首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type 2 diabetes mellitus (DM) appears to be a significant risk factor for Alzheimer disease (AD). Insulin and insulin-like growth factor-1 (IGF-1) also have intense effects in the central nervous system (CNS), regulating key processes such as neuronal survival and longevity, as well as learning and memory. Hyperglycaemia induces increased peripheral utilization of insulin, resulting in reduced insulin transport into the brain. Whereas the density of brain insulin receptor decreases during age, IGF-1 receptor increases, suggesting that specific insulin-mediated signals is involved in aging and possibly in cognitive decline. Molecular mechanisms that protect CNS neurons against β-amyloid-derived-diffusible ligands (ADDL), responsible for synaptic deterioration underlying AD memory failure, have been identified. The protection mechanism does not involve simple competition between ADDLs and insulin, but rather it is signalling dependent down-regulation of ADDL-binding sites. Defective insulin signalling make neurons energy deficient and vulnerable to oxidizing or other metabolic insults and impairs synaptic plasticity. In fact, destruction of mitochondria, by oxidation of a dynamic-like transporter protein, may cause synapse loss in AD. Moreover, interaction between Aβ and τ proteins could be cause of neuronal loss. Hyperinsulinaemia as well as complete lack of insulin result in increased τ phosphorylation, leading to an imbalance of insulin-regulated τ kinases and phosphatates. However, amyloid peptides accumulation is currently seen as a key step in the pathogenesis of AD. Inflammation interacts with processing and deposit of β-amyloid. Chronic hyperinsulinemia may exacerbate inflammatory responses and increase markers of oxidative stress. In addition, insulin appears to act as 'neuromodulator', influencing release and reuptake of neurotransmitters, and improving learning and memory. Thus, experimental and clinical evidence show that insulin action influences cerebral functions. In this paper, we reviewed several mechanisms by which insulin may affect pathophysiology in AD.  相似文献   

2.
According to World Health Organization estimates, type 2 diabetes (T2D) is an epidemic (particularly in under development countries) and a socio-economic challenge. This is even more relevant since increasing evidence points T2D as a risk factor for Alzheimer's disease (AD), supporting the hypothesis that AD is a “type 3 diabetes” or “brain insulin resistant state”. Despite the limited knowledge on the molecular mechanisms and the etiological complexity of both pathologies, evidence suggests that neurodegeneration/death underlying cognitive dysfunction (and ultimately dementia) upon long-term T2D may arise from a complex interplay between T2D and brain aging. Additionally, decreased brain insulin levels/signaling and glucose metabolism in both pathologies further suggests that an effective treatment strategy for one disorder may be also beneficial in the other. In this regard, one such promising strategy is a novel successful anti-T2D class of drugs, the glucagon-like peptide-1 (GLP-1) mimetics (e.g. exendin-4 or liraglutide), whose potential neuroprotective effects have been increasingly shown in the last years. In fact, several studies showed that, besides improving peripheral (and probably brain) insulin signaling, GLP-1 analogs minimize cell loss and possibly rescue cognitive decline in models of AD, Parkinson's (PD) or Huntington's disease. Interestingly, exendin-4 is undergoing clinical trials to test its potential as an anti-PD therapy. Herewith, we aim to integrate the available data on the metabolic and neuroprotective effects of GLP-1 mimetics in the central nervous system (CNS) with the complex crosstalk between T2D-AD, as well as their potential therapeutic value against T2D-associated cognitive dysfunction.  相似文献   

3.
流行病学和基础研究表明阿尔茨海默病(Alzheimert's disease,AD)与2型糖尿病(type 2 diabetes mellitus,T2DM)存在密切关联:T2DM是AD的危险因素之一;而AD脑内也出现胰岛素信号异常、胰岛素抵抗状态,因而被称为“第3类型的糖尿病”。近年来治疗T2DM的新药——胰高血糖素样肽-1(glucagon-1ike peptide-1,GLP-1)及其类似物,已被证实具有神经保护作用,且能改善AD模型的记忆和认知功能,为AD治疗药物的研究提供了新的策略。  相似文献   

