首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid peroxides induce expression of catalase in cultured vascular cells   总被引:3,自引:0,他引:3  
Various forms of oxidized low-density lipoproteins (Ox-LDL) are thought to play a major role in the development of atherosclerosis. The lipid components of Ox-LDL present a plethora of proatherogenic effects in in vitro cell culture systems, suggesting that oxidative stress could be an important risk factor for coronary artery disease. However, buried among these effects are those that could be interpreted as antiatherogenic. The present study demonstrates that various oxidants, including oxidized fatty acids and mildly oxidized forms of LDL (MO-LDL), are able to induce catalase (an antioxidant enzyme) expression in rabbit femoral arterial smooth muscle cells (RFASMC), RAW cells (macrophages), and human umbilical vein endothelial cells (HUVEC). In RFASMC, catalase protein, mRNA, and the enzyme activity are increased in response to oxidized linoleic acid (13-hydroperoxy-9,11-octadecadienoic acid [13-HPODE] and 13-hydroxy-9,11-octadecadienoic acid [13-HODE]), MO-LDL, or hydrogen peroxide (H(2)O(2)). Such an increase in catalase gene expression cannot totally be attributed to the cellular response to an intracellular generation of H(2)O(2) after the addition of 13-HPODE or 13-HODE because these agents induce a further increase of catalase as seen in catalase-transfected RFASMC. Taken together with the induction of heme oxygenase, NO synthase, manganese superoxide dismutase (Mn-SOD), and glutathione synthesis by oxidative stress, our results provide yet more evidence suggesting that a moderate oxidative stress can induce cellular antioxidant response in vascular cells, and thereby could be beneficial for preventing further oxidative stress.  相似文献   

2.
Regional hyperthermia has potential for human cancer treatment, particularly in combination with systemic chemotherapy or radiotherapy. Heat enhances the cytotoxic effect of certain anticancer agents such as bleomycin, but the mechanisms involved in cell killing are currently unknown. Bleomycin generates reactive oxygen species. It is likely that hyperthermia itself also increases oxidative stress in cells. We evaluate whether oxidative stress has a role in the mechanism of cell death caused by bleomycin and heat in Chinese hamster ovary cells. Heat (41 to 44 degrees C) increased cytotoxicity of bleomycin, evaluated by clonogenic cell survival. Decreased levels of cellular antioxidants should create an imbalance between prooxidant and antioxidant systems, thus enhancing cytotoxic responses to heat and to oxidant-generating drugs. We determine the involvement of four major cellular antioxidant defenses, superoxide dismutase (SOD), the glutathione redox cycle (GSH cycle), catalase, and glutathione S-transferase (GST), in cellular sensitivity to bleomycin, alone or combined with hyperthermia. These cellular defenses were inhibited by diethyldithiocarbamate, l-buthionine sulfoximine, aminotriazole, and ethacrynic acid, respectively. We show that levels of antioxidants (SOD, GSH cycle, and GST) affect cellular cytotoxic responses to bleomycin, at normal and elevated temperatures (41 to 44 degrees C), suggesting the involvement of oxidative stress. Bleomycin and iron caused oxidative damage to membrane lipids in intact cells, at 37 and 43 degrees C. Lipid peroxidation was evaluated by fluorescence detection of thiobarbituric acid-reactive products. There was an increase in damage to membrane lipids when the antioxidant defenses, SOD and catalase, were inhibited. The differing effects of antioxidant inhibitors on bleomycin-induced cytotoxicity and membrane lipid damage suggest that different mechanisms are involved in these two processes. However, free radicals appear to be involved in both cases. The marked sensitization of cells by diethyldithiocarbamate, to both bleomycin-induced cytotoxicity and lipid peroxidation, suggests that superoxide could be involved in both of these processes.  相似文献   

