are adaptor molecules and ubiquitin ligases with major functions in the regulation, intracellular transport and degradation of receptor tyrosine kinases (RTKs). Due to this central role, mutations that cause malfunctions of Cbl or their associated proteins - termed the Cbl interactome - easily lead to the transformation of affected cells and eventually the development of cancer. This review intends to give an overview on the mechanisms of Cbl-mediated cell transformation in light of the dysregulated intracellular trafficking of RTKs.  相似文献   

12.
Strict regulation of signaling by receptor tyrosine kinases (RTKs) is essential for normal biological processes, and disruption of this regulation can lead to tumor initiation and progression. Signal duration by the Met RTK is mediated in part by the E3 ligase Cbl. Cbl is recruited to Met upon kinase activation and promotes ubiquitination, trafficking, and degradation of the receptor. The Met RTK has been demonstrated to play a role in various types of cancer. Here, we show that Met-dependent loss of Cbl protein in MET-amplified gastric cancer cell lines represents another mechanism contributing to signal dysregulation. Loss of Cbl protein is dependent on Met kinase activity and is partially rescued with a proteasome inhibitor, lactacystin. Moreover, Cbl loss not only uncouples Met from Cbl-mediated negative regulation but also releases other Cbl targets, such as the EGF receptor, from Cbl-mediated signal attenuation. Thus, Met-dependent Cbl loss may also promote cross-talk through indirect enhancement of EGF receptor signaling.  相似文献   

13.
Cbl proteins are ubiquitin ligases and multifunctional adaptor proteins that are implicated in the regulation of signal transduction in various cell types and in response to different stimuli. Cbl-associated proteins can assemble together at a given time or space inside the cell, and such an interactome can form signal competent networks that control many physiological processes. Dysregulation of spatial or temporal constraints in the Cbl interactome results in the development of human pathologies such as immune diseases, diabetes and cancer.  相似文献   

14.
One of the major proteins that is rapidly tyrosine phosphorylated upon stimulation of the TCR/CD3 complex is the 120-kDa product of the c-cbl protooncogene (Cbl). Upon activation, tyrosine-phosphorylated Cbl interacts with the Src homology 2 (SH2) domains of several signaling proteins, e.g., phosphatidylinositol 3-kinase (PI3-K) and CrkL. In the present study, we report that pretreatment of Jurkat T cells with PMA reduced the anti-CD3-induced tyrosine phosphorylation of Cbl and, consequently, its activation-dependent association with PI3-K and CrkL. A specific protein kinase C (PKC) inhibitor (GF-109203X) reversed the effect of PMA on tyrosine phosphorylation of Cbl and restored the activation-dependent association of Cbl with PI3-K and CrkL. We also provide evidence that PKCalpha and PKCtheta can physically associate with Cbl and are able to phosphorylate it in vitro and in vivo. Furthermore, a serine-rich motif at the C terminus of Cbl, which is critical for PMA-induced 14-3-3 binding, is also phosphorylated by PKCalpha and PKCtheta in vitro. These results suggest that, by regulating tyrosine and serine phosphorylation of Cbl, PKC is able to control the association of Cbl with signaling intermediates, such as SH2 domain-containing proteins and 14-3-3 proteins, which may consequently result in the modulation of its function.  相似文献   

15.
The regulator of ubiquitous kinase (Ruk) protein, also known as CIN85 or SETA, is an adaptor-type protein belonging to the CD2AP/CMS family. It was found in complexes with many signaling proteins, including phosphoinositol (PtdIns) 3-kinase (EC 2.7.1.137), Cbl, GRB2, p130Cas and Crk. Functional analysis of these interactions, implicated Ruk in the regulation of apoptosis, receptor endocytosis and cytoskeletal rearrangements. We have recently demonstrated that overexpression of Ruk induces apoptotic death in neurons, which could be reversed by activated forms of PtdIns 3-kinase and PKB/Akt. Furthermore, Ruk was shown to be a negative regulator of PtdIns 3-kinase activity through binding to its P85 regulatory subunit [Gout, I., Middleton, G., Adu, J., Ninkina, N. N., Drobot, L. B., Filonenko, V., Matsuka, G., Davies, A.M., Waterfield, M. & Buchman, V. L. (2000) Embo J.19, 4015-4025]. Here, we report for the first time, that all three isoforms of Ruk (L, M and S) are ubiquitinated. Specific interaction between the E3 ubiquitin ligase Cbl and all three Ruk isoforms was demonstrated by coexpression studies in Hek293 cells. The interaction of Ruk M and S isoforms with Cbl was found to be mediated via heterodimerization with Ruk L. The use of proteosomal and lysosomal inhibitors clearly indicated that ubiquitination of Ruk L does not lead to its degradation. Based on this study, we propose a possible mechanism for the regulation of Ruk function by ubiquitination.  相似文献   

16.
The Abl-interactor (Abi) proteins are involved in the regulation of actin polymerization and have recently been shown to modulate epidermal growth factor receptor (EGFR) endocytosis. Here we describe the identification of a novel complex between Abi-1 and the Cbl ubiquitin ligase that is induced by stimulation with EGF. Notably, an Abi-1 mutant lacking the SH3 domain (DeltaSH3) fails to interact with Cbl and inhibits EGFR internalization. We show that expression of the Abi-1DeltaSH3 mutant inhibits Cbl accumulation at the plasma membrane after EGF treatment. We have previously shown that the oncogenic Abl tyrosine kinase inhibits EGFR internalization. Here we report that the oncogenic Abl kinase disrupts the EGF-inducible Abi-1/Cbl complex, highlighting the importance of Abl kinases and downstream effectors in the regulation of EGFR internalization. Thus, our work reveals a new role for oncogenic Abl tyrosine kinases in the regulation of the Abi-1/Cbl protein complex and uncovers a role for the Abi-1/Cbl complex in the regulation of EGFR endocytosis.  相似文献   

