共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of mOAT-mediated organic anion transport by okadaic acid and protein kinase C in LLC-PK(1) cells 总被引:3,自引:0,他引:3
You G Kuze K Kohanski RA Amsler K Henderson S 《The Journal of biological chemistry》2000,275(14):10278-10284
Organic anion transporters in the kidney proximal tubule play an essential role in eliminating a wide range of organic anions including endogenous compounds, xenobiotics, and their metabolites, thereby preventing their potentially toxic effects within the body. We have previously cloned a cDNA encoding an organic anion transporter from mouse kidney (mOAT) (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J. G., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471-6478; Kuze, K., Graves, P., Leahy, A., Wilson, P., Stuhlmann, H., and You, G. (1999) J. Biol. Chem. 274, 1519-1524). In the present study, we assessed the potential for regulation of this transporter by heterologous expression of mOAT in the pig proximal tubule-like cell line, LLC-PK(1). We report here that both protein phosphatase (PP1/PP2A) inhibitor, okadaic acid, and protein kinase C (PKC) activators down-regulate mOAT-mediated transport of para-aminohippuric acid (PAH), a prototypic organic anion, in a time- and concentrationdependent manner. However their mechanisms of action for this down-regulation are distinct. Okadaic acid modulated PAH transport, at least in part, through phosphorylation/dephosphorylation of mOAT; phosphoamino acid analysis indicated this phosphorylation occurs on serine. In contrast, PKC activation induced a decrease in the maximum transport velocity (V(max)) of PAH transport without direct phosphorylation of the transporter protein. Together these results provide the first demonstration that regulation of organic anion transport by mOAT is likely to be tightly controlled directly and indirectly by phosphatase PP1/PP2A and PKC. Our results also suggest that kinases other than PKC are involved in this process. 相似文献
2.
LLC-PK1 and MDCK cells take up cationic amino acids (lysine and arginine) by a specific sodium independent transport system. Uptake is inhibited by ornithine in LLC-PK1 and MDCK cells either in the presence or absence of sodium and by glutamine or homoserine in MDCK cells in the presence of sodium. Trans-stimulation of uptake occurs in the presence of intracellular cationic amino acids. Experiments with valinomycin or with different extracellular potassium concentrations suggest that uptake is dependent on the membrane potential of these cells. These transport features are similar to those previously ascribed to a transport system denominated y+ in other cells. Further experiments suggested that this carrier system is localised to the basolateral membrane in each cell type. 相似文献
3.
To assess the role of protein kinase C and cAMP on the calcitonin-induced alteration of phosphate accumulation by renal tubular cells, the effects of phorbol esters, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), and DBcAMP on the phosphate accumulation in LLC-PK1 cells were investigated. Calcitonin stimulated phosphate accumulation with a concomitant increase in cAMP production. Phorbol esters and 1-oleoyl-2-acetyl-glycerol, activators of protein kinase C, also stimulated the phosphate accumulation. Furthermore, H-7, an inhibitor of protein kinase C, inhibited a calcitonin-induced increase in phosphate accumulation significantly. Although DBcAMP by itself did not increase the phosphate accumulation, it enhanced the stimulatory effect of 12-0-tetradecanoyl phorbol-13-acetate on the phosphate accumulation. Accordingly, protein kinase C as well as cAMP might be involved in the calcitonin-induced increase in phosphate accumulation in LLC-PK1 cells. 相似文献
4.