3.
DNA molecules are constantly damaged during mitosis and by oxygen-free radicals produced by either cellular metabolism or by external factors. Populations at risk include patients with cancer-prone disease, patients under enhanced oxidative stress, and those treated with immunosuppressive/cytotoxic therapy. The DNA repair process is crucial in maintaining the genomal DNA integrity. The aim of this study was to evaluate spontaneous DNA repair capacity of peripheral blood mononuclear cells (PBMC) from normal blood donors. PBMC DNA repair ability represents DNA repair by other tissues as well. It is shown in the present study that in vitro incorporation of [3H]thymidine in non-stimulated PBMC expresses the ability of the cells to repair DNA damage. This method was validated by double-stranded DNA measurements. Both catalase and Fe2+ increased DNA repair, the former by preventing re-breakage of newly repaired DNA and the latter by introducing additional DNA damage, which enhanced DNA repair. Better understanding of DNA repair processes will enable to minimize DNA damage induced by oxidative stress.  相似文献   

4.
Regional hyperthermia has potential for human cancer treatment, particularly in combination with systemic chemotherapy or radiotherapy. The mechanisms involved in heat-induced cell killing are currently unknown. Hyperthermia may increase oxidative stress in cells, and thus, oxidative stress could have a role in the mechanism of cell death. We use hydrogen peroxide as a model oxidant to improve understanding of interactions between heat and oxidative stress. Heat increased cytotoxicity of hydrogen peroxide in Chinese hamster ovary cells. Altered levels of cellular antioxidants should create an imbalance between prooxidant and antioxidant systems, thus modifying cytotoxic responses to heat and to oxidants. We determine the involvement of the two cellular antioxidant defenses against peroxides, catalase and the glutathione redox cycle, in cellular sensitivity to heat, to hydrogen peroxide, and to heat combined with the oxidant. Defense systems were either inhibited or increased. For inhibition studies, intracellular glutathione was diminished to less than 15% of its initial level by treatment with L-buthionine sulfoximine (1 mM, 24 h). Inhibition of catalase was achieved with 3-amino-1,2,4-triazole (20 mM, 2 h), which caused a 80% decrease in endogenous enzyme activity. To increase antioxidants, cells were pretreated with the thiol-containing reducing agents, N-acetyl-L-cysteine, 2-oxo-4-thiazolidine carboxylate, and 2-mercaptoethane sulfonate. These compounds increased intracellular glutathione levels by 30%. Catalase activity was increased by addition of exogenous enzyme to cells. We show that levels of glutathione and catalase affect cellular cytotoxic responses to heat and hydrogen peroxide, either used separately or in combination. These findings are relevant to mechanisms of cell killing at elevated temperatures and suggest the involvement of oxidative stress.  相似文献   

5.
Oxidative damage to mitochondrial DNA (mtDNA) has been implicated as a causative factor in many disease processes and in aging. We have recently discovered that different cell types vary in their capacity to repair this damage, and this variability correlates with their ability to withstand oxidative stress. To explore strategies to enhance repair of oxidative lesions in mtDNA, we have constructed a vector containing a mitochondrial transport sequence upstream of the sequence for human 8-oxoguanine DNA glycosylase. This enzyme is the glycosylase/AP lyase that participates in repair of purine lesions, such as 8-oxoguanine. Western blot analysis confirmed that this recombinant protein was targeted to mitochondria. Enzyme activity assays showed that mitochondrial extracts from cells transfected with the construct had increased enzyme activity compared with cells transfected with vector only, whereas nuclear enzyme activity was not changed. Repair assays showed that there was enhanced repair of oxidative lesions in mtDNA. Additional studies revealed that this augmented repair led to enhanced cellular viability as determined by reduction of the tetrazolium compound to formazan, trypan blue dye exclusion, and clonogenic assays. Therefore, targeting of DNA repair enzymes to mitochondria may be a viable approach for the protection of cells against some of the deleterious effects of oxidative stress.  相似文献   

6.
7.
The cellular pathways underlying naturally occurring neuronal apoptosis in the rat substantia nigra (SN) during the perinatal period remain largely unknown. Determining the mediators of this process in development may shed light on causes of premature neuronal death in adult neurodegenerative disorders, including the loss of dopamine neurons in Parkinson's disease. In the present study, we investigated whether lipid peroxidation-mediated oxidative stress mediates developmental death of nigral neurons by (1) establishing the profile of lipid peroxidation and other oxidative stress markers throughout the postnatal period both in the SN and striatum, and (2) examining whether the inhibitor of lipid peroxidation, alpha-tocopherol, protects these neurons from death. In addition to monitoring, the level of lipid peroxidation throughout development, we also measured the activities of three antioxidant enzymes, namely superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx). We have shown that lipid peroxidation and SOD activity progressively increased from postnatal day (PND) 3 to PND 42 in both SN and striatum. During this period, GPx activity remained stable, while catalase activity transiently increased at PND 8 only in the SN. Furthermore, alpha-tocopherol treatment from embryonic day 18 to PND 2 did not reduce the number of apoptotic neurons at PND 3. These results do not support the hypothesis that lipid peroxidation-mediated oxidative stress is the major mediator of nigral dopamine neuronal apoptosis during the perinatal period.  相似文献   

