首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amyloid cascade hypothesis has been the prevailing hypothesis in Alzheimer’s Disease research, although the final and most wanted proof i.e. fully successful anti-amyloid clinical trials in patients, is still lacking. This may require a better in depth understanding of the cascade. Particularly, the exact toxic forms of Aβ and Tau, the molecular link between them and their respective contributions to the disease process need to be identified in detail. Although the lack of final proof has raised substantial criticism on the hypothesis per se, accumulating experimental evidence in in vitro models, in vivo models and from biomarkers analysis in patients supports the amyloid cascade and particularly Aβ-induced Tau-pathology, which is the focus of this review. We here discuss available models that recapitulate Aβ-induced Tau-pathology and review some potential underlying mechanisms. The availability and diversity of these models that mimic the amyloid cascade partially or more complete, provide tools to study remaining questions, which are crucial for development of therapeutic strategies for Alzheimer’s Disease.  相似文献   

2.
Huge progress has been made in unraveling the mysteries of Alzheimer’s disease (AD), but we still do not understand the basic mechanisms that set off the cascade of pathological events. In May 2011, the National Institute on Aging–Alzheimer’s Association published new diagnostic guidelines, expected to have huge impact on AD research and clinical practice. However, the new guidelines are already criticized for being biased in favor of a specific theory of the pathophysiological origins of AD—the amyloid cascade hypothesis. Shortly before publication of the guidelines, a hypothetical model of the dynamic biomarkers of the Alzheimer’s pathological cascade was published, taking as starting point that biomarkers reflecting brain levels of amyloid become deviant long before brain atrophy, cognitive dysfunction, or clinical symptoms are manifest. This model has already attracted substantial interest and arguably represents a dominating view within human research on AD. Here we critically review the evidence for the view of amyloid as an initiating event in the pathological cascade and discuss how central assumptions of this hypothesis affect how results from contemporary human AD research are understood. Interpretations of new results are greatly impacted by researchers’ view on the role of amyloid, and identical observations are sometimes taken to support radically opposing views on the amyloid hypothesis. We argue that the canonical view of the role of amyloid as the main causal factor in AD may not be correct and that evidence from recent neuroimaging studies indicates that amyloid is neither necessary nor sufficient, for the manifestation of AD-like brain atrophy.  相似文献   

3.
Several genes have been implicated as influencing the outcome following traumatic brain injury (TBI). Currently the most extensively studied gene has been APOE. APOE can influence overall and rehabilitation outcome, coma recovery, risk of posttraumatic seizures, as well as cognitive and behavioral functions following TBI. Pathologically, APOE is associated with increased amyloid deposition, amyloid angiopathy, larger intracranial hematomas and more severe contusional injury. The proposed mechanism by which APOE affects the clinciopathological consequences of TBI is multifactorial and includes amyloid deposition, disruption of cytoskeletal stability, cholinergic dysfunction, oxidative stress, neuroprotection and central nervous system plasticity in response to injury. Other putative genes have been less extensively studied and require replication of the clinical findings. The COMT and DRD2 genes may influence dopamine dependent cognitive processes such as executive/frontal lobe functions. Inflammation which is a prominent component in the pathophysiological cascade initiated by TBI, is in part is mediated by the interleukin genes, while apoptosis that occurs as a consequence of TBI may be modulated by polymorphisms of the p53 gene. The ACE gene may affect TBI outcome via mechanisms of cerebral blood flow and/or autoregulation and the CACNA1A gene may exert an influence via the calcium channel and its effect on delayed cerebral edema. Although several potential genes that may influence outcome following TBI have been identified, future investigations are needed to validate these genetic studies and identify new genes that might influence outcome following TBI. Special issue dedicated to John P. Blass.  相似文献   

4.
5.
Intracellular trafficking and proteolytic processing of amyloid precursor protein (APP) have been the focus of numerous investigations over the past two decades. APP is the precursor to the amyloid beta-protein (Abeta), the 38-43-amino acid residue peptide that is at the heart of the amyloid cascade hypothesis of Alzheimer disease (AD). Tremendous progress has been made since the initial identification of Abeta as the principal component of brain senile plaques of individuals with AD. Specifically, molecular characterization of the secretases involved in Abeta production has facilitated cell biological investigations on APP processing and advanced efforts to model AD pathogenesis in animal models. This minireview summarizes salient features of APP trafficking and amyloidogenic processing and discusses the putative biological functions of APP.  相似文献   