Protein kinase C (PKC) isoforms have been reported to be targeted to the Golgi complex via their C1 domains. We have shown recently that the regulatory domain of PKC induces apoptosis in neuroblastoma cells and that this effect is correlated to Golgi localization via the C1b domain. This study was designed to identify specific residues in the C1 domains that mediate Golgi localization. We demonstrate that the isolated C1b domains from PKCalpha, -delta, -epsilon, -eta, and - are targeted to the Golgi complex, whereas the corresponding C1a domains localize throughout the cell. Sequence alignment showed that amino acid residues corresponding to Glu-246 and Met-267 in PKC are conserved among C1b but absent from C1a domains. Mutation of Met-267, but not of Glu-246, to glycine abolished the Golgi localization of the isolated C1b domain and the regulatory domain of PKC. The mutated PKC regulatory domain constructs lacking Golgi localization were unable to induce apoptosis, suggesting a direct correlation between Golgi localization and apoptotic activity of PKC regulatory domain. Mutation of analogous residues in the C1b domain of PKCepsilon abrogated its Golgi localization, demonstrating that this effect is not restricted to one PKC isoform. The abolished Golgi localization did not affect neurite induction by PKCepsilon. However, the PKCepsilon mutant did not relocate to the Golgi network in response to ceramide and ceramide did not suppress the neurite-inducing capacity of the protein. Thus, the specific mutations in the C1b domain influence both the localization and function of full-length PKCepsilon. 相似文献
5.
Na(+)-coupled alanine transport in LLC-PK1 cells 总被引:2,自引:0,他引:2
Kimmich G. A.; Randles J.; Wilson J. 《American journal of physiology. Cell physiology》1994,267(4):C1119
6.
Blood-to-brain amino acid transport consists of at least two components: 1. a fast rate or early process, commonly measured by the intra-carotid bolus injection method and attributed to transport across the capillary endothelium and entry into the astrocytes, and, 2. a slow rate or later component measured over 2 to 15 minutes probably associated with exit from the astrocytes and entry into the neurons. Incorporation into brain protein is temporally related to the second process. In the present study the slow and fast rate transport components and the incorporation into brain protein of tyrosine (Tyr) and Valine (Val) was measured in young adult and aged male C57BL/6 mice. The results indicate that the fast rate transport component is unaffected by age while the rates of the slow process and protein turnover show an exponential decline most marked between 3 and 8 months of age. Changes in the relative incorporation of Tyr and Val suggest that brain protein metabolism is altered qualitatively as well as quantitatively in aging, in these animals. 相似文献
7.
Dizene dicarboxylic acid bis-(N,N-dimethylamide), commonly called diamide, is known to oxidize stoichiometrically intracellular pools of reduced glutathione and inhibit the accumulation of sugars and amino acids by rat kidney slices. Incubation of rat cortical slices in diamide also leads to a significant decrease in the level of endogenous protein kinase activity. The inhibition of sugar and amino acid transport and protein kinase activity by diamide is partially reversible by the addition of exogenous glutathione or other thiols. A comparison of protein kinase activity with amino acid and sugar transport at various concentrations of diamide indicates that there is a high degree of correlation between these two processes. 相似文献
8.
Dependence of urokinase-type-plasminogen-activator induction on cyclic AMP-dependent protein kinase activation in LLC-PK1 cells. 总被引:4,自引:0,他引:4 下载免费PDF全文
The activation of cyclic AMP-dependent protein kinase (cAMP-PK) in vivo was studied in LLC-PK1 pig kidney cells and the mutant cell lines M18 and FIB5, which have total levels of cAMP-PK catalytic-subunit and regulatory-subunit activities comparable with those of parental cells. The extent of cAMP-PK activation (release of active catalytic subunit from the holoenzyme) was directly correlated with the cellular cyclic AMP concentration in LLC-PK1 cells. In LLC-PK1 cells, as well as in the mutants M18 and FIB5, the extent of the induction of urokinase-type plasminogen activator (uPA) by the cyclic AMP-mediated effectors calcitonin, vasopressin and forskolin was directly correlated with the levels of activated catalytic subunit. The 'receptorless' mutant M18, which is impaired in calcitonin- and vasopressin-receptor function, did not show any activation of cAMP-PK or uPA production in response to either hormone, whereas cAMP-PK and uPA responses to forskolin were about 35% higher than in parental cells. Analysis of the FIB5-cell line revealed a lesion affecting the regulation of adenylate cyclase activity, whereby basal and stimulated (both receptor- and non-receptor-mediated) adenylate cyclase levels were less than 36% of those in parental cells. The activation of cAMP-PK in response to cyclic AMP effectors was similarly reduced, and uPA induction was concomitantly lower than that in parental cells. The results demonstrate the dependence of uPA induction by cyclic AMP effectors on dissociation of the cAMP-PK holoenzyme, implying the importance of activated free cAMP-PK catalytic subunit in this process. Thus it is concluded that the mutations in the cellular cyclic AMP-generating apparatus of the M18 and FIB5 cell lines impair uPA induction by preventing cAMP-PK activation. 相似文献
9.
