首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoclonal antibody 9G1 (mAb 9G1) is reactive to the wound epithelium of axolotl larvae and therefore provided the opportunity to examine the interaction between the wound epithelium, nerves, and blastemal mesenchyme during axolotl limb regeneration. In unamputated limbs, mAb 9G1 is reactive to most or all cells of the dermis, skeletal elements, blood vessels, and nerves, to a few unidentified cells in muscle, and to none in epidermis. During regeneration of axolotl limbs, mAb 9G1 reacts strongly to an intracellular antigen of the blastemal mesenchyme and of the distal-most portion of the wound epithelium, the so-called apical epithelial cap (AEC). Because this thickened wound epithelium of regenerating amphibian limbs has been suggested as functioning in a manner similar to the apical ectodermal ridge (AER) of embryonic limb buds, it was of interest to further examine the reactivity of mAb 9G1 during various stages of regeneration. Whether mAb 9G1 reactivity in the AEC depended on mesenchyme and/or nerves was also tested. Monoclonal antibody 9G1 reactivity appears in the AEC of regenerating limbs prior to outgrowth of the blastema and persists throughout blastemal stages. Apical epithelial cap reactivity to mAb 9G1 is nerve dependent during early stages of blastema development and becomes nerve-independent at later stages. When epithelium-free blastemal mesenchyme is grafted onto injured flank musculature, ectopic limb regeneration occurs and the AEC derived from flank epidermis exhibits mAb 9G1 reactivity. These results show that a mAb 9G1 reactive AEC is characteristic of regenerating limbs and that expression of the 9G1 antigen by the AEC is dependent upon underlying blastemal mesenchyme and nerves.  相似文献   

2.
We have modified and optimized the technique of organotypic slice culture in order to study the mechanisms regulating growth and pattern formation in regenerating axolotl limb blastemas. Blastema cells maintain many of the behaviors that are characteristic of blastemas in vivo when cultured as slices in vitro, including rates of proliferation that are comparable to what has been reported in vivo. Because the blastema slices can be cultured in basal medium without fetal bovine serum, it was possible to test the response of blastema cells to signaling molecules present in serum, as well as those produced by nerves. We also were able to investigate the response of blastema cells to experimentally regulated changes in BMP signaling. Blastema cells responded to all of these signals by increasing the rate of proliferation and the level of expression of the blastema marker gene, Prrx-1. The organotypic slice culture model provides the opportunity to identify and characterize the spatial and temporal co-regulation of pathways in order to induce and enhance a regenerative response.  相似文献   

3.
Urodele amphibians are the only vertebrates that can regenerate their limbs throughout their life. The critical feature of limb regeneration is the formation of a blastema, a process that requires an intact nerve supply. Nerves appear to provide an unidentified factor, known as the neurotrophic factor (NTF), which stimulates cycling of blastema cells. One candidate NTF is glial growth factor (GGF), a member of the neuregulin (NRG) growth factor family. NRGs are both survival factors and mitogens to glial cells, including Schwann cells. All forms of NRGs contain an EGF-like domain that is sufficient to activate NRG receptors erbB2, erbB3, and erbB4. To investigate the involvement of neuregulin in newt limb regeneration, we cloned and characterized one neuregulin isoform, a neuregulin with a cysteine-rich domain (CRD-NRG), from newt (Notophthalmus viridescens) spinal cord. Results of in situ hybridization showed that the newt CRD-NRG is highly expressed in dorsal root ganglia and spinal cord neurons that innervate the limbs. We also demonstrated the biological activity of recombinant human GGF2 (rhGGF2) in urodele limb regeneration. When rhGGF2 was injected into denervated, nerve-dependent axolotl blastemas, the labeling index (LI) of blastema cells was maintained at a level near to that of control, innervated blastemas, whereas without rhGGF2 the LI decreased significantly. In another experiment, rhGGF2 was delivered into denervated, nerve-dependent blastemas either by direct infusion into blastemas or by injection into the intraperitoneal cavity. The denervated blastemas were rescued into a regeneration response.  相似文献   