6.
The amyloid cascade model hypothesizes that neurotoxic oligomers or aggregates formed by the Alzheimer amyloid peptide (Aβ) cause disease pathology in Alzheimer's disease. Attempted treatment strategies for Alzheimer's disease have involved either inhibiting Aβ oligomerization or aggregation, or dissolving existing aggregates. Blocking such downhill processes, however, has proved daunting. We have used a different approach that targets Aβ before the oligomerization cascade begins. We predicted that an amphipathic helix could convert Aβ into a native-like protein and inhibit initiation of oligomerization and aggregation. This idea was tested with a designed library and genetic screen. We exhaustively screened a library of semi-randomized amphipathic helical sequences, each expressed as a fusion protein with an Aβ42-yellow fluorescent protein sequence serving as a reporter for folding and solubilization. This yielded an amphipathic helix capable of initiating native-like folding in Aβ42 and preventing aggregation. This amphipathic helix has direct application to Alzheimer's disease therapy development.  相似文献   

7.
The self-association of proteins to form amyloid fibrils has been implicated in the pathogenesis of a number of diseases including Alzheimer's, Parkinson's, and Creutzfeldt-Jakob diseases. We recently reported that the myeloid scavenger receptor CD36 initiates a signaling cascade upon binding to fibrillar beta-amyloid that stimulates recruitment of microglia in the brain and production of inflammatory mediators. This receptor plays a key role in the pathogenesis of atherosclerosis, prompting us to evaluate whether fibrillar proteins were present in atherosclerotic lesions that could initiate signaling via CD36. We show that apolipoprotein C-II, a component of very low and high density lipoproteins, readily forms amyloid fibrils that initiate macrophage inflammatory responses including reactive oxygen production and tumor necrosis factor alpha expression. Using macrophages derived from wild type and Cd36(-/-) mice to distinguish CD36-specific events, we show that fibrillar apolipoprotein C-II activates a signaling cascade downstream of this receptor that includes Lyn and p44/42 MAPKs. Interruption of this signaling pathway through targeted deletion of Cd36 or blocking of p44/42 MAPK activation inhibits macrophage tumor necrosis factor alpha gene expression. Finally, we demonstrate that apolipoprotein C-II in human atheroma co-localizes to regions positive for markers of amyloid and macrophage accumulation. Together, these data characterize a CD36-dependent signaling cascade initiated by fibrillar amyloid species that may promote atherogenesis.  相似文献   

8.
Molecular biology and genetics of Alzheimer's disease   总被引:4,自引:0,他引:4  
Like several other adult onset neurodegenerative diseases, Alzheimer's disease is a multifactorial illness with both genetic and non-genetic causes. Recent genetic studies have identified four genes associated with inherited risk for AD (presenilin 1, presenilin 2, amyloid precursor protein, and apolipoprotein E). These genes account for about half of the total genetic risk for Alzheimer's disease. It is suspected that several other Alzheimer's disease-susceptibility genes exist, and their identification is the subject of ongoing research. Nevertheless, biological studies on the effects of mutations in the four known genes has led to the conclusion that all of these genes cause dysregulation of amyloid precursor protein processing and in particular dysregulation of the handling of a proteolytic derivative termed Abeta. The accumulation of Abeta appears to be an early and initiating event that triggers a series of downstream processes including misprocessing of the tau protein. This cascade ultimately causes neuronal dysfunction and death, and leads to the clinical and pathological features of Alzheimer's disease. Knowledge of this biochemical cascade now provides several potential targets for the development of diagnostics and therapeutics.  相似文献   

9.
Serum amyloid P component, a member of pentraxin serum protein family, has been suggested to contribute to the progression of neurodegeneration including Alzheimer's disease by binding to beta-amyloid fibrils leading to an increased stability of the deposits against proteolytic degradation and by inducing neuronal apoptosis. Here, we show that glycosaminoglycans inhibit both the serum amyloid P component-beta-amyloid interaction and the neurotoxic effect of serum amyloid P component. These effects correlate with the structure of glycosaminoglycans and show different structure-activity relationship in the case of the two different effects. While the efficacy of the inhibition on the serum amyloid P component-induced cell death increases with the uronic acid content, the inhibitory activity on the serum amyloid P component-beta-amyloid interaction decreases with the increasing uronic acid content of the glycosaminoglycans. The inhibitory effect of glycosaminoglycans on the interaction between the first component of the complement cascade (C1q) and beta-amyloid shows a similar structure-activity relationship as on the serum amyloid P component-beta-amyloid interaction. This suggests that glycosaminoglycans interfere with the binding site on beta-amyloid for serum amyloid P component and C1q. The functional consequence of this binding has been demonstrated by heparin which promotes the proteolysis of beta-amyloid in vitro in the presence of serum amyloid P component. Our results suggest that glycosaminoglycans might have therapeutical potential on the neurodegeneration reducing its progress.  相似文献   