Fumonisin B1 (FB1), the most potent of the fumonisin mycotoxins, is a carcinogen and causes a wide range of species-specific toxicoses. FB1 modulates the activity of protein kinase C (PKC), a family of phospholipid-dependent serine/threonine kinases that play important role in modulating a variety of biologic responses ranging from regulation of cell growth to cell death. Although it has been demonstrated that FB1 induces apoptosis in many cell lines, the precise mechanism of apoptosis is not fully understood. In this study, we investigated the membrane localization of various PKC isoforms, PKC enzyme activity, and its downstream targets, namely nuclear factor-kappa B (NF-kappaB), tumor necrosis factor alpha (TNFalpha), and caspase 3, in porcine renal epithelial (LLC-PK1) cells. FB1 repressed cytosol to membrane translocation of PKC-alpha, -delta, -epsilon, and -zeta isoforms over 24-72 h. The FB1-induced membrane PKC repression was corroborated by a concentration-dependent decrease in total PKC activity. Exposure of cells to phorbol 12-myristate 13-acetate (PMA) for this duration also resulted in repressed PKC membrane localization and activity comparable to FB1. Exposure of cells to FB1 (10 microM) was associated with inhibition of cytosol to nuclear translocation of NF-kappaB and NF-kappaB-DNA binding at 72 h. The expression of TNFalpha was significantly inhibited at 24 and 48 h in response to 1 and 10 microM FB1. Increased caspase 3 activity was observed in LLC-PK1 cells exposed to > or =1 microM FB1 at 48 h. PMA also increased the caspase 3 activity at 24 and 48 h. Results suggest that FB1-induced apoptosis involves the activation of caspase 3, which is associated with the repression of PKC and possibly its down-stream effectors, NF-kappaB and TNFalpha. 相似文献
10.
The quaternary benzo[c]phenanthridine alkaloid chelerythrine is widely used as an inhibitor of protein kinase C (PKC). However, in biological systems
chelerythrine interacts with an array of proteins. In this study, we examined the effects of chelerythrine and sanguinarine
on conventional PKCs (cPKCs) and PKC upstream kinase, phosphoinositide-dependent protein kinase 1 (PDK1), under complete inhibition
conditions of PKC-dependent oxidative burst. In neutrophil-like HL-60 cells, sanguinarine and chelerythrine inhibited N-formyl-Met-Leu-Phe, phorbol 12-myristate 13-acetate (PMA)-, and A23187-induced oxidative burst with IC50 values not exceeding 4.6 μmol/L, but the inhibition of PMA-stimulated cPKC activity in intact cells required at least fivefold
higher alkaloid concentrations. At concentrations below 10 μmol/L, sanguinarine and chelerythrine prevented phosphorylation
of ∼80 kDa protein and sequestered ∼60 kDa phosphoprotein in cytosol. Moreover, neither sanguinarine nor chelerythrine impaired
PMA-stimulated translocation of autophosphorylated PKCα/βII isoenzymes, but both alkaloids induced dephosphorylation of the
turn motif in PKCα/βII. The dephosphorylation did not occur in unstimulated cells and it was not accompanied by PKC degradation.
