首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycine betaine and its precursors choline and glycine betaine aldehyde have been found to confer a high level of osmotic tolerance when added exogenously to cultures of Escherichia coli at an inhibitory osmotic strength. In this paper, the following findings are described. Choline works as an osmoprotectant only under aerobic conditions, whereas glycine betaine aldehyde and glycine betaine function both aerobically and anaerobically. No endogenous glycine betaine accumulation was detectable in osmotically stressed cells grown in the absence of the osmoprotectant itself or the precursors. A membrane-bound, O2-dependent, and electron transfer-linked dehydrogenase was found which oxidized choline to glycine betaine aldehyde and aldehyde to glycine betaine at nearly the same rate. It displayed Michaelis-Menten kinetics; the apparent Km values for choline and glycine betaine aldehyde were 1.5 and 1.6 mM, respectively. Also, a soluble, NAD-dependent dehydrogenase oxidized glycine betaine aldehyde. It displayed Michaelis-Menten kinetics; the apparent Km values for the aldehyde, NAD, and NADP were 0.13, 0.06, and 0.5 mM, respectively. The choline-glycine betaine pathway was osmotically regulated, i.e., full enzymic activities were found only in cells grown aerobically in choline-containing medium at an elevated osmotic strength. Chloramphenicol inhibited the formation of the pathway in osmotically stressed cells.  相似文献   

2.
Natural-abundance (13)C-nuclear magnetic resonance was used to probe the intracellular organic solute content of the moderately halophilic bacterium Tetragenococcus halophila. When grown in complex growth media supplemented or not with NaCl, T. halophila accumulates glycine betaine and carnitine. Unlike other moderate halophiles, T. halophila was not able to produce potent osmoprotectants (such as ectoines and glycine betaine) through de novo synthesis when cultured in defined medium under hyperosmotic constraint. Addition of 2 mM carnitine, glycine betaine, or choline to defined medium improved growth parameters, not only at high salinity (up to 2.5 M NaCl) but also in media lacking NaCl. These compounds were taken up when available in the surrounding medium. The transport activity occurred at low and high salinities and seems to be constitutive. Glycine betaine and carnitine were accumulated by T. halophila in an unmodified form, while exogenously provided choline led to an intracellular accumulation of glycine betaine. This is the first evidence of the existence of a choline-glycine betaine pathway in a lactic acid bacterium. An assay showed that the compatible solutes strikingly repressed the accumulation of glutamate and slightly increased the intracellular potassium level only at high salinity. Interestingly, osmoprotectant-treated cells were able to maintain the intracellular sodium concentration at a relatively constant level (200 to 300 nmol/mg [dry weight]), independent of the NaCl concentration of the medium. In contrast, in the absence of osmoprotectant, the intracellular sodium content increased sharply from 200 to 2,060 nmol/mg (dry weight) when the salinity of the medium was raised from 1 to 2 M. Indeed, the imported compatible solutes play an actual role in regulating the intracellular Na(+) content and confer a much higher salt tolerance to T. halophila.  相似文献   

3.
Osmoregulation in Rhodobacter sphaeroides.   总被引:5,自引:5,他引:0       下载免费PDF全文
Betaine (N,N,N-trimethylglycine) functioned most effectively as an osmoprotectant in osmotically stressed Rhodobacter sphaeroides cells during aerobic growth in the dark and during anaerobic growth in the light. The presence of the amino acids L-glutamate, L-alanine, or L-proline in the growth medium did not result in a significant increase in the growth rate at increased osmotic strengths. The addition of choline to the medium stimulated growth at increased osmolarities but only under aerobic conditions. Under these conditions choline was converted via an oxygen-dependent pathway to betaine, which was not further metabolized. The initial rates of choline uptake by cells grown in media with low and high osmolarities were measured over a wide range of concentrations (1.9 microM to 2.0 mM). Only one kinetically distinguishable choline transport system could be detected. Kt values of 2.4 and 3.0 microM and maximal rates of choline uptake (Vmax) of 5.4 and 4.2 nmol of choline/min.mg of protein were found in cells grown in the minimal medium without or with 0.3 M NaCl, respectively. Choline transport was not inhibited by a 25-fold excess of L-proline or betaine. Only one kinetically distinguishable betaine transport system was found in cells grown in the low-osmolarity minimal medium as well as in a high-osmolarity medium containing 0.3 M NaCl. In cells grown and assayed in the absence of NaCl, betaine transport occurred with a Kt of 15.1 microM and a Vmax of 3.2 nmol/min . mg of protein, whereas in cells that were grown and assayed in the presence of 0.3 M NaCl, the corresponding values were 18.2 microM and 9.2 nmol of betaine/min . mg of protein. This system was also able to transport L-proline, but with a lower affinity than that for betaine. The addition of choline of betaine to the growth medium did not result in the induction of additional transport systems.  相似文献   

