首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
From the four known vertebrate tropomyosin genes (designated TPM1, TPM2, TPM3, and TPM4) over 20 isoforms can be generated. The predominant TPM1 isoform, TPM1alpha, is specifically expressed in both skeletal and cardiac muscles. A newly discovered alternatively spliced isoform, TPM1kappa, containing exon 2a instead of exon 2b contained in TPM1alpha, was found to be cardiac specific and developmentally regulated. In this work, we transfected quail skeletal muscle cells with green fluorescent proteins (GFP) coupled to chicken TPM1alpha and chicken TPM1kappa and compared their localizations in premyofibrils and mature myofibrils. We used the technique of fluorescence recovery after photobleaching (FRAP) to compare the dynamics of TPM1alpha and TPM1kappa in myotubes. TPM1alpha and TPM1kappa incorporated into premyofibrils, nascent myofibrils, and mature myofibrils of quail myotubes in identical patterns. The two tropomyosin isoforms have a higher exchange rate in premyofibrils than in mature myofibrils. F-actin and muscle tropomyosin are present in the same fibers at all three stages of myofibrillogenesis (premyofibrils, nascent myofibrils, mature myofibrils). In contrast, the tropomyosin-binding molecule nebulin is not present in the initial premyofibrils. Nebulin is gradually added during myofibrillogenesis, becoming fully localized in striated patterns by the mature myofibril stage. A model of thin filament formation is proposed to explain the increased stability of tropomyosin in mature myofibrils. These experiments are supportive of a maturing thin filament and stepwise model of myofibrillogenesis (premyofibrils to nascent myofibrils to mature myofibrils), and are inconsistent with models that postulate the immediate appearance of fully formed thin filaments or myofibrils.  相似文献   

3.
4.
5.
6.
The expression of striated muscle proteins occurs early in the developing embryo in the somites and forming heart. A major component of the assembling myofibrils is the actin-binding protein tropomyosin. In vertebrates, there are four genes for tropomyosin (TM), each of which can be alternatively spliced. TPM1 can generate at least 10 different isoforms including the striated muscle-specific TPM1alpha and TPM1kappa. We have undertaken a detailed study of the expression of various TM isoforms in 2-day-old (stage HH 10-12; 33 h) heart and somites, the progenitor of future skeletal muscles. Both TPM1alpha and TPM1kappa are expressed transiently in embryonic heart while TPM1alpha is expressed in somites. Both RT-PCR and in situ hybridization data suggest that TPM1kappa is expressed in embryonic heart whereas TPM1alpha is expressed in embryonic heart, and also in the branchial arch region of somites, and in the somites. Photobleaching studies of Yellow Fluorescent Protein-TPM1alpha and -TPM1kappa expressed in cultured avian cardiomyocytes revealed that the dynamics of the two probes was the same in both premyofibrils and in mature myofibrils. This was in sharp contrast to skeletal muscle cells in which the fluorescent proteins were more dynamic in premyofibrils. We speculate that the differences in the two muscles is due to the appearance of nebulin in the skeletal myocytes premyofibrils transform into mature myofibrils.  相似文献   

7.
8.
9.
Nuclear factor kappa B (NF-kappa B) modulates the expression of numerous genes via interaction with a specific DNA sequence termed the kappa B site. Its activity is modulated by a cytosolic inhibitor protein termed I kappa B, and its activation occurs in response to a variety of agents in a variety of cell types, most notably B and T lymphocytes. Data presented here show that an activity (designated complex I) that binds specifically to the kappa B site is induced in density-arrested Balb/c-3T3 mouse fibroblasts by platelet-derived growth factor (PDGF), a potent mitogen for these cells. Increased levels of complex I, as evaluated by electrophoretic mobility shift assays of nuclear extracts, were observed in cells treated for 1-4 h (but not 15 min) with the BB isoform of PDGF. 12-O-tetradecanoylphorbol 13-acetate (TPA) and the AA isoform of PDGF also stimulated this response and both isoforms, but not TPA, were effective in cells depleted of protein kinase C. Complex I most likely is authentic NF-kappa B, a p50-p65 heterodimer, or a closely related factor because it exhibited properties characteristic of those previously described for NF-kappa B including inducibility by deoxycholate and cycloheximide and sensitivity to I kappa B. A second kappa B binding activity (complex II), which apparently contained p50 homodimers, displayed limited induction by PDGF, whereas a third complex (complex III) migrated faster than but behaved similarly to complex I. These studies suggest that NF-kappa B or an NF-kappa B-like factor may participate in the expression of PDGF-inducible genes.  相似文献   