8.
9.
Catalases are known to detoxify H2O2, a major component of oxidative stress imposed on a cell. An Agrobacterium tumefaciens catalase encoded by a chromosomal gene katA has been implicated as an important virulence factor as it is involved in detoxification of H2O2 released during Agrobacterium-plant interaction. In this paper, we report a feedback regulation pathway that controls the expression of katA in A. tumefaciens cells. We observed that katA could be induced by plant tissue sections and by acidic pH on a minimal medium, which resembles the plant environment that the bacteria encounter during the course of infection. This represents a new regulatory factor for catalase induction in bacteria. More importantly, a feedback regulation was observed when the katA-gfp expression was studied in different genetic backgrounds. We found that introduction of a wild-type katA gene encoding a functional catalase into A. tumefaciens cells could repress the katA-gfp expression over 60-fold. The katA gene could be induced by H2O2 and the encoded catalase could detoxify H2O2. In addition, the katA-gfp expression of one bacterial cell could be repressed by other surrounding catalase-proficient bacterial cells. Furthermore, mutation at katA caused a 10-fold increase of the intracellular H2O2 concentration in the bacteria grown on an acidic pH medium. These results suggest that the endogenous H2O2 generated during A. tumefaciens cell growth could serve as the intracellular and intercellular inducer for the katA gene expression and that the acidic pH could pose an oxidative stress on the bacteria. Surprisingly, one mutated KatA protein, exhibiting no significant catalase activity as a result of the alteration of two important residues at the putative active site, could partially repress the katA-gfp expression. The feedback regulation of the katA gene by both catalase activity and KatA protein could presumably maintain an appropriated level of catalase activity and H2O2 inside A. tumefaciens cells.  相似文献   

10.
Regulation of the balance between production of reactive oxygen species (ROS) by cellular processes and its removal by antioxidant defense system maintains normal physiological processes. Any condition leading to increased ROS results in oxidative stress which has been related with a number of diseases including cancer. Improvement in antioxidant defense system is required to overcome the damaging effects of oxidative stress. Therefore in the present study, effect of the aqueous extract of a medicinal plant Andrographis paniculata (AP) on antioxidant defense system in liver is investigated in lymphoma bearing AKR mice. Estimating catalase, superoxide dismutase and glutathione S transferase monitored the antioxidant action. Oral administration of the aqueous extract of A. paniculata in different doses causes a significant elevation of catalase, superoxide dismutase and glutathione S transferase activities. It reveals the antioxidant action of the aqueous extract of AP, which may play a role in the anticarcinogenic activity by reducing the oxidative stress. LDH activity is known to increase in various cancers due to hypoxic condition. Lactate dehydrogenase is used as tumor marker. We find a significant decrease in LDH activity on treatment with AP, which indicates a decrease in carcinogenic activity. A comparison with Doxorubicin (DOX), an anticancerous drug, indicates that the aqueous extract of AP is more effective than DOX with respect to its effect on catalase, superoxide dismutase, glutathione S transferase as well as on lactate dehydrogenase activities in liver of lymphoma bearing mice.  相似文献   