4.
J P Brockes  C R Kintner 《Cell》1986,45(2):301-306
After amputation of a limb from Urodele amphibians, division of the blastemal cells (the progenitor cells of the regenerate) depends on one or more unidentified growth factors provided by the nerve supply. Here we show that glial growth factor (GGF), a mitogenic protein previously purified from the bovine pituitary, is present in newt nervous system extracts. It is also detectable in extracts of the forelimb regeneration blastema, and its level there decreases after denervation. We have previously shown that blastemal cells dependent on the nerve for division are marked by a monoclonal antibody called 22/18. When denervated blastemas are cultured in the presence of partially purified GGF from newt brain, or pure GGF from the bovine pituitary, the thymidine labeling index of blastemal cells that are 22/18-positive is increased as much as sevenfold. These data indicate that GGF plays a role in nerve-dependent proliferation in the blastema.  相似文献   

5.
Fibroblast growth factors (FGFs) have been previously implicated in urodele limb regeneration. Here, we examined expression of FGF-1 by blastema cells and neurons and investigated its involvement in wound epithelial formation and function and in the trophic effect of nerves. Neurons innervating the limb and blastema cells in vivo and in vitro expressed the FGF-1 gene. The peptide was present in blastemas in vivo. Wound epithelium thickened when recombinant newt FGF-1 was provided on heparin-coated beads, demonstrating that the FGF-1 was biologically active and that the wound epithelium is a possible target tissue of FGF. FGF-1 did not stimulate accessory limb formation. FGF-1 was as effective as 10% fetal bovine serum in maintaining proliferative activity of blastema cells in vitro but was unable to maintain growth of denervated, nerve-dependent stage blastemas when provided on beads or by injection. FGF-1 had a strong stimulating effect on blastema cell accumulation and proliferation of limbs inserted into the body cavity that were devoid of an apical epithelial cap (AEC). These results show that FGF-1 can signal wound epithelium cap formation and/or function and can stimulate mesenchyme accumulation/proliferation in the absence of the AEC but that FGF-1 is not directly involved in the neural effect on blastema growth.  相似文献   

6.
To better characterize the cells involved in newt limb regeneration, blastemal cells from accumulation and differentiation phase blastemas were grown in dissociated cell culture, and their morphology and antigenic phenotype determined using a variety of antibodies directed against intermediate filaments, cell adhesion molecules, and extracellular matrix molecules. In addition to previously described blastemal cell morphologies, many of the cells in these cultures had a round cell body, with an eccentrically placed nucleus and a cytoplasm filled with autofluorescent granules. The majority of accumulation phase blastemal cells labeled with antibodies against GFAP, vimentin, 22/18 as well as with antibodies against NCAM, L-1, laminin, and fibronectin. The majority of differentiation phase blastemal cells had a similar phenotype but lacked expression of vimentin and fibronectin. Comparison of the blastemal phenotype in vitro and in vivo showed similar expression characteristics. However, in differentiation phase blastemas, laminin immunoreactivity was concentrated in specific locations. In addition, the proliferation of cultured blastemal cells is stimulated by the addition of a crude brain extract, consistent with previous studies in vivo and in vitro. Taken together, these observations suggest that dissociated cultures of newt limb blastemal cells provide a suitable model for the analysis of the cell and molecular mechanisms involved in limb regeneration.  相似文献   

7.
Developmental aspects of spinal cord and limb regeneration   总被引:1,自引:1,他引:0  
The ability of birds and mammals to regenerate tissues is limited. By contrast, urodele amphibians can regenerate a variety of injured tissues such as intestine, cardiac muscle, lens and neural retina, as well as entire structures such as limbs, tail and lower jaw. This regenerative capacity is associated with the ability to form masses of mesenchyme cells (blastemas) that differentiate into the missing tissues or parts. Understanding the mechanisms that underlie blastema formation in urodeles will provide valuable tools with which to achieve the goal of stimulating regeneration in mammalian tissues that do not naturally regenerate. Here we discuss an example of tissue regeneration (spinal cord) and an example of epimorphic appendage regeneration (limb) in the axolotl Ambystoma mexicanum , emphasizing analysis of the processes that produce the regeneration blastema and of the tissue interactions and blastemal products that contribute to the regeneration-promoting environment.  相似文献   