10.
Four different isoforms of the catalytic subunit of cAMP-dependent protein kinase, termed Calpha, Cbeta, Cgamma and PrKX have been identified. Here we demonstrate that the human Cbeta gene encodes six splice variants, designated Cbeta1, Cbeta2, Cbeta3, Cbeta4, Cbeta4ab and Cbeta4abc. The Cbeta splice variants differ in their N-terminal ends due to differential splicing of four different forms of exon 1 designated exon 1-1, 1-2, 1-3, 1-4 and three exons designated a, b and c. All these exons are located upstream of exon 2 in the Cbeta gene. The previously identified human Cbeta variant has been termed Cbeta1, and is similar to the Cbeta isoform identified in the mouse, ox, pig and several other mammals. Human Cbeta2, which is the homologue of bovine Cbeta2, has no homologue in the mouse. Human Cbeta3 and Cbeta4 are homologous to the murine Cbeta3 and Cbeta2 splice variants, whereas human Cbeta4ab and Cbeta4abc represent novel isofoms previously not identified in any other species. At the mRNA level, the Cbeta splice variants reveal tissue specific expression. Cbeta1 was most abundantly expressed in the brain, with low-level expression in several other tissues. The Cbeta3 and Cbeta4 splice variants were uniquely expressed in human brain in contrast to Cbeta2, which was most abundantly expressed in tissues of the immune system, with no detectable expression in brain. We suggest that the various Cbeta splice variants when complexed with regulatory subunits may give rise to novel holoenzymes of protein kinase A that may be important for mediating specific effects of cAMP.  相似文献   

11.
Tropomyosin (TM), an integral component of the thin filament, is encoded by three striated muscle isoforms: alpha-TM, beta-TM, and TPM 3. Although the alpha-TM and beta-TM isoforms are well characterized, less is known about the function of the TPM 3 isoform, which is predominantly found in the slow-twitch musculature of mammals. To determine its functional significance, we ectopically expressed this isoform in the hearts of transgenic mice. We generated six transgenic mouse lines that produce varying levels of TPM 3 message with ectopic TPM 3 protein accounting for 40-60% of the total striated muscle tropomyosin. The transgenic mice have normal life spans and exhibit no morphological abnormalities in their sarcomeres or hearts. However, there are significant functional alterations in cardiac performance. Physiological assessment of these mice by using closed-chest analyses and a work-performing model reveals a hyperdynamic effect on systolic and diastolic function. Analysis of detergent-extracted fiber bundles demonstrates a decreased sensitivity to Ca(2+) in force generation and a decrease in length-dependent Ca(2+) activation with no detectable change in interfilament spacing as determined by using X-ray diffraction. Our data are the first to demonstrate that TM isoforms can affect sarcomeric performance by decreasing sensitivity to Ca(2+) and influencing the length-dependent Ca(2+) activation.  相似文献   

12.
Tropomyosin is an extended coiled-coil protein that influences actin function by binding longitudinally along thin filaments. The present work compares cardiac tropomyosin and the two tropomyosins from Saccharomyces cerevisiae, TPM1 and TPM2, that are much shorter than vertebrate tropomyosins. Unlike cardiac tropomyosin, the phase of the coiled-coil-forming heptad repeat of TPM2 is discontinuous; it is interrupted by a 4-residue deletion. TPM1 has two such deletions, which flank the 38-residue partial gene duplication that causes TPM1 to span five actins instead of the four of TPM2. Each of the three tropomyosin isoforms modulates actin-myosin interactions, with isoform-specific effects on cooperativity and strength of myosin binding. These different properties can be explained by a model that combines opposite effects, steric hindrance between myosin and tropomyosin when the latter is bound to a subset of its sites on actin, and also indirect, favorable interactions between tropomyosin and myosin, mediated by mutually promoted changes in actin. Both of these effects are influenced by which tropomyosin isoform is present. Finally, the tropomyosins have isoform-specific effects on in vitro sliding speed and on the myosin concentration dependence of this movement, suggesting that non-muscle tropomyosin isoforms exist, at least in part, to modulate myosin function.  相似文献   