11.
The study investigates the direct effect of Epstein-Barr virus infection on the oxidative profile of in vitro cultivated human cells. For this purpose, a panel of human EBV target cells presenting heterogeneity in their cellular and culture types (epithelial cells or lymphocytes; primary culture or continuous cell culture) was selected. These cells are purified human B lymphocytes, DG75, 293, and HepG2 cell lines. The oxidative stress was evaluated during the early stages of infection (2, 12, and 24 h) by measuring malondialdehyde, the end product of the lipid peroxidation, as well as the activities of two antioxidant enzymes: catalase and superoxide dismutase. The obtained results were compared with those of the untreated cells and the K562 cell line which has no interaction with EBV. The incubation of the different target cells with EBV induced an oxidative stress in the purified B lymphocytes, DG75, and 293, but not in HepG2 and K562. This oxidative stress was highlighted by an increase in MDA level (P < 0.05), which began 2 h after the addition of the virus and persisted after 12 and 24 h. Simultaneously, a decrease in catalase and superoxide dismutase activities was observed (P < 0.05), suggesting an alteration of the molecular mechanisms promoting cellular resistance to reactive oxygen species (ROS). The efficiency of EBV infection, assessed by viral DNA PCR amplification, was confirmed in 293 and DG75 but not in HepG2, which was in total concordance with their oxidative profiles. In conclusion, the EBV infection of B and epithelial cells leads to the establishment of an oxidative stress which can play a key role during the viral transformation.  相似文献   

12.
13.
14.
Superoxide dismutase (SOD) is an essential enzyme protecting cells against oxidative stress. However, its specific role under different conditions is not clear. To study the possible role of SOD in the cell during respiration, Saccharomyces cerevisiae single and double mutants with inactivated SOD1 and/or SOD2 genes growing on ethanol as an energy and carbon source were used. Activities of antioxidant and associated enzymes as well as the level of protein carbonyls were measured. SOD activity was significantly higher in a Mn-SOD deficient strain than that in the wild-type parental strain, but significantly lower in a Cu, Zn-SOD mutant. A strong positive correlation between SOD and catalase activities (R(2) = 0.99) shows possible protection of catalase by SOD from inactivation in vivo and/or decrease in catalase activity because of lower H(2)O(2) formation in the mutant cells. SOD deficiency resulted in a malate dehydrogenase activity increase, whereas glucose-6-phosphate dehydrogenase (G6PDH) activity was lower in SOD-deficient strains. Linear and non-linear positive correlations between SOD and isocitrate dehydrogenase activities are discussed. No changes in the activity of glutathione reductase and protein carbonyl levels support the idea that SOD-deficient cells are not exposed to strong oxidative stress during exponential growth of yeast cultures on ethanol.  相似文献   

15.
Compelling evidence shows a strong correlation between accumulation of neurotoxic β-amyloid (Aβ) peptides and oxidative stress in the brains of patients afflicted with Alzheimer disease (AD). One hypothesis for this correlation involves the direct and harmful interaction of aggregated Aβ peptides with enzymes responsible for maintaining normal, cellular levels of reactive oxygen species (ROS). Identification of specific, destructive interactions of Aβ peptides with cellular anti-oxidant enzymes would represent an important step toward understanding the pathogenicity of Aβ peptides in AD. This report demonstrates that exposure of human neuroblastoma cells to cytotoxic preparations of aggregated Aβ peptides results in significant intracellular co-localization of Aβ with catalase, an anti-oxidant enzyme responsible for catalyzing the degradation of the ROS intermediate hydrogen peroxide (H(2)O(2)). These catalase-Aβ interactions deactivate catalase, resulting in increased cellular levels of H(2)O(2). Furthermore, small molecule inhibitors of catalase-amyloid interactions protect the hydrogen peroxide-degrading activity of catalase in Aβ-rich environments, leading to reduction of the co-localization of catalase and Aβ in cells, inhibition of Aβ-induced increases in cellular levels of H(2)O(2), and reduction of the toxicity of Aβ peptides. These studies, thus, provide evidence for the important role of intracellular catalase-amyloid interactions in Aβ-induced oxidative stress and propose a novel molecular strategy to inhibit such harmful interactions in AD.  相似文献   

16.
Kang KA  Lee KH  Chae S  Zhang R  Jung MS  Lee Y  Kim SY  Kim HS  Joo HG  Park JW  Ham YM  Lee NH  Hyun JW 《FEBS letters》2005,579(28):6295-6304
We have investigated the cytoprotective effect of eckol, which was isolated from Ecklonia cava, against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79-4) cells. Eckol was found to scavenge 1,1-diphenyl-2-picrylhydrazyl radical, hydrogen peroxide (H(2)O(2)), hydroxy radical, intracellular reactive oxygen species (ROS), and thus prevented lipid peroxidation. As a result, eckol reduced H(2)O(2) induced cell death in V79-4 cells. In addition, eckol inhibited cell damage induced by serum starvation and radiation by scavenging ROS. Eckol was found to increase the activity of catalase and its protein expression. Further, molecular mechanistic study revealed that eckol increased phosphorylation of extracellular signal-regulated kinase and activity of nuclear factor kappa B. Taken together, the results suggest that eckol protects V79-4 cells against oxidative damage by enhancing the cellular antioxidant activity and modulating cellular signal pathway.  相似文献   