4.
The quality control of protein homoeostasis deteriorates with aging, causing the accumulation of misfolded proteins and neurodegeneration. Thus, in AD (Alzheimer's disease), soluble oligomers, protofibrils and fibrils of the Aβ (amyloid β-peptide) and tau protein accumulate in specific brain regions. This is associated with the progressive destruction of synaptic circuits controlling memory and higher mental function. The primary signalling mechanisms that (i) become defective in AD to alter the normal proteostasis of Aβ and tau, and (ii) initiate a pathophysiological response to cause cognitive decline, are unclear. The IIS [insulin/IGF-1 (insulin-like growth factor 1)-like signalling] pathway is mechanistically linked to longevity, protein homoeostasis, learning and memory, and is emerging to be central to both (i) and (ii). This pathway is aberrantly overactivated in AD brain at the level of increased activation of the serine/threonine kinase Akt and the phosphorylation of its downstream targets, including mTOR (mammalian target of rapamycin). Feedback inhibition of normal insulin/IGF activation of the pathway also occurs in AD due to inactivation of IRS-1 (insulin receptor substrate 1) and decreased IRS-1/2 levels. Pathogenic forms of Aβ may induce aberrant sustained activation of the PI3K (phosphoinositide 3-kinase)/Akt signal in AD, also causing non-responsive insulin and IGF-1 receptor, and altered tau phosphorylation, conformation and function. Reducing IIS activity in animal models by decreasing IGF-1R levels or inhibiting mTOR activity alters Aβ and tau protein homoeostasis towards less toxic protein conformations, improves cognitive function and extends healthy lifespan. Thus normalizing IIS dysfunction may be therapeutically relevant in abrogating Aβ and tau proteotoxicity, synaptic dysfunction and cognitive decline in AD.  相似文献   

5.
胰高血糖素样肽1:阿尔茨海默病治疗新策略   总被引:3,自引:0,他引:3  
Wang XH  Yang W  Qi JS 《生理学报》2010,62(5):398-406
2型糖尿病(type2diabetes mellitus,T2DM)与阿尔茨海默病(Alzheimer’s disease,AD)的病理生理过程具有密切的相关性。人们正在逐步深入研究治疗T2DM的最新药物——胰高血糖素样肽1(glucagon-likepe ptide1,GLP-1)的神经保护作用,并大胆地提出了利用GLP-1治疗AD的设想。本文对T2DM与AD的发病相关性、GLP-1的合成与分泌、GLP-1受体的中枢分布及其生理效应,特别是GLP-1与AD治疗策略相关的研究进展作一综述。  相似文献   

6.
Recent studies have shown that type 2 diabetes mellitus (T2DM) is a risk factor for cognitive dysfunction or dementia. Insulin resistance is often associated with T2DM and can induce defective insulin signaling in the central nervous system as well as increase the risk of cognitive impairment in the elderly. Glucagone like peptide-1 (GLP-1) is an incretin hormone and, like GLP-1 analogs, stimulates insulin secretion and has been employed in the treatment of T2DM. GLP-1 and GLP-1 analogs also enhance synaptic plasticity and counteract cognitive deficits in mouse models of neuronal dysfunction and/or degeneration. In this study, we investigated the potential neuroprotective effects of long-term treatment with exenatide, a GLP-1 analog, in two animal models of neuronal dysfunction: the PS1-KI and 3xTg-AD mice. We found that exenatide promoted beneficial effects on short- and long-term memory performances in PS1-KI but not in 3xTg-AD animals. In PS1-KI mice, the drug increased brain lactate dehydrogenase activity leading to a net increase in lactate levels, while no effects were observed on mitochondrial respiration. On the contrary, exenatide had no effects on brain metabolism of 3xTg-AD mice. In summary, our data indicate that exenatide improves cognition in PS1-KI mice, an effect likely driven by increasing the brain anaerobic glycolysis rate.  相似文献   