Furthermore, cell treatment with sanguinarine or chelerythrine resulted in phosphorylation of ∼70 kDa protein by PDK1. We
conclude that PKC-dependent cellular events are affected by chelerythrine primarily by multiple protein interactions rather
than by inhibition of PKC activity. 相似文献
11.
Modulation of cyclic AMP-dependent protein kinase by vasopressin and calcitonin in cultured porcine renal LLC-PK1 cells 总被引:3,自引:0,他引:3 下载免费PDF全文
We have previously demonstrated that a cultured porcine kidney cell, LLC-PK(1), maintains the characteristics of a polar renal epithelial cell in culture, and responds to salmon calcitonin and [arginine]vasopressin by increasing cyclic AMP content. To demonstrate the usefulness of this cell line as a model for the study of the biochemical events distal to cyclic AMP production, the activation of cyclic AMP-dependent protein kinase was examined. Intact cells in monolayer demonstrated progressive increases in cyclic AMP content and activation of protein kinase in response to [arginine]vasopressin (2-200nm) and salmon calcitonin (0.03-30nm) with both hormones fully activating the enzyme at a cell cyclic AMP content of 35pmol/mg of protein. Of the total cyclic AMP-dependent protein kinase activity, 80% was found in the 27000g supernatant fraction of sonicated cell material, and this soluble protein kinase could be fully activated by hormone. Conversely, the 27000g pellet contained a significant proportion of cyclic AMP-independent protein kinase and only 20% of total cell cyclic AMP-dependent protein kinase; the latter showed little response to hormone. On the basis of DEAE-cellulose chromatography, type II protein kinase was the predominant isoenzyme in both soluble and particulate fractions of the LLC-PK(1) cells and the soluble fractions of rat and guinea-pig renal medulla. Thus, the LLC-PK(1) cell line can serve as a model for hormonal modulation of protein kinase and as a potential source for defining the endogenous substrates for these enzymes. 相似文献
12.
Cultured pig kidney cells designated LLC-PK1, previously shown to acquire Na+-dependent concentrative transport of hexoses as the cells become growth arrested, also show Na+-dependent concentrative uptake of the amino acid analogs alpha-aminoisobutyric acid (AIB) and (methyl) meAIB. This A system-like transport is most active in sparse, growing cultures and becomes stepped down at confluence. The cell/medium equilibrium distribution ratio of the lipophilic cation tetraphenylphosphonium ion (TPP+) decreases in parallel fashion, suggesting that a decrease in membrane potential may be a major factor in the stepdown. Differentiation inducers (hexamethylene bisacetamide) and phosphodiesterase inhibitors (theophylline, methylisobutyl xanthine) accelerate the stepdown, but even in the presence of these compounds addition of the tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA) results in the maintenance of a high level of AIB and meAIB uptake. In all these respects the changes in A system-like amino acid transport are the reciprocal of those seen for concentrative hexose transport, although the driving force appears to be the same for both systems. The TPA analogs phorbol and 4-0-methyl TPA which are inactive in tumor promotion are inactive in this system as well. In confluent, already stepped-down cultures, addition of TPA leads to a rapid (2-6 hour) stimulation of AIB and meAIB uptake. The enhancement is sensitive to cycloheximide and actinomycin D. The ouabain-sensitive fraction of meAIB uptake is not markedly changed in the TPA-enhanced uptake, nor is the TPP+ distribution ratio elevated in TPA-treated cells, making it unlikely that the TPA effect is through an alteration in the membrane potential. 相似文献
13.