4.
Intracellular accumulation of glycine betaine has been shown to confer an enhanced level of osmotic stress tolerance in Rhizobium meliloti. In this study, we used a physiological approach to investigate the mechanism by which glycine betaine is accumulated in osmotically stressed R. meliloti. Results from growth experiments, 14C labeling of intermediates, and enzyme activity assays are presented. The results provide evidence for the pathway of biosynthesis and degradation of glycine betaine and the osmotic effects on this pathway. High osmolarity in the medium decreased the activities of the enzymes involved in the degradation of glycine betaine but not those of enzymes that lead to its biosynthesis from choline. Thus, the concentration of the osmoprotectant glycine betaine is increased in stressed cells. This report demonstrates the ability of the osmolarity of the growth medium to regulate the use of glycine betaine as a carbon and nitrogen source or as an osmoprotectant. The mechanisms of osmoregulation in R. meliloti and Escherichia coli are compared.  相似文献   

5.
Penicillium fellutanum is osmotolerant and xerotolerant when cultured in a low-phosphate medium containing 3 M NaCl. Glycerol and erythritol accumulated in cultures with NaCl concentrations up to 2 M; glycerol was the only detectable polyol in cultures containing 3 M NaCl. In cultures with 3 M NaCl, the intracellular levels of glycine betaine and choline-O-sulfate were 22- and 2.6-fold greater (70 and 46 mM), respectively, than those of cultures without added NaCl. The levels of glycine betaine and glycerol decreased in mycelia transferred from a medium containing 3 M NaCl into a fresh medium without added NaCl. NaCl at 3 M inhibited mycelial mass accumulation; this inhibition was partially corrected by supplementation of cultures with glycine betaine (2 mM) or choline-O-sulfate (10 mM). The presence of exogenous choline chloride (2 mM) in plate cultures protected the cells from stress from 3 M NaCl. The data suggest that glycine betaine and choline-O-sulfate are secondary osmoprotectants which are effective at the point that the cell is incapable of synthesizing more glycerol.  相似文献   

6.
Natural-abundance 13C-nuclear magnetic resonance was used to probe the intracellular organic solute content of the moderately halophilic bacterium Tetragenococcus halophila. When grown in complex growth media supplemented or not with NaCl, T. halophila accumulates glycine betaine and carnitine. Unlike other moderate halophiles, T. halophila was not able to produce potent osmoprotectants (such as ectoines and glycine betaine) through de novo synthesis when cultured in defined medium under hyperosmotic constraint. Addition of 2 mM carnitine, glycine betaine, or choline to defined medium improved growth parameters, not only at high salinity (up to 2.5 M NaCl) but also in media lacking NaCl. These compounds were taken up when available in the surrounding medium. The transport activity occurred at low and high salinities and seems to be constitutive. Glycine betaine and carnitine were accumulated by T. halophila in an unmodified form, while exogenously provided choline led to an intracellular accumulation of glycine betaine. This is the first evidence of the existence of a choline-glycine betaine pathway in a lactic acid bacterium. An assay showed that the compatible solutes strikingly repressed the accumulation of glutamate and slightly increased the intracellular potassium level only at high salinity. Interestingly, osmoprotectant-treated cells were able to maintain the intracellular sodium concentration at a relatively constant level (200 to 300 nmol/mg [dry weight]), independent of the NaCl concentration of the medium. In contrast, in the absence of osmoprotectant, the intracellular sodium content increased sharply from 200 to 2,060 nmol/mg (dry weight) when the salinity of the medium was raised from 1 to 2 M. Indeed, the imported compatible solutes play an actual role in regulating the intracellular Na+ content and confer a much higher salt tolerance to T. halophila.  相似文献   