13.
The enzyme 3β-hydroxysteroid dehydrogenase/Δ5→4-isomerase (3β-HSD) is essential for the production of all classes of steroid hormones. Multiple isozymes of this enzyme have been demonstrated in the kidney and liver of both the rat and the mouse, although the function of the enzyme in these tissues is unknown. We have characterized three isozymes of 3β-HSD expressed in various tissues of the hamster. Both western and northern blot analyses demonstrated very high levels of 3β-HSD in the adrenal, kidney and male liver. Conversely, there were extremely low levels of enzyme expression in the female liver. cDNA libraries prepared from RNA isolated from hamster adrenal, kidney and liver were screened with a full-length cDNA encoding human type 1 3β-HSD. Separate cDNAs encoding three isoforms of 3β-HSD were isolated from these libraries. To examine the properties of the isoforms, the cDNAs were ligated into expression vectors for over-expression in 293 human fetal kidney cells. The type 1 isoform, isolated from an adrenal cDNA library, was identified as a high-affinity 3β-hydroxysteroid dehydrogenase. A separate isoform, designated type 2, was isolated from the kidney, and this was also a high-affinity dehydrogenase/isomerase. Two cDNAs were isolated from the liver, one identical in sequence to type 2 of the kidney, and a distinct cDNA encoding an isoform designated type 3. The type 3 3β-HSD possessed no steroid dehydrogenase activity but was found to function as a 3-ketosteroid reductase. Thus male hamster liver expresses a high-affinity 3β-HSD (type 2) and a 3-ketosteroid reductase (type 3), whereas the kidney of both sexes express the type 2 3β-HSD isoform. These differ from the type 1 3β-HSD expressed in the adrenal cortex.  相似文献   

14.
15.
A single human myosin light chain kinase gene (MLCK; MYLK)   总被引:7,自引:0,他引:7  
Lazar V  Garcia JG 《Genomics》1999,57(2):256-267
The myosin light chain kinase (MLCK) gene, a muscle member of the immunoglobulin gene superfamily, yields both smooth muscle and nonmuscle cell isoforms. Both isoforms are known to regulate contractile activity via calcium/calmodulin-dependent myosin light chain phosphorylation. We previously cloned from a human endothelial cell (EC) cDNA library a high-molecular-weight nonmuscle MLCK isoform (EC MLCK (MLCK 1) with an open reading frame that encodes a protein of 1914 amino acids. We now describe four novel nonmuscle MLCK isoforms (MLCK 2, 3a, 3b, and 4) that are the alternatively spliced variants of an mRNA precursor that is transcribed from a single human MLCK gene. The primary structure of the cDNA encoding the nonmuscle MLCK isoform 2 is identical to the previously published human nonmuscle MLCK (MLCK 1) (J. G. N. Garcia et al., 1997, Am. J. Respir. Cell Mol. Biol. 16, 489-494) except for a deletion of nucleotides 1428-1634 (D2). The full nucleotide sequence of MLCK isoforms 3a and 3b and partial sequence for MLCK isoform 4 revealed identity to MLCK 1 except for deletions at nucleotides 5081-5233 (MLCK 3a, D3), double deletions of nucleotides 1428-1634 and 5081-5233 (MLCK 3b), and nucleotide deletions 4534-4737 (MLCK 4, D4). Northern blot analysis demonstrated the extended expression pattern of the nonmuscle MLCK isoform(s) in both human adult and human fetal tissues. RT-PCR using primer pairs that were designed to detect specifically nonmuscle MLCK isoforms 2, 3, and 4 deletions (D2, D3, and D4) confirmed expression in both human adult and human fetal tissues (lung, liver, brain, and kidney) and in human endothelial cells (umbilical vein and dermal). Furthermore, relative quantitative expression studies demonstrated that the nonmuscle MLCK isoform 2 is the dominant splice variant expressed in human tissues and cells. Further analysis of the human MLCK gene revealed that the MLCK 2 isoform represents the deletion of an independent exon flanked by 5' and 3' neighboring introns of 0.6 and 7.0 kb, respectively. Together these studies demonstrate for the first time that the human MLCK gene yields multiple nonmuscle MLCK isoforms by alternative splicing of its transcribed mRNA precursor with differential distribution of these isoforms in various human tissues and cells.  相似文献   