C Cochet C Souvignet M Keramidas E M Chambaz 《Biochemical and biophysical research communications》1986,134(3):1031-1037
Exposure of various cell types (rat-1 fibroblasts, bovine adrenocortical cells, human lymphoid cells) to nanomolar concentrations of TPA, resulted in a rapid, apparent loss of cellular protein kinase C content, when the enzyme was assayed by its phospholipid and Ca2+-dependent histone (H1)-kinase activity, following solubilization and DEAE-cellulose chromatography isolation. By contrast, no loss of protein kinase C was detected when the enzyme was probed by its high affinity PDBu binding capacity nor when the kinase activity was assayed with protein substrates other than histones, such as vinculin and a cytochrome P-450. It is concluded that, in addition to the previously reported enzyme subcellular redistribution, following TPA treatment, the phorbol ester induces striking alterations of the cellular protein kinase C catalytic activities. The molecular mechanisms of these changes and their implication in the tumor promotion process remain to be clarified. 相似文献
14.
O R Rosales C Isales M Nathanson B E Sumpio 《Biochemical and biophysical research communications》1992,189(1):40-46
Total PKC activity in BAEC incubated for 24 hrs in either 10% serum (FBS) or serum-deprived media (SDM) was similar. However, most of the activity (69%) in the FBS group was detected in the particulate fraction, while it was mainly in the cytosolic fraction (66%) in the SDM group. By confocal microscopy, there was diffuse cytoplasmic localization of the antibodies to the alpha and beta PKC isoforms. gamma PKC was not detected. Treatment of FBS or SDM cells with a phorbol ester resulted in an increase in PKC activity with translocation to the particulate fraction. PKC alpha immunofluorescence redistributed to the perinuclear region whereas PKC beta staining remained mostly cytosolic. Calphostin C, a PKC inhibitor, prevented the phorbol ester-induced increase in PKC activity and translocation. 相似文献
15.
Abstract Amino acid uptake was followed during pH-regulated dimorphism of Candida albicans . It was observed that transport activities of various amino acids differed with the morphological phenotype. The uptake rates of l-alanine , l -phenylalanine and of l -lysine were lower and those of l -methionine were higher in elongated hypha (germ tube), while the rates of glycine, l -glutamic acid and l -proline were similar in bud and hyphal phenotypes. Minimum threshold of amino acids transport activity is required at the time of phenotypic commitment in a diverging population of Candida albicans . 相似文献
16.
17.
Redistribution of protein kinase C in pancreatic acinar cells stimulated with caerulein or carbachol
T Ishizuka Y Ito K Kajita K Miura S Nagao K Nagata Y Nozawa 《Biochemical and biophysical research communications》1987,144(2):551-559
We examined phospholipid/calcium-dependent protein kinase (protein kinase C) activity and amylase secretion in isolated pancreatic acinar cells, when exposed to caerulein or carbachol. Upon stimulation with 10(-10) M caerulein or 10(-6) M carbachol cytosolic protein kinase C activity was increased in accordance with amylase secretion. Effect of carbachol on increase in membrane-associated protein kinase C activity was maximal at 10(-6) M where the rate of amylase secretion was highest. On the other hand, caerulein showed the maximal secretion of amylase at 10(-9) M, but the activity of the protein kinase C associated with membranes increased progressively with increasing concentration of caerulein. These results indicate different profiles of redistribution of protein kinase C upon stimulation of pancreatic acinar cells with carbachol or caerulein, and they were discussed in terms of amylase secretion. 相似文献
18.