8.
When retinoic acid (RA) is applied to the regenerating limb the positional information of blastemal cells is respecified and extra limb segments develop. We are trying to elucidate the molecular basis of the action of RA and report here experiments focused on the role that fibronectin (FN) might play in the process. The FN distribution in stump tissues, regeneration blastemas and RA-treated blastemas was investigated by immunocytochemistry. Two effects of RA were observed. Firstly, excessive dedifferentiation of the severed cartilage at the amputation plane, resulting in lumps of FN-positive matrix being released into the blastema; secondly, blastemal cells tend to aggregate together into FN-positive accumulations. Excessive dedifferentiation of the cartilage plays no role in the RA-induced respecification of pattern, because we show that extra segments are still produced in RA-treated limbs from which all the cartilage has been removed. The effect on blastemal cell FN distribution was investigated in several ways. Axolotl plasma FN and cellular FN were characterised on immunoblots, and no obvious change was observed after RA treatment; neither were there changes in amounts of FN detected by ELISA. Levels of FN synthesis were measured by [35S]-methionine labelling and again no change observed after RA treatment. We conclude that the change in FN distribution observed by immunocytochemistry after RA treatment may be due to the retention of FN on the surface of the blastemal cells rather than to any effect on the levels of synthesis of this molecule.  相似文献   

9.
Urodele amphibians are the only vertebrates that can regenerate their limbs throughout their life. The critical feature of limb regeneration is the formation of a blastema, a process that requires an intact nerve supply. Nerves appear to provide an unidentified factor, known as the neurotrophic factor (NTF), which stimulates cycling of blastema cells. One candidate NTF is glial growth factor (GGF), a member of the neuregulin (NRG) growth factor family. NRGs are both survival factors and mitogens to glial cells, including Schwann cells. All forms of NRGs contain an EGF‐like domain that is sufficient to activate NRG receptors erbB2, erbB3, and erbB4. To investigate the involvement of neuregulin in newt limb regeneration, we cloned and characterized one neuregulin isoform, a neuregulin with a cysteine‐rich domain (CRD‐NRG), from newt (Notophthalmus viridescens) spinal cord. Results of in situ hybridization showed that the newt CRD‐NRG is highly expressed in dorsal root ganglia and spinal cord neurons that innervate the limbs. We also demonstrated the biological activity of recombinant human GGF2 (rhGGF2) in urodele limb regeneration. When rhGGF2 was injected into denervated, nerve‐dependent axolotl blastemas, the labeling index (LI) of blastema cells was maintained at a level near to that of control, innervated blastemas, whereas without rhGGF2 the LI decreased significantly. In another experiment, rhGGF2 was delivered into denervated, nerve‐dependent blastemas either by direct infusion into blastemas or by injection into the intraperitoneal cavity. The denervated blastemas were rescued into a regeneration response. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 150–158, 2000  相似文献   

10.
An assay that detects position-related differences in affinity of axolotl regeneration blastema cells in vivo was used to test whether retinoic acid, which proximalizes regenerate pattern, simultaneously proximalizes blastema cell affinity. The assay involved autografting or homografting late bud forelimb blastomas derived from the wrist, elbow or midupper arm levels to the dorsal surface of the blastema-stump junction of an ipsilateral, medium-bud-stage hindlimb regenerating from the midthigh level. The grafted blastemas consistently displaced to their corresponding levels on the proximodistal axis of the host regenerate, indicating the existence of level-specific differences in blastema cell affinity. Retinoic acid proximalized the pattern of donor forelimb regenerates to the level of the girdle and abolished their displacement behaviour on untreated host hindlimbs. Conversely, untreated forelimb donor blastemas displaced distally to their corresponding levels on host ankle regenerates, that had been proximalized to the level of the girdle by retinoic acid. These results indicate that positional memory in regenerating limbs is directly related to blastema cell affinity, and that very similar or identical sets of level-specific affinity properties are shared by forelimb and hindlimb cells.  相似文献   

11.
We have previously described a monoclonal antibody (called 22/18) that reacts with the early blastemal cells of the regenerating limb of the newt (Notophthalmus viridescens). In embryos of two newt species the antibody reacts with the epidermis, glial cells in the neural tube, the lens and cells in a restricted region of the aorta. In the developing limb bud less than 1% of the mesenchymal cells were reactive with 22/18, although most cells stained brightly with an antibody to another cytoskeletal component. When limbs were amputated prior to the arrival of nerves (axons and Schwann cells) at the amputation plane there was no extra reactivity with 22/18 as compared to the contralateral unamputated control, even though the amputated buds regenerated satisfactorily. Limbs amputated after nerves are present at the plane of amputation respond by forming a 22/18-positive blastema. The appearance of the 22/18 responses is a function of the stage of limb development as shown by amputation of forelimb and hindlimb buds at a larval stage where development of the forelimb is greatly advanced relative to the hindlimb. The distribution of the 22/18-positive cells in larval blastemas showed them to be closely associated with axons as detected by double staining with an antiserum to a neurofilament subunit. The clear antigenic difference between development and regeneration may be related to the relationship between embryonic regulation and epimorphic regeneration, and also to the acquisition of nerve-dependent proliferation of blastemal cells.  相似文献   