7.
Glucagon-like peptide-1 (GLP-1) is a glucoincretin hormone most intensively studied for its actions on insulin secreting β-cells. GLP-1 and its receptor are also found in brain and accumulating evidence indicates that GLP-1 has neuroprotective actions. Here, we investigated whether GLP-1 protects neuronal cells from death evoked by nerve growth factor (NGF) withdrawal. Compromised trophic factor signaling may underlie neurodegenerative diseases ranging from Alzheimer disease to diabetic neuropathies. We report that GLP-1 provides sustained protection of cultured neuronal PC12 cells and sympathetic neurons from degeneration and death caused by NGF deprivation. Past work shows that NGF deprivation induces the pro-apoptotic protein Bim which contributes to neuron death. Here, we find that GLP-1 suppresses Bim induction promoted by NGF deprivation. Thus, GLP-1 may protect neurons, at least in part, by suppressing Bim induction. Our findings support the idea that drugs that mimic or elevate GLP-1 represent potential therapeutics for neurodegenerative diseases.  相似文献   

8.
Alzheimer's disease (AD) is a major public health concern due to longer life expectancy in the Western countries. Amyloid-beta (Aβ) oligomers are considered the proximate effectors in the early stages of AD. AD-related cognitive impairment, synaptic loss and neurodegeneration result from interactions of Aβ oligomers with the synaptic membrane and subsequent activation of pro-apoptotic signalling pathways. Therefore, membrane structure and lipid status appear determinant in Aβ-induced toxicity. Numerous epidemiological studies have highlighted the beneficial influence of docosahexaenoic acid (DHA, C22:6 n-3) on the preservation of synaptic function and memory capacities in aged individuals or upon Aβ exposure, whereas its deficiency is presented as a risk factor for AD. An elevated number of studies have been reporting the beneficial effects of dietary DHA supplementation on cognition and synaptic integrity in various AD models. In this review, we describe the important potential of DHA to preserve neuronal and brain functions and classified its numerous molecular and cellular effects from impact on membrane lipid content and organisation to activation of signalling pathways sustaining synaptic function and neuronal survival. DHA appears as one of the most valuable diet ingredients whose neuroprotective properties could be crucial for designing nutrition-based strategies able to prevent AD as well as other lipid- and age-related diseases whose prevalence is progressing in elderly populations.  相似文献   

9.
《Free radical research》2013,47(12):1490-1495
Efficient function of the mitochondrial respiratory chain and the citric acid cycle (CAC) enzymes is required for the maintenance of human brain function. A conception of oxidative stress (OxS) was recently advanced as a disruption of redox signalling and control. Mitochondrial OxS (MOxS) is implicated in the development of Alzheimer's disease (AD). Thus, both pro- and anti-oxidants of the human body and MOxS target primarily the redox-regulated CAC enzymes, like mitochondrial aconitase (MAc). We investigated the specific activity of the MAc and MOxS index (MOSI) in an age-matched control (Co), AD and Swedish Familial AD (SFAD) post-mortem autopsies collected from frontal cortex (FC) and occipital primary cortex (OC) regions of the brain. We also examined whether the mitochondrial neuroprotective signalling molecules glutathione, melatonin and 17-β-estradiol (17βE) and mitochondrially active pro-oxidant neurotoxic amyloid-β peptide can modulate the activity of the MAc isolated from FC and OC regions similarly or differently in the case of Co, AD and SFAD. The activity of redox-sensitive MAc may directly depend on the mitochondrial oxidant/antioxidant balance in age-matched Co, AD and SFAD brain regions.  相似文献   

10.
Alzheimer's disease (AD) is the most common cause of dementia, affecting more than 10% of people over the age of 65. Age is the greatest risk factor for AD, although a combination of genetic, lifestyle and environmental factors also contribute to disease development. Common features of AD are the formation of plaques composed of beta‐amyloid peptides (Aβ) and neuronal death in brain regions involved in learning and memory. Although Aβ is neurotoxic, the primary mechanisms by which Aβ affects AD development remain uncertain and controversial. Mouse models overexpressing amyloid precursor protein and Aβ have revealed that Aβ has potent effects on neuroinflammation and cerebral blood flow that contribute to AD progression. Therefore, it is important to consider how endogenous signalling in the brain responds to Aβ and contributes to AD pathology. In recent years, Aβ has been shown to affect ATP release from brain and blood cells and alter the expression of G protein‐coupled P2Y receptors that respond to ATP and other nucleotides. Accumulating evidence reveals a prominent role for P2Y receptors in AD pathology, including Aβ production and elimination, neuroinflammation, neuronal function and cerebral blood flow.  相似文献   