Summary Experiments were performed to characterize arginine transport in vascular smooth muscle cells (SMCs) and the effect of angiotensin II (Ang II) on this process. In addition, the role of arginine transport in the cytokineinduced nitric oxide (NO) production was assessed. Arginine transport takes place through Na+-independent (60%) and Na+-dependent pathways (40%). The Na+-independent arginine uptake appears to be mediated by system y+ because of its sensitivity to cationic amino acids such as lysine, ornithine and homoarginine. The transport system was relatively insensitive to acidification of the extracellular medium. By contrast, the Na+-dependent pathway is consistent with system B0,+ since it was inhibited by both cationic and neutral amino acids (i.e., glutamine, phenylalanine, and asparagine), and did not accept Li+ as a Na+ replacement. Treatment of SMCs with 100nM Ang II significantly inhibited the Na+-dependent arginine transport without affecting systems y+, A, and L. This effect occurred in a dose-dependent manner (IC50 of 8.9 ± 0.9nM) and is mediated by the AT-1 receptor subtype because it was blocked by DUP 753, a non-peptide antagonist of this receptor. The inhibition of system B0,+ by Ang II is mediated by protein kinase C (PKC) because it was mimicked by phorbol esters (phorbol 12-myristate 13-acetate) and was inhibited by staurosporine. Ang II also inhibited the IL-1 induced nitrite accumulation by SMCs. This action was also inhibited by staurosporine and reproduced with phorbol esters, suggesting a coupling between arginine uptake and NO synthesis through a PKC-dependent mechanism. However, arginine supplementation in the medium (10mM) failed to prevent the inhibitory action of Ang II on NO synthesis. These findings suggest that although Ang II inhibits concomitantly arginine transport and NO synthesis in SMCs, the reduction of NO synthesis is not associated with alterations in the cellular transport of arginine.Abbreviations Arg
arginine
- Orn
ornithine
- HmR
homoarginine
- Lys
lysine
- Gln
glutamine
- Asn
asparagine
- His
histidine
- Phe
phenylalanine
- Leu
leucine
- Cys
Cysteine
- Ala
alanine
- Ser
serine
- Thr
threonine
- Glu
glutamate
- mAIB
-methyl-aminoisobutyric acid
- BCH
bicycloaminoheptane 相似文献
19.
M. Mason-Garcia R. E. Harlan C. Mallia J. R. Jeter Jr. H. B. Steinberg C. Fermin B. S. Beckman 《Cell proliferation》1995,28(3):145-155
Protein kinase C (PKC) has been implicated in the signal transduction pathways for the biological effect of both interleukin-3 (IL-3) and erythropoietin (EPO) in hematopoietic target cells. The goal of this study was to identify specific classical isoforms of PKC and their localization in hematopoietic cells in response to the growth factors, IL-3 or EPO. In addition to murine fetal liver cells as a source of normal erythroid progenitor cells, we have utilized the B6SUt.EP cell line, a non-transformed hematopoietic cell line that requires IL-3 for proliferation, but for which EPO can substitute as a growth factor. With polyclonal antibodies prepared against peptide sequences specific for the α, βI, βII and γ isoforms of PKC, we have identified βI and βII as the predominant nuclear isoforms in target cells that proliferate in response to IL-3 or EPO. 相似文献
20.
Summary. The present study aimed to examine the presence and define the role of 4F2hc, a glycoprotein associated with the LAT2 amino
acid transporter, in L-DOPA handling by LLC-PK1 cells. For this purpose we have measured the activity of the apical and basolateral inward and outward transport of [14C] L-DOPA in cell monolayers and examined the influence of 4F2hc antisense oligonucleotides on [14C] L-DOPA handling. The basal-to-apical transepithelial flux of [14C] L-DOPA progressively increased with incubation time and was similar to the apical-to-basal transepithelial flux. The spontaneous
and the L-DOPA-stimulated apical fractional outflow of [14C] L-DOPA were identical to that through the basal cell side. The L-DOPA-induced fractional outflow of [14C] L-DOPA through the apical or basal cell side was accompanied by marked decreases in intracellular levels of [14C] L-DOPA. In cells treated with an antisense oligonucleotide complementary to 4F2hc mRNA for 72 h, [14C] L-DOPA inward transport and 4F2hc expression were markedly reduced. Treatment with the 4F2hc antisense oligonucleotide
markedly decreased the spontaneous fractional outflow of [14C] L-DOPA through the apical or the basal cell side. It is likely that the Na+-independent and pH-sensitive uptake of L-DOPA include the hetero amino acid exchanger LAT2/4F2hc, which facilitates the trans-stimulation of L-DOPA and its outward transfer at both the apical and basal cell sides. 相似文献