12.
The relationship between limb development and limb regeneration is considered with regard to the mechanisms by which pattern is established during limb outgrowth. In a previous paper (Muneoka, K. and Bryant, S. V. 1982 Nature (London) 298, 369-371) the interaction between cells from the developing limb bud and the regenerating limb blastema was found to result in the production of organized supernumerary limb structures. In this paper the relative cellular contribution from developing and regenerating cells to supernumerary limbs resulting from contralateral grafts between limb buds and blastemas has been analyzed using the triploid cell marker in the axolotl. Results show that there is substantial participation from both developing and regenerating limb cells to all supernumerary limbs analyzed. These data lend further support to the hypothesis that developing and regenerating limbs utilize the same patterning mechanisms during limb outgrowth. This conclusion is discussed in terms of patterning models for developing and regenerating limbs and it is proposed that the rules of the polar coordinate model can best explain the behavior of cells during limb development as well as limb regeneration.  相似文献   

13.
Summary Xenopus laevis larvae at stage 52–53 (according to Nieuwkoop and Faber 1956) were subjected to amputation of both limbs at the thigh level as well as to repeated denervations of the right limb. Results obtained in larvae sacrificed during wound healing (1 after amputation), blastema formation (3 days) and blastema growth (5 and 7 days) showed that denervated right limbs have undergone the same histological modifications observed in innervated left limbs and have formed a regeneration blastema consisting of mesenchymal cells with a pattern of DNA synthesis and mitosis very similar to that in presence of nerves. Also, the patterns of cellular density in regenerating right and left limbs were very similar. On the whole, the data here reported show a highly remarkable degree of nerve-independence for regeneration in hindlimbs of larval Xenopus laevis at stage 52–53 and lend some substance to the hypothesis that, in early limbs, there would exist trophic factors capable of replacing those released by nerves, promoting DNA synthesis and mitosis in blastemal cells. Offprint requests to: S. Filoni  相似文献   

14.
15.
Previous experiments have demonstrated that 4S RNA, (tRNA), is transported axonally during the reconnection and maturation of regenerating optic nerves of goldfish. The present experiments were performed to determine if tRNA is transported axonally during elongation of these regenerating nerves and whether, as has been demonstrated in other systems, it participates in posttranslational protein modification (PTPM). [3H]Uridine was injected into both eyes of fish with intact optic nerves and 0, 2, 4, or 8 days after bilateral optic nerve cut. Fish were killed 2 days after injection, and [3H]RNA was isolated from retinae and nerves by phenol extraction and ethanol precipitation. [3H]RNA was fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Although the percentage of [3H]4S RNA remained constant in all retinal and control nerve samples, regenerating nerves showed a twofold increase by 6 days after injury, suggesting that [3H]4S RNA is transported axonally in regenerating nerves as early as 6 days after injury. In other experiments, the 150,000-g supernatant of optic nerves was analyzed for incorporation of 3H-amino acids into proteins. No incorporation of 3H-amino acid was found in the soluble supernatant, but when the supernatant was passed through a Sephacryl S-200 column (removing molecules less than 20,000 daltons), [3H]Arg, [3H]Lys, and [3H]Leu were incorporated into proteins. This posttranslational addition of amino acids was greater (1.4-5 times for Lys and 2-13 times for Leu) in regenerating optic nerves than nonregenerating nerves, and the growing tips of regenerating nerves incorporated 5-15 times more [3H]Lys and [3H]Leu into proteins than did the shafts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Summary 1. Undifferentiated fore limb blastemas were denuded of their epidermis and grafted to the flank musculature; each transplant consisted of four such blastemas. Outgrowth of the mesenchyme and subsequent digit formation were prevented by covering the transplants with whole flank skin with its dermis intact. 2. Notwithstanding the absence of digits, 26 out of the 36 differentiated transplants formed one or two oblong, stout cartilages resembling proximal skeletal elements of the limb. Considering that four blastemas had been grafted in random orientation, this indicates considerable intrinsic morphogenetic capacities of the blastemal mesenchyme in the absence of organizing influences of the epidermis. 3. Thus, although permanent contact with wound epidermis has previously been shown to be necessary for blastemal mesenchyme to form distal limb structures, such contact is not required for the formation of proximal skeletal elements. The implications of this finding for regional organization in the regenerating limb are discussed.On leave from Department of Zoology, Faculty of Science, Alexandria University, Alexandria. Egypt.  相似文献   