10.
The precise pathological events that cause cognitive deficits in Alzheimer's disease remain to be determined. The most widely held view is that accumulation of amyloid beta peptide initiates the disease process; however, with more than eighteen amyloid-based therapeutic candidates currently in clinical trials, the targeting of amyloid alone may not be sufficient to improve functional deficits over the course of the disease. Alternative targets, such as the tau protein and apolipoprotein E, have thus been increasingly investigated, and in the future, therapeutic strategies will likely address events that are upstream of a more broadly construed pathological cascade that includes but is not limited to the generation and accumulation of amyloid beta. Consideration of such events provides the basis for an "indirect amyloid hypothesis," for which data are beginning to emerge. Although it is clinically defined by simple post-mortem criteria, Alzheimer's disease likely has a complex etiology, and effective treatments for this disease will become ever more urgent as the world's population ages.  相似文献   

11.
The objective of this study was to consider the objective evidence and ethical arguments for the appropriate age to test children at risk of developing hereditary hemochromatosis. A literature search for information on iron overload in children, onset of disease expression for hemochromatosis, and recommendations for age of cascade screening was undertaken. We examined the objective evidence and arguments for testing in early childhood and those for delaying testing until later teenage years. Cascade testing of offspring of people with hemochromatosis is widely advocated because it is an easily preventable disease. The ideal age to test those offspring is a matter of debate. Some authorities advocate testing at a very young age whereas others recommend delaying testing until late teenage years. To date there has been no published overview of the objective evidence and arguments central to this debate. In children who are C282Y homozygous, iron overload is rare in the first two decades of life and associated morbidity has only been documented in 1 patient. In the cascade setting, genetic testing for hemochromatosis need not be offered until late teenage years.  相似文献   

12.
Protein amyloid aggregation is a hallmark in neuropathologies and other diseases of tremendous impact such as Alzheimer’s or Parkinson’s diseases. During the last decade, it has become increasingly evident that neuronal death is mainly induced by proteinaceous oligomers rather than the mature amyloid fibrils. Therefore, the earliest molecular events occurring during the amyloid aggregation cascade represent a growing interest of study.Important breakthroughs have been achieved using experimental data from different proteins, used as models, as well as systems related to diseases. Here, we summarize the structural properties of amyloid oligomeric and fibrillar aggregates and review the recent advances on how biophysical techniques can be combined with quantitative kinetic analysis and theoretical models to study the detailed mechanism of oligomer formation and nucleation of fibrils.These insights into the mechanism of early oligomerization and amyloid nucleation are of relevant interest in drug discovery and in the design of preventive strategies against neurodegenerative diseases.  相似文献   

13.
The Ras-MAPK signaling cascade transmits mitogenic stimuli from growth factor receptors and activated Ras to the cell nucleus. Inappropriate Ras activation is associated with approximately 30% of all human cancers. The kinase components of the Ras-MAPK signaling cascade are attractive targets for pharmaceutical intervention. Therefore, we have developed a high-throughput, nonradioactive ELISA method to monitor Raf and MEK1 kinase activity. In this assay system activated Raf phosphorylates and activates MEK1, which in turn phosphorylates MAPK. Antibodies that specifically detect phosphorylated MAPK (vs. nonphosphorylated MAPK) made enzyme-linked immunosorbent assay (ELISA) development possible. This assay detects inhibitors of Raf and/or MEK1 and has been used to screen large numbers of random compounds. The specific target of inhibition in the Raf/MEK1/MAPK ELISA can be subsequently identified by secondary assays which directly measure Raf phosphorylation of MEK1 or MEK1 phosphorylation of MAPK.  相似文献   

14.
Although Alzheimer’s disease (AD) was first discovered a century ago, we are still facing a lack of definitive diagnosis during the patient’s lifetime and are unable to prescribe a curative treatment. However, the past 10 years have seen a “revamping” of the main hypothesis about AD pathogenesis and the hope to foresee possible treatment. AD is no longer considered an irreversible disease. A major refinement of the classic β-amyloid cascade describing amyloid fibrils as neurotoxins has been made to integrate the key scientific evidences demonstrating that the first pathological event occurring in AD early stages affects synaptic function and maintenance. A concept fully compatible with synapse loss being the best pathological correlate of AD rather than other described neuropathological hallmarks (amyloid plaques, neurofibrillary tangles or neuronal death). The notion that synaptic alterations might be reverted, thus offering a potential curability, was confirmed by immunotherapy experiments targeting β-amyloid protein in transgenic AD mice in which cognitive functions were improved despite no reduction in the amyloid plaques burden. The updated amyloid cascade now integrates the synapse failure triggered by soluble Aβ-oligomers. Still no consensus has been reached on the most toxic Aβ conformations, neither on their site of production nor on their extra- versus intra-cellular actions. Evidence shows that soluble Aβ oligomers or ADDLs bind selectively to neurons at their synaptic loci, and trigger major changes in synapse composition and morphology, which ultimately leads to dendritic spine loss. However, the exact mechanism is not yet fully understood but is suspected to involve some membrane receptor(s).  相似文献   