7.
Among the Rhizobiaceae, Bradyrhizobium japonicum strain USDA110 appears to be extremely salt sensitive, and the presence of glycine betaine cannot restore its growth in medium with an increased osmolarity (E. Boncompagni, M. Osteras, M. C. Poggi, and D. Le Rudulier, Appl. Environ. Microbiol. 65:2072-2077, 1999). In order to improve the salt tolerance of B. japonicum, cells were transformed with the betS gene of Sinorhizobium meliloti. This gene encodes a major glycine betaine/proline betaine transporter from the betaine choline carnitine transporter family and is required for early osmotic adjustment. Whereas betaine transport was absent in the USDA110 strain, such transformation induced glycine betaine and proline betaine uptake in an osmotically dependent manner. Salt-treated transformed cells accumulated large amounts of glycine betaine, which was not catabolized. However, the accumulation was reversed through rapid efflux during osmotic downshock. An increased tolerance of transformant cells to a moderate NaCl concentration (80 mM) was also observed in the presence of glycine betaine or proline betaine, whereas the growth of the wild-type strain was totally abolished at 80 mM NaCl. Surprisingly, the deleterious effect due to a higher salt concentration (100 mM) could not be overcome by glycine betaine, despite a significant accumulation of this compound. Cell viability was not significantly affected in the presence of 100 mM NaCl, whereas 75% cell death occurred at 150 mM NaCl. The absence of a potential gene encoding Na(+)/H(+) antiporters in B. japonicum could explain its very high Na(+) sensitivity.  相似文献   

8.
A search was undertaken for osmoprotective compounds for mouse hybridoma cell line 6H11 grown in culture. When the osmolality of the growth medium was increased above the normal osmolality of 330 mOsmol/kg, growth rates were decreased in a dose-dependent fashion, reaching zero when the osmolality of the medium reached approx. 435 mOsmol/kg through the addition of KCl (60 mM), or 510 mOsmol/kg through the addition of NaCl (100 mM), or sucrose (175 mM). For NaCl or sucrose-stressed cultures, the inclusion of glycine betaine, sarcosine, proline, glycine, or asparagine in the growth medium gave a moderate to strong osmoprotective effect, measured as the ability of these compounds to enhance cell growth rates under hyperosmotic conditions. Inclusion of dimethylglycine may also give a strong osmoprotective effect under these stress conditions.In KCl-stressed cell cultures, addition of glycine betaine, sarcosine, or dimethylglycine gave strong osmoprotective effects. Of 38 compounds tested during NaCl stress, 7 gave weak osmoprotective effects and 25 gave no osmoprotective effect. The osmoprotective compounds accumulated inside the stressed cells. Accumulation was completed after 4 to 8 h, reaching intracellular concentrations of approx. 0.27 pmol/cell, or 0.15 M, in NaCl stressed cells (100 mM NaCl added).Glycine betaine, dimethylglycine, and sarcosine accumulation was observed only when these protectants were included in the medium. For all osmoprotectants, a growth medium concentration between 5 and 30 mM gave the maximal protective effect, with the exception of dimethylglycine, for which the optimum concentration was approx. 65 mM. Osmoprotective effects obtained with glycine, sarcosine, dimethylglycine, and glycine betaine, indicate that the more methylated compounds are the most effective protectants.The cellular content of glycine betaine and the glycine betaine uptake rate increased with medium osmolality in a linear fashion. Glycine betaine uptake was described by a model comprising a saturable component obeying Michaelis-Menten kinetics and a nonsaturable component. K(m) and V(max) for glycine betaine uptake were determined at 420 mOsmol/kg (50 mM NaCl added) and 510 mOsmol/kg (100 mM NaCl added). A K(m) value of approx. 2.5 mM was obtained at both medium osmolalities, while V(max) increased from 0.010 pmol/cell . h to 0.018 pmol/cell . h as the osmolality of the growth medium was increased, indicating an effect of medium osmolality on the maximal rate of transport rather than on the affinity of the transporters for glycine betaine. Hybridoma cells were not able to utilize the glycine betaine precursors choline or glycine betaine aldehyde for osmoprotection, suggesting that the cells lack part, or all, of the choline-glycine betaine pathway or the appropriate uptake mechanism.The uptake rate for glycine in NaCl-stressed hybridoma cells was approx. four times higher than the uptake rate for glycine betaine. Furthermore, if equimolar amounts of glycine betaine, glycine, sarcosine, and proline were simultaneously added to NaCl-stressed cell cultures, the intracellular concentrations of glycine, proline, and sarcosine were significantly higher than the concentration of glycine betaine.A 40% increase in hybridoma cell volume was observed when the growth medium osmolality was increased from 300 to 520 mOsmol/kg. (c) 1994 John Wiley & Sons, Inc.  相似文献   