11.
In the absence of efficient diagnostic and therapeutic tools, Alzheimer's disease (AD) is a major public health concern due to longer life expectancy in the Western countries. Although the precise cause of AD is still unknown, soluble β-amyloid (Aβ) oligomers are considered the proximate effectors of the synaptic injury and neuronal death occurring in the early stages of AD. Aβ oligomers may directly interact with the synaptic membrane, leading to impairment of synaptic functions and subsequent signalling pathways triggering neurodegeneration. Therefore, membrane structure and lipid status should be considered determinant factors in Aβ-oligomer-induced synaptic and cell injuries, and therefore AD progression. Numerous epidemiological studies have highlighted close relationships between AD incidence and dietary patterns. Among the nutritional factors involved, lipids significantly influence AD pathogenesis. It is likely that maintenance of adequate membrane lipid content could prevent the production of Aβ peptide as well as its deleterious effects upon its interaction with synaptic membrane, thereby protecting neurons from Aβ-induced neurodegeneration. As major constituents of neuronal lipids, n-3 polyunsaturated fatty acids are of particular interest in the prevention of AD valuable diet ingredients whose neuroprotective properties could be essential for designing preventive nutrition-based strategies. In this review, we discuss the functional relevance of neuronal membrane features with respect to susceptibility to Aβ oligomers and AD pathogenesis, as well as the prospective capacities of lipids to prevent or to delay the disease.  相似文献   

12.
Insulin receptors in the brain are found in high densities in the hippocampus, a region that is fundamentally involved in the acquisition, consolidation, and recollection of new information. Using the intranasal method, which effectively bypasses the blood-brain barrier to deliver and target insulin directly from the nose to the brain, a series of experiments involving healthy humans has shown that increased central nervous system (CNS) insulin action enhances learning and memory processes associated with the hippocampus. Since Alzheimer's disease (AD) is linked to CNS insulin resistance, decreased expression of insulin and insulin receptor genes and attenuated permeation of blood-borne insulin across the blood-brain barrier, impaired brain insulin signaling could partially account for the cognitive deficits associated with this disease. Considering that insulin mitigates hippocampal synapse vulnerability to amyloid beta and inhibits the phosphorylation of tau, pharmacological strategies bolstering brain insulin signaling, such as intranasal insulin, could have significant therapeutic potential to deter AD pathogenesis.  相似文献   

13.
Defective insulin secretion is a feature of type 2 diabetes that results from inadequate compensatory increase in β-cell mass, decreased β-cell survival and impaired glucose-dependent insulin release. Pancreatic β-cell proliferation, survival and secretion are thought to be regulated by signalling pathways linked to G-protein coupled receptors (GPCRs), such as the glucagon-like peptide-1 (GLP-1) and the pituitary adenylate cyclase-activating polypeptide (PACAP) receptors. β-arrestin-1 serves as a multifunctional adaptor protein that mediates receptor desensitization, receptor internalization, and links GPCRs to downstream pathways such as tyrosine kinase Src, ERK1/2 or Akt/PKB. Importantly, recent studies found that β-arrestin-1 mediates GLP-1 signalling to insulin secretion, GLP-1 antiapoptotic effect by phosphorylating the proapoptotic protein Bad through ERK1/2 activation, and PACAP potentiation of glucose-induced long-lasting ERK1/2 activation controlling IRS-2 expression. Together, these novel findings reveal an important functional role for β-arrestin-1 in the regulation of insulin secretion and β-cell survival by GPCRs.  相似文献   