17.
18.
Many cellular processes are driven by spatially and temporally regulated redox-dependent signaling events. Although mounting evidence indicates that organelles such as the endoplasmic reticulum and mitochondria can function as signaling platforms for oxidative stress-regulated pathways, little is known about the role of peroxisomes in these processes. In this study, we employ targeted variants of the genetically encoded photosensitizer KillerRed to gain a better insight into the interplay between peroxisomes and cellular oxidative stress. We show that the phototoxic effects of peroxisomal KillerRed induce mitochondria-mediated cell death and that this process can be counteracted by targeted overexpression of a select set of antioxidant enzymes, including peroxisomal glutathione S-transferase kappa 1, superoxide dismutase 1, and mitochondrial catalase. We also present evidence that peroxisomal disease cell lines deficient in plasmalogen biosynthesis or peroxisome assembly are more sensitive to KillerRed-induced oxidative stress than control cells. Collectively, these findings confirm and extend previous observations suggesting that disturbances in peroxisomal redox control and metabolism can sensitize cells to oxidative stress. In addition, they lend strong support to the ideas that peroxisomes and mitochondria share a redox-sensitive relationship and that the redox communication between these organelles is not only mediated by diffusion of reactive oxygen species from one compartment to the other. Finally, these findings indicate that mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress, and this may have profound implications for our views on cellular aging and age-related diseases.  相似文献   

19.
To create a conditional system for molecular analysis of effects of polyunsaturated fatty acids (PUFA) on cellular physiology, we have constructed a strain of yeast (Saccharomyces cerevisiae) that functionally expresses, under defined conditions, the Delta12 desaturase gene from the tropical rubber tree, Hevea brasiliensis. This strain produces up to 15% PUFA, exclusively under inducing conditions resulting in production of 4-hydroxy-2-nonenal, one of the major end products of n-6 polyunsaturated fatty acid peroxidation. The PUFA-producing yeast was initially more sensitive to oxidative stress than the wild-type strain. However, over extended time of cultivation it became more resistant to hydrogen peroxide indicating adaptation to endogenous oxidative stress caused by the presence of PUFA. Indeed, PUFA-producing strain showed an increased concentration of endogenous ROS, while initially increased hydrogen peroxide sensitivity was followed by an increase in catalase activity and adaptation to oxidative stress. The deletion mutants constructed to be defective in the catalase activity lost the ability to adapt to oxidative stress. These data demonstrate that the cellular synthesis of PUFA induces endogenous oxidative stress which is overcome by cellular adaptation based on the catalase activity.  相似文献   

20.
Nitrones have the general chemical formula X-CH=NO-Y. They were first used to trap free radicals in chemical systems and then subsequently in biochemical systems. More recently several nitrones, including alpha-phenyl-tert-butylnitrone (PBN), have been shown to have potent biological activity in many experimental animal models. Many diseases of aging, including stroke, cancer development, Parkinson disease, and Alzheimer disease, are known to have enhanced levels of free radicals and oxidative stress. Some derivatives of PBN are significantly more potent than PBN and have undergone extensive commercial development for stroke. Recent research has shown that PBN-related nitrones also have anti-cancer activity in several experimental cancer models and have potential as therapeutics in some cancers. Also, in recent observations nitrones have been shown to act synergistically in combination with antioxidants in the prevention of acute acoustic-noise-induced hearing loss. The mechanistic basis of the potent biological activity of PBN-related nitrones is not known. Even though PBN-related nitrones do decrease oxidative stress and oxidative damage, their potent biological anti-inflammatory activity and their ability to alter cellular signaling processes cannot readily be explained by conventional notions of free radical trapping biochemistry. This review is focused on our studies and others in which the use of selected nitrones as novel therapeutics has been evaluated in experimental models in the context of free radical biochemical and cellular processes considered important in pathologic conditions and age-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号