9.
In the coryneform Brevibacterium linens, ectoine constitutes the major intracellular solute accumulated under elevated medium osmolarity. Here we report that exogenously supplied proline, choline, glycine betaine, and even ectoine, protected bacterial cells against deleterious effects of a hyperosmotic constraint (i.e. 1.5 M NaCl). In all cases, a significant improvement of growth was observed; in parallel, intracellular osmolyte pools composed mainly of glutamate and ectoine substantially increased, either with added glycine betaine (under limiting supply) or with proline. However, these two osmoprotectants behaved differently: glycine betaine acted as a genuine osmoprotectant, whereas proline was accumulated only transiently and participated actively in the biosynthesis of glutamate, ectoine, and trehalose. The strategy developed by B. linens cells allows the proposal of a novel role for proline in the osmoprotection process through its conversion to the apparently preferred endogenous osmolyte ectoine.  相似文献   

10.
The concentrations of intracellular solutes in Listeria monocytogenes were examined in cells grown at various concentrations of NaCl. At 5% NaCl, cells contained elevated concentrations of potassium and glycine betaine compared with concentrations in cells grown without NaCl. At 7.5% NaCl, cells contained increased concentrations of K+, glycine betaine, glycine, alanine, and proline. Only glycine betaine, choline, or glycine promoted growth on a solidified defined medium containing 4% NaCl; there was no growth at higher concentrations of NaCl in the defined medium.  相似文献   

11.
The concentrations of intracellular solutes in Listeria monocytogenes were examined in cells grown at various concentrations of NaCl. At 5% NaCl, cells contained elevated concentrations of potassium and glycine betaine compared with concentrations in cells grown without NaCl. At 7.5% NaCl, cells contained increased concentrations of K+, glycine betaine, glycine, alanine, and proline. Only glycine betaine, choline, or glycine promoted growth on a solidified defined medium containing 4% NaCl; there was no growth at higher concentrations of NaCl in the defined medium.  相似文献   