14.
Calcium dysregulation in Alzheimer's disease   总被引:5,自引:1,他引:4  
Alzheimer disease (AD) is the most common form of adult dementia. Its pathological hallmarks are synaptic degeneration, deposition of amyloid plaques and neurofibrillary tangles, leading to neuronal loss. A few hypotheses have been proposed to explain AD pathogenesis. The beta-amyloid (Abeta) and hyperphosphorylated tau hypotheses suggest that these proteins are the main players in AD development. Another hypothesis proposes that the dysregulation of calcium homeostasis may be a key factor in accelerating other pathological changes. Although Abeta and tau have been extensively studied, recently published data provide a growing body of evidence supporting the critical role of calcium signalling in AD. For example, presenilins, which are mutated in familial cases of AD, were demonstrated to form low conductance calcium channels in the ER and elevated cytosolic calcium concentration increases amyloid generation. Moreover, memantine, an antagonist of the NMDA-calcium channel receptor, has been found to have a beneficial effect for AD patients offering novel possibilities for a calcium signalling targeted therapy of AD. This review underscores the growing importance of calcium ions in AD development and focuses on the relevant aspects of calcium homeostasis.  相似文献   

15.
Insulin is important for brain function and neuronal survival. Insulin signaling is initiated by the phosphorylation of insulin receptor substrate‐1 (IRS‐1) at tyrosine (pTyr) residue. However, IRS‐1 is inhibited by phosphorylation at serine (pSer). In Alzheimer's disease (AD), oxidative stress and accumulation of amyloid beta (Aβ) induce neuroinflammation, which augments pSer‐IRS‐1 and reduces pTyr‐IRS‐1 disturbing insulin signaling pathway. Coenzyme Q10 (CoQ10) and biotin possess antioxidant and anti‐inflammatory properties, and, in this study, their impact on insulin signaling is investigated in an aluminium chloride (AlCl3) model of AD. AD was induced by oral administration of AlCl3 (75 mg/kg) for 60 days. Biotin (2 mg/kg), CoQ10 (10 mg/kg), and their combination were supplemented concomitantly with AlCl3 for 60 days. Memory test and histological examination were performed. Brain levels of lipid peroxides, antioxidants (reduced glutathione and superoxide dismutase), inflammatory markers (tumor necrosis factor‐α, interleukin‐6 [IL‐6], IL‐1, and nuclear factor κB), and phosphorylated Akt (survival kinase) as well as protein levels of Aβ, IRS‐1 (pTyr and pSer), and caspase‐3 (apoptotic marker) were determined. AlCl3 resulted in impaired memory, significant increase in Aβ, lipid peroxides, inflammatory markers, caspase‐3, and pSer‐IRS‐1, with significant reduction of the antioxidants, pTyr‐IRS‐1, and p‐Akt reflecting Aβ‐induced inflammation and defective insulin signaling. Histological examination revealed focal aggregations of inflammatory cells and neuronal degeneration. The biochemical deviations and histological changes were attenuated by the concomitant treatment with biotin and, to greater extent, with CoQ10 and the combination. In conclusion, biotin and CoQ10 could protect against AD via attenuating inflammatory response and enhancing insulin signaling.  相似文献   

16.
Heterologous desensitization is a term that describes the observation that chronic exposure of a cell to an agonist attenuates its response to other agonists. To characterize the cellular mechanisms that might be responsible for heterologous desensitization in an insulin secretory cell system (INS-1), we investigated the link between G-protein alphai2 level and insulin secretion as the biological effect after prolonged incubation with glucose-dependent insulinotropic polypeptide (GIP). Persistent activation (8 h) of the GIP signalling pathway decreased the GLP (glucagon-like peptide)-1 dependent insulin secretion (specific radioimmunoassay) accompanied by an upregulation of G-protein alphai2 protein level to about 126% whereas G-protein alphai3 and alphas protein levels remained unchanged (assessed by Western blots using specific antibodies). This was accompanied by similar changes in Galphai2 mRNA. By using either the CaM kinase II inhibitor KN-62, the calcineurin inhibitor FK 506 or the protein kinase A (PKA) inhibitor Rp-8-Br-cAMPS, the GIP-mediated Galphai2 mRNA increase was fully reversed. Heterologous desensitization of GLP-1-dependent insulin secretion by pretreatment with GIP, however, was not inhibited by calcium/calmodulin-dependent enzymes (using KN-62 and FK 506), but only by suppressing the cAMP/PKA signalling pathway using Rp-8-Br-cAMPS. The outcome is not disturbed by effects initiated by these compounds per se since an 8-h preincubation of cells did not affect glucose-induced insulin secretion. We, therefore, suggest that heterologous desensitization in INS-1 cells may be mediated by Galphai2 changes but depend on the cAMP/PKA signalling pathway probably distant form the Galphai2 protein.  相似文献   