17.
Early limbs of larval Xenopus laevis can form a regeneration blastema in the absence of nerves. The nerve-independence could be due to the synthesis of neurotrophic-like factors by the limb bud cells. To test this hypothesis, two series of experiments were performed. Series A: the right hindlimbs of stage 57 larvae (acc. to Nieuwkoop and Faber. 1956. Normal table of Xenopus laevis [Daudin]. Amsterdam: North-Holland Pub. Co.), which are nerve-dependent for regeneration, were amputated through the tarsalia. The regenerating limbs were submitted to: sham denervation; denervation; denervation and implantation of a fragment of an early limb, or a late limb, or a spinal cord. Series B: froglets were subjected to amputation of both forelimbs. The cone blastemas were transplanted into denervated hindlimbs of stage 57 larvae, together with a fragment of an early or a late limb. The results in series A showed that the implantation of early limb tissue into the denervated blastema maintained cell proliferation at levels similar to those observed after the implantation of a spinal cord fragment or in sham denervated blastemas. However, the implantation of late limb tissues were ineffective. The results of series B showed that the implantation of early limb tissue, but not of late limb tissue prevented the inhibition of cell proliferation and the regression of denervated limb blastemas of juveniles. These results indicate that the nerve-independence is related to the synthesis of diffusible mitogenic neurotrophic-like factors in early limb tissues, and that nerve-dependence is established when differentiated cells of late limb tissues stop producing these factors.  相似文献   

18.
The objective of this study was to determine whether retinoic acid (RA) coordinately proximalizes positional memory and the cellular recognition system that detects pattern discontinuity in regenerating amphibian limbs. The strategy was to test the capacity of RA-treated blastemas to evoke intercalary regeneration when grafted to an amputation level proximal to their level of origin. Control wrist and ankle, or elbow and knee blastemas treated with the retinoid solvent, dimethylsulphoxide, evoked intercalary regeneration as effectively as untreated blastemas, when grafted to the midstylopodial amputation surface of host limbs. RA-treated wrist and ankle or elbow and knee blastemas were proximalized and formed complete limbs that were at an angle to, or continuous with, the midstylopodium of the host limb. No intercalary regeneration, from either graft or host, was observed in these cases. The results indicate that the cellular mechanism that recognizes disparities between non-neighbouring cells and initiates intercalary regeneration is coordinately proximalized with positional memory. Thus the recognition mechanism and positional memory are directly related. Intercalary regeneration and corrective displacement (affinophoresis), both of which restore a pattern of normal cell neighbours by different means in regenerating axolotl limbs, appear to use the same mechanism to recognize pattern discontinuity.  相似文献   

19.
R E Sicard 《Bio Systems》1983,16(1):65-73
Amphibian forelimb regeneration is under neural influence. Although the precise role of nerves is unknown, clear influence on macromolecular synthesis and on mitosis have been demonstrated. The hypothesis presented here proposes that neural input is directed primarily at influencing the decision of blastemal cells either to proliferate or to prepare to express differentiated phenotypes. This is considered to be accomplished by an interplay between the catecholamine neurotransmitters and neurotrophic peptides using cyclic nucleotides (cAMP) and Ca2+, respectively, as intracellular mediators. This coordination of proliferation-differentiation decisions in regenerating limbs is proposed to be primarily, but not exclusively, the function of nerves.  相似文献   

20.
Regenerative ability varies tremendously across species. A common feature of regeneration of appendages such as limbs, fins, antlers, and tails is the formation of a blastema—a transient structure that houses a pool of progenitor cells that can regenerate the missing tissue. We have identified the expression of von Willebrand factor D and EGF domains (vwde) as a common feature of blastemas capable of regenerating limbs and fins in a variety of highly regenerative species, including axolotl (Ambystoma mexicanum), lungfish (Lepidosiren paradoxa), and Polpyterus (Polypterus senegalus). Further, vwde expression is tightly linked to the ability to regenerate appendages in Xenopus laevis. Functional experiments demonstrate a requirement for vwde in regeneration and indicate that Vwde is a potent growth factor in the blastema. These data identify a key role for vwde in regenerating blastemas and underscore the power of an evolutionarily informed approach for identifying conserved genetic components of regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号