12.
J Boch  B Kempf    E Bremer 《Journal of bacteriology》1994,176(17):5364-5371
Exogenously provided glycine betaine functions as an efficient osmoprotectant for Bacillus subtilis in high-osmolarity environments. This gram-positive soil organism is not able to increase the intracellular level of glycine betaine through de novo synthesis in defined medium (A. M. Whatmore, J. A. Chudek, and R. H. Reed, J. Gen. Microbiol. 136:2527-2535, 1990). We found, however, that B. subtilis can synthesize glycine betaine when its biosynthetic precursor, choline, is present in the growth medium. Uptake studies with radiolabelled [methyl-14C]choline demonstrated that choline transport is osmotically controlled and is mediated by a high-affinity uptake system. Choline transport of cells grown in low- and high-osmolarity media showed Michaelis-Menten kinetics with Km values of 3 and 5 microM and maximum rates of transport (Vmax) of 10 and 36 nmol min-1 mg of protein-1, respectively. The choline transporter exhibited considerable substrate specificity, and the results of competition experiments suggest that the fully methylated quaternary ammonium group is a key feature for substrate recognition. Thin-layer chromatography revealed that the radioactivity from exogenously provided [methyl-14C]choline accumulated intracellularly as [methyl-14C]glycine betaine, demonstrating that B. subtilis possesses enzymes for the oxidative conversion of choline into glycine betaine. Exogenously provided choline significantly increased the growth rate of B. subtilis in high-osmolarity media and permitted its proliferation under conditions that are otherwise strongly inhibitory for its growth. Choline and glycine betaine were not used as sole sources of carbon or nitrogen, consistent with their functional role in the process of adaptation of B. subtilis to high-osmolarity stress.  相似文献   

13.
Two strains of Rhizobia isolated from nodules of Vicia faba var. major and one strain isolated from nodules of Cicer arietinum L. were characterized for salt resistance. The presence of 1 mM glycine betaine or choline in a minimal medium with added NaCl had a beneficial role on the growth of the three strains. Both molecules were found to be taken up by cells obtained at low osmolarity, and whereas glycine betaine uptake activity was stimulated significantly in cells grown in the presence of 0.15 M NaCl, choline uptake activity was strongly inhibited by salt in all tested strains. However, in cells grown with exogenous choline, the uptake inhibition exerted by salt was relieved, mainly in the strain isolated from nodules of C. arietinum L. On the basis of kinetics determinations, in control cells as well as in salt-stressed cells, only high-affinity activities were observed for glycine betaine and choline (apparent K m s between 3 and 18 μM). Periplasmic proteins that bound glycine betaine or choline were identified. In nondenaturing conditions, these proteins extracted from the various strains showed different electrophoretic mobility with always a less negative entire charge than the analogous proteins from Rhizobium meliloti. Received: 29 July 1996 / Accepted: 10 September 1996  相似文献   

14.
Among the Rhizobiaceae, Bradyrhizobium japonicum strain USDA110 appears to be extremely salt sensitive, and the presence of glycine betaine cannot restore its growth in medium with an increased osmolarity (E. Boncompagni, M. Østerås, M. C. Poggi, and D. Le Rudulier, Appl. Environ. Microbiol. 65:2072-2077, 1999). In order to improve the salt tolerance of B. japonicum, cells were transformed with the betS gene of Sinorhizobium meliloti. This gene encodes a major glycine betaine/proline betaine transporter from the betaine choline carnitine transporter family and is required for early osmotic adjustment. Whereas betaine transport was absent in the USDA110 strain, such transformation induced glycine betaine and proline betaine uptake in an osmotically dependent manner. Salt-treated transformed cells accumulated large amounts of glycine betaine, which was not catabolized. However, the accumulation was reversed through rapid efflux during osmotic downshock. An increased tolerance of transformant cells to a moderate NaCl concentration (80 mM) was also observed in the presence of glycine betaine or proline betaine, whereas the growth of the wild-type strain was totally abolished at 80 mM NaCl. Surprisingly, the deleterious effect due to a higher salt concentration (100 mM) could not be overcome by glycine betaine, despite a significant accumulation of this compound. Cell viability was not significantly affected in the presence of 100 mM NaCl, whereas 75% cell death occurred at 150 mM NaCl. The absence of a potential gene encoding Na+/H+ antiporters in B. japonicum could explain its very high Na+ sensitivity.  相似文献   