15.
G protein-coupled receptors (GPCRs) are involved in numerous key neurotransmitter systems in the brain that are disrupted in Alzheimer's disease (AD). GPCRs also directly influence the amyloid cascade through modulation of the α-, β- and γ-secretases, proteolysis of the amyloid precursor protein (APP), and regulation of amyloid-β degradation. Additionally, amyloid-β has been shown to perturb GPCR function. Emerging insights into the mechanistic link between GPCRs and AD highlight the potential of this class of receptors as a therapeutic target for AD.  相似文献   

16.
Frizzled (fz) functions as a 7-transmembrane receptor in the Frizzled-Dishevelled signal transduction cascade. It is involved in architectural control of development in species as divergent as Drosophila and vertebrates. Regulation of multicellular architecture requires control of cell alignment, but also involves an equilibrium among cell proliferation, differentiation, and apoptosis. Recently, modulation of the Frizzled-Dishevelled (Dvl) cascade has been related to apoptosis. However, the role of beta-catenin, a second messenger in the Frizzled-Dishevelled cascade, in programmed cell death is a matter of debate. To elucidate the role of this cascade in apoptosis, we studied the effect of overexpression of fz1, fz2, dvl1, and beta-catenin. The signal transduction pathway and the involvement of beta-catenin were further investigated by using different inhibitors. These experiments were performed in different cell types: COS7, 293, and PC12. Overexpression of fz1, fz2, and dvl1 induced apoptosis in COS7 and 293 cells. beta-Catenin appears to be the mediator for this process since beta-catenin overexpression as well as lithium and valproate induced apoptosis. In contrast, lithium treatment did not result in apoptosis in PC12 cells. We conclude that different components of the Frizzled-Dishevelled cascade can induce apoptosis, but that this effect is dependent on the cell type.  相似文献   

17.
江苏省作为传统医药大省,是全国医药产业发展的重要组成部分,但仍存在诸多不足,极大地影响了其可持续发展。通过资料查询, 将江苏省与山东、河南、广东、吉林、浙江、湖北等医药产业重点省份进行比较,多方位分析江苏省医药产业发展现状,揭示眼下全省 医药产业发展中的主要问题所在,为全省医药产业健康发展建言献策  相似文献   

18.
No clear consensus has emerged in the debate about the risks posed by transgenic crops and how to assess these risks accurately. In the meantime, interest is growing in strategies to impede transgene movement. This attention is being driven, in part, by expanding interest in using transgenic crops to produce pharmaceutical and industrial products. Potential strategies to impede transgene movement have been published in the scientific literature, and numerous patents have been submitted; however, the efficacy of such strategies has still to be evaluated in a field situation. In this review, we discuss some of the genetic strategies that could be used to restrict the spread of transgenes, although at present many of these technologies are still largely at a theoretical stage of development.  相似文献   

19.
Progressive deposition of amyloid beta (Aβ) peptides into amyloid plaques is the pathological hallmark of Alzheimer’s disease (AD). The amyloid cascade hypothesis pins this deposition as the primary cause of the disease, but the mechanisms that causes this deposition remain elusive. An increasing amount of evidence shows that biometals Zn(II) and Cu(II) can interact with Aβ, thus influencing the fibrillization and toxicity. This review focuses on the role of Zn(II) and Cu(II) in AD, and revisits the amyloid cascade hypothesis demonstrating the possible roles of Zn(II) and Cu(II) in the disease pathogenesis.  相似文献   

20.
More than one century ago "a peculiar disorder of the cerebral cortex" was noticed in a middle-aged patient who had been affected by dementia in the last years of his life. The postmortem hallmarks of his brain were protein plaques, neurofibrillary tangles, and atherosclerotic changes: the neuropathologist who found these alterations and gave his name to the disease that underlied them was Alois Alzheimer (Alzheimer et al., Clin Anat 1995;8:429-431). Following its discovery, the disease has been studied with a vigor that went parallel to the increase of its social importance. The amount of information amassed in the literature is impressive, but knowledge on the mechanism underlying its onset and its progression is still very limited. Numerous hypotheses on the molecular pathogenesis of the Alzheimer's disease (AD) have been proposed and two have gradually gained wide consensus: (i) the amyloid cascade hypothesis, first proposed on the basis of the toxicity evoked by the deposition of amyloid β (Aβ) aggregates; (ii) the Ca(2+) hypothesis, which focuses on the correlation between the dysfunction of Ca(2+) homeostasis and the neurodegeneration process. This succinct review will discuss the essential aspects of the role of Ca(2+) homeostasis dysregulation in the onset and development of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号