16.
TPM1κ is an alternatively spliced isoform of the TPM1 gene whose specific role in cardiac development and disease is yet to be elucidated. Although mRNA studies have shown TPM1κ expression in axolotl heart and skeletal muscle, it has not been quantified. Also the presence of TPM1κ protein in axolotl heart and skeletal muscle has not been demonstrated. In this study, we quantified TPM1κ mRNA expression in axolotl heart and skeletal muscle. Using a newly developed TPM1κ specific antibody, we demonstrated the expression and incorporation of TPM1κ protein in myofibrils of axolotl heart and skeletal muscle. The results support the potential role of TPM1κ in myofibrillogenesis and sarcomeric function. J. Cell. Biochem. 110: 875–881, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Kaposi’s sarcoma (KS) is characterized by highly vascularized spindle-cell tumors induced after infection of endothelial cells by Kaposi’s sarcoma-associated herpesvirus (KSHV). In KS tumors, KSHV expresses only a few latent proteins together with 12 pre-microRNAs. Previous microarray and proteomic studies predicted that multiple splice variants of the tumor suppressor protein tropomyosin 1 (TPM1) were targets of KSHV microRNAs. Here we show that at least two microRNAs of KSHV, miR-K2 and miR-K5, repress protein levels of specific isoforms of TPM1. We identified a functional miR-K5 binding site in the 3’ untranslated region (UTR) of one TPM1 isoform. Furthermore, the inhibition or loss of miR-K2 or miR-K5 restores expression of TPM1 in KSHV-infected cells. TPM1 protein levels were also repressed in KSHV-infected clinical samples compared to uninfected samples. Functionally, miR-K2 increases viability of unanchored human umbilical vein endothelial cells (HUVEC) by inhibiting anoikis (apoptosis after cell detachment), enhances tube formation of HUVECs, and enhances VEGFA expression. Taken together, KSHV miR-K2 and miR-K5 may facilitate KSHV pathogenesis.  相似文献   

18.
19.
20.
There are four isoforms of the α subunit (α1–4) and three isoforms of the β subunit (β1–3) of Na,K-ATPase, with distinct tissue-specific distribution and physiological functions. α2 is thought to play a key role in cardiac and smooth muscle contraction and be an important target of cardiac glycosides. An α2-selective cardiac glycoside could provide important insights into physiological and pharmacological properties of α2. The isoform selectivity of a large number of cardiac glycosides has been assessed utilizing α1β1, α2β1, and α3β1 isoforms of human Na,K-ATPase expressed in Pichia pastoris and the purified detergent-soluble isoform proteins. Binding affinities of the digitalis glycosides, digoxin, β-methyl digoxin, and digitoxin show moderate but highly significant selectivity (up to 4-fold) for α2/α3 over α1 (KD α1 > α2 = α3). By contrast, ouabain shows moderate selectivity (≈2.5-fold) for α1 over α2 (KD α1 ≤ α3 < α2). Binding affinities for the three isoforms of digoxigenin, digitoxigenin, and all other aglycones tested are indistinguishable (KD α1 = α3 = α2), showing that the sugar determines isoform selectivity. Selectivity patterns for inhibition of Na,K-ATPase activity of the purified isoform proteins are consistent with binding selectivities, modified somewhat by different affinities of K+ ions for antagonizing cardiac glycoside binding on the three isoforms. The mechanistic insight on the role of the sugars is strongly supported by a recent structure of Na,K-ATPase with bound ouabain, which implies that aglycones of cardiac glycosides cannot discriminate between isoforms. In conclusion, several digitalis glycosides, but not ouabain, are moderately α2-selective. This supports a major role of α2 in cardiac contraction and cardiotonic effects of digitalis glycosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号