17.
The Cbl adapter proteins typically function to down-regulate activated protein tyrosine kinases and other signaling proteins by coupling them to the ubiquitination machinery for degradation by the proteasome. Cbl proteins bind to specific tyrosine-phosphorylated sequences in target proteins via the tyrosine kinase-binding (TKB) domain, which comprises a four-helix bundle, an EF-hand calcium-binding domain, and a non-conventional Src homology-2 domain. The previously derived consensus sequence for phosphotyrosine recognition by the Cbl TKB domain is NXpY(S/T)XXP (X denotes lesser residue preference), wherein specificity is conferred primarily by residues C-terminal to the phosphotyrosine. Cbl is recruited to and phosphorylated by the insulin receptor in adipose cells through the adapter protein APS. APS is phosphorylated by the insulin receptor on a C-terminal tyrosine residue, which then serves as a binding site for the Cbl TKB domain. Using x-ray crystallography, site-directed mutagenesis, and calorimetric studies, we have characterized the interaction between the Cbl TKB domain and the Cbl recruitment site in APS, which contains a sequence motif, RA(V/I)XNQpY(S/T), that is conserved in the related adapter proteins SH2-B and Lnk. These studies reveal a novel mode of phosphopeptide interaction with the Cbl TKB domain, in which N-terminal residues distal to the phosphotyrosine directly contact residues of the four-helix bundle of the TKB domain.  相似文献   

18.
The asymmetric localization of gurken mRNA and post-translational sorting mechanisms are responsible for the polar distribution of Gurken protein in Drosophila. However, endocytosis of Egfr, the receptor for Gurken in the follicle cells, also plays a role in shaping the extracellular gradient of the Gurken morphogen. Previously, we have found that mutation in the Cbl gene caused elevated Egfr signaling along the dorsoventral axis, and resulted in dorsalization phenotypes in embryos and egg shells. Here, we report that overexpression of the Cbl long isoform significantly changed Gurken distribution. Using an HRP-Gurken fusion protein, we demonstrate that internalization of the Gurken-Egfr complex depends on the activity of Cbl. Increased levels of CblL promote the internalization of this complex, leading to the reduction of free ligands. The Gurken-Egfr complex trafficks through the Rab5/Rab7 associated endocytic pathway to the lysosomal degradation compartment for signaling termination. We observe endocytic Gurken not only in the dorsal but also in the ventral follicle cells, which is, to our knowledge, the first visualization of Gurken on the ventral side of egg chambers. Our results show that Gurken travels towards the lateral/posterior of the egg chamber in the absence of Cbl, suggesting that Cbl actively regulates Gurken distribution through promoting endocytosis and subsequent degradation.  相似文献   

19.
Ligand-stimulated degradation of receptor tyrosine kinase (RTK) is an important regulatory step of signal transduction. The vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is responsible for the VEGF-stimulated nitric oxide (NO) production from endothelial cells. Cellular mechanisms mediating the negative regulation of Flk-1 signaling in endothelial cells have not been investigated. Here we show that Flk-1 is rapidly down-regulated following VEGF stimulation of bovine aortic endothelial cells (BAECs). Consequently, VEGF pretreatment of endothelial cells prevents any further stimulation of Flk-1, resulting in decreased NO production from subsequent VEGF challenges. Ubiquitination of RTKs targets them for degradation; we demonstrate that activation of Flk-1 by VEGF leads to its polyubiquitination in BAECs. Furthermore, VEGF stimulation of BAECs or COS-7 cells transiently transfected with Flk-1 results in the phosphorylation of the ubiquitin ligase Cbl, the enhanced association of Cbl with Flk-1, and the relocalization of Cbl to vesicular structures in BAECs. Overexpression of Cbl in COS-7 cells enhances VEGF-induced ubiquitination of Flk-1, whereas a Cbl mutant lacking the ubiquitin ligase RING finger domain, 70Z/3-Cbl, does not. Moreover, expression of Cbl in contrast to 70Z/3-Cbl inhibits the Flk-1-dependent activation of eNOS and, thus, NO release. In BAEC overexpressing Cbl, the degradation of Flk-1 upon VEGF stimulation is accelerated compared with cells transfected with a control vector (green fluorescent protein). Our findings demonstrate that Flk-1 is rapidly down-regulated following sustained VEGF stimulation and identify Cbl as a negative regulator of Flk-1 signaling to eNOS. Cbl thus plays a role in the regulation of VEGF signaling by mediating the stimulated ubiquitination and, consequently, degradation of Flk-1 in endothelial cells.  相似文献   

20.
Cbl promotes clustering of endocytic adaptor proteins   总被引:2,自引:0,他引:2  
The ubiquitin ligases c-Cbl and Cbl-b play a crucial role in receptor downregulation by mediating multiple monoubiquitination of receptors and promoting their sorting for lysosomal degradation. Their function is modulated through interactions with regulatory proteins including CIN85 and PIX, which recognize a proline-arginine motif in Cbl and thus promote or inhibit receptor endocytosis. We report the structures of SH3 domains of CIN85 and beta-PIX in complex with a proline-arginine peptide from Cbl-b. Both structures reveal a heterotrimeric complex containing two SH3 domains held together by a single peptide. Trimerization also occurs in solution and is facilitated by the pseudo-symmetrical peptide sequence. Moreover, ternary complexes of CIN85 and Cbl are formed in vivo and are important for the ability of Cbl to promote epidermal growth factor receptor (EGFR) downregulation. These results provide molecular explanations for a novel mechanism by which Cbl controls receptor downregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号