15.
An isolate of an osmotolerant rhizobacterium has been obtained from a weed rhizosphere which showed tolerance up to 1.0 M NaCl. The isolate has been subjected to growth analysis in a medium which contained 10 mM betaine as the sole carbon source. It was observed that betaine could be used as the sole carbon source for the growth of salt-tolerant rhizobacteria under NaCl-stress at 1.0 M concentration. Interestingly, it was found that betaine at 100 mM concentration suppressed the growth of salt-tolerant rhizobacteria. The growth of the osmotolerant rhizobacterium was stimulated when it was grown in a medium containing both glucose and betaine, demonstrating that betaine was an osmoprotectant. The presence of glucose at 10 mM concentration, however, did not alleviate the growth-suppressive effect of betaine at 100 mM concentration. The osmoprotective effect of betaine was demonstrated by the fact that the addition of betaine at different time intervals enhanced the growth accordingly. However, the growth-suppressive effect of betaine at 100 mM concentration was also noticeable when betaine was added at different time intervals.  相似文献   

16.
The effect of 500 mM NaCl on the growth, and phosphatase production of a Citrobacter sp. was investigated. Although growth was retarded, phosphatase production was enhanced by 50%. Relief from osmotic stress using the osmoprotectant glycine betaine gave normal growth, but phosphatase activity was reduced. The Citrobacter sp. ceased to grow following a shift to anaerobic conditions, but anaerobically-incubated cells continued to produce phosphatase after a transient lag.  相似文献   

17.
The role of choline in osmoprotection in the moderate halophile Halomonas elongata has been examined. Transport and conversion of choline to betaine began immediately after addition of choline to the growth medium. Intracellular accumulation of betaine synthesized from choline was salt dependent up to 2.5 M NaCl. Oxidation of choline was enhanced at 2.0 M NaCl in the presence or absence of externally provided betaine. This indicates that the NaCl concentration in the growth medium has major effects on the choline-betaine pathway of H. elongata.  相似文献   

18.
The moderate halophile Vibrio costicola, growing on a chemically-defined medium, transformed choline into glycine betaine (betaine) by the membrane-bound enzyme choline dehydrogenase and the cytoplasmic enzyme betainal (betaine aldehyde) dehydrogenase. Choline dehydrogenase was strongly induced and betainal dehydrogenase less strongly induced by choline. The formation of these enzymes was also regulated by the NaCl concentration of the growth medium, increasing with increasing NaCl concentrations. Intracellular betaine concentrations also increased with increasing choline and NaCl concentrations in the medium. This increase was almost completely blocked by chloramphenicol, which does not block the increase in salt-tolerant active transport on transfer from a low to a high salt concentration.Choline dehydrogenase was inhibited by chloride salts of Na+, K+, and NH inf4 su+ , the inhibition being due to the Cl- ions. Betainal dehydrogenase was stimulated by 0.5 M salts and could function in up to 2.0 M salts.Cells grew as well in the presence as in the absence of choline in 0.5 M and 1.0 M NaCl, but formed no intracellular betaine. Choline stimulated growth in 2.0 M NaCl and was essential for growth in 3.0 M NaCl. Thus, while betaine is important for some of the adaptations to high salt concentration by V. costicola, it by no means accounts for all of them.Abbreviations CDMM chemically-defined minimal medium - PPT proteose-peptone tryptone medium - SDS sodium dodecyl sulfate Deceased, 1987  相似文献   

19.
20.
Abstract The addition of 1 mM glycine betaine to the growth medium of Chromatium sp. NCIMB 8379 relieved growth inhibition caused by exposure to supra-optimal Nad concentrations. Intracellular glycine betaine concentrations were dependent upon the NaCl concentration of the growth medium up to 3 M exogenous Nad. Kinetic data for the accumulation of [methyl-14C]-glycine betaine demonstrated that Chromatium sp. NCIMB 8379 possesses a constitutively expressed active transport system for glycine betaine. The transport system was saturable with respect to glycine betaine concentration and exhibited typical Michaelis-Menten type kinetics: K m= 24 μ M, V max= 306 nmol min−1 mg protein−1 at an external NaCl concentration of 1 M. The rate of glycine betaine transport decreased progressively with increasing growth medium NaCl concentration. This transport system may represent an adaptive response to growth in high osmolarity environments in this halotolerant isolate, allowing accumulation of glycine betaine from the external cell environment or recycling synthesised glycine betaine which has passively diffused from the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号