17.
Recent studies have highlighted that diabetes mellitus (DM) is a strong risk factor for Alzheimer’s disease (AD). Insulin resistance and/or hyperinsulinemia is one of the main characteristics of type 2 DM. Numerous epidemiological studies have demonstrated that insulin resistance contributes to AD pathogenesis. However the molecular mechanisms of association between these still remain elusive. Among the various possible mechanisms, the GSK-3β activity has been reported to be impaired in insulin-resistance, type 2 DM and AD. Thus, the present study was designed to explore the neuroprotective role of GSK3 β inhibitor, Indirubin-3′-monoxime (IMX) in insulin resistance induced cognitive impairment. Further, we have explored the possible molecular mechanism involved in cognitive impairment associated with insulin resistance. The mice subjected to high fat diet exhibited characteristic features of insulin resistance viz. increased serum glucose, triglycerides, cholesterol, insulin levels and impaired spatial learning and memory ability along with reduced brain insulin level, elevated oxidative stress and acetylcholinesterase (AChE) activity. The observed changes occurred concurrently with reduced brain derived neurotrophic factor. In contrast, the mice treated with IMX showed a significant reduction in plasma glucose, triglycerides, cholesterol, insulin levels and improvement in learning and memory performance, attenuated the oxidative stress and AChE activity. Moreover, IMX dose dependently augment the brain insulin and BDNF levels in HFD fed mice. Based upon these findings it could be suggested that GSK3 β inhibition could prove to be beneficial in insulin resistance induced cognitive deficit and this neuroprotection could be the result of enhanced BDNF based synaptic plasticity.  相似文献   

18.
19.
D G Munoz  H Feldman 《CMAJ》2000,162(1):65-72
It is now understood that genetic factors play a crucial role in the risk of developing Alzheimer''s disease (AD). Rare mutations in at least 3 genes are responsible for early-onset familial AD. A common polymorphism in the apolipoprotein E gene is the major determinant of risk in families with late-onset AD, as well as in the general population. Advanced age, however, remains the major established risk factor for AD, although environmental variables may also have some role in disease expression. Some pathogenic factors directly associated with aging include oxidative damage and mutations in messenger RNA. Other factors unrelated to the aging process may, in the future, be amenable to therapeutic intervention by way of estrogen replacement therapy for postmenopausal women, anti-inflammatory drug therapy and reducing vascular risk factors. Older theories, such as aluminum playing a role in the pathogenesis of AD, have been mostly discarded as our understanding of pathogenic mechanisms of AD has advanced.  相似文献   

20.
Various neurodegenerative disorders and syndromes are associated with oxidative stress. The deleterious consequences of excessive oxidations and the pathophysiological role of reactive oxygen species (ROS) have been intensively studied in Alzheimer's disease (AD). Neuronal cell dysfunction and oxidative cell death caused by the AD-associated amyloid beta protein may causally contribute to the pathogenesis of AD. Antioxidants that prevent the detrimental consequences of ROS are consequently considered to be a promising approach to neuroprotection. While there is ample experimental evidence demonstrating neuroprotective activities of antioxidants in vitro, the clinical evidence that antioxidant compounds act as protective drugs is still relatively scarce. Nevertheless, antioxidants constitute a major part of the panel of clinical and experimental drugs that are currently considered for AD prevention and therapy. Here, focus is put mainly on phenolic antioxidant structures that belong to the class of direct antioxidants. Experimental and clinical evidence for the neuroprotective potential of alpha-tocopherol (vitamin E) and 17beta-estradiol (estrogen) is shortly summarized and an outlook is given on possible novel antioxidant lead structures with improved pharmacological features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号