首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms responsible for development of inflammatory bowel disease (IBD) have not been fully elucidated, although the main cause of disease pathology is attributed to up-regulated inflammatory processes. The aim of this study was to investigate frequencies of polymorphisms in genes encoding pro-inflammatory and anti-inflammatory markers in IBD patients and controls. We determined genotypes of patients with IBD (n= 172) and healthy controls (n= 389) for polymorphisms in genes encoding various cytokines (interleukin (IL)-1beta, IL-6, tumour necrosis factor (TNF), IL-10, IL-1 receptor antagonist). Association of these genotypes to disease incidence and pathophysiology was investigated. No strong association was found with occurrence of IBD. Variation was observed between the ulcerative colitis study group and the control population for the TNF-alpha-308 polymorphism (p= 0.0135). There was also variation in the frequency of IL-6-174 and TNF-alpha-308 genotypes in the ulcerative colitis group compared with the Crohn's disease group (p= 0.01). We concluded that polymorphisms in inflammatory genes are associated with variations in IBD phenotype and disease susceptibility. Whether the polymorphisms are directly involved in regulating cytokine production, and consequently pathophysiology of IBD, or serve merely as markers in linkage disequilibrium with susceptibility genes remains unclear.  相似文献   

2.
The Fcgamma receptors play important roles in the initiation and regulation of many immunological and inflammatory processes, and genetic variants (FCGR) have been associated with numerous autoimmune and infectious diseases. The data in rheumatoid arthritis (RA) are conflicting and we previously demonstrated an association between FCGR3A and RA. In view of the close molecular proximity with FCGR2A, FCGR2B and FCGR3B, additional polymorphisms within these genes and FCGR haplotypes were examined to refine the extent of association with RA. Biallelic polymorphisms in FCGR2A, FCGR2B and FCGR3B were examined for association with RA in two well characterized UK Caucasian and North Indian/Pakistani cohorts, in which FCGR3A genotyping had previously been undertaken. Haplotype frequencies and linkage disequilibrium were estimated across the FCGR locus and a model-free analysis was performed to determine association with RA. This was followed by regression analysis, allowing for phase uncertainty, to identify the particular haplotype(s) that influences disease risk. Our results reveal that FCGR2A, FCGR2B and FCGR3B were not associated with RA. The haplotype with the strongest association with RA susceptibility was the FCGR3A-FCGR3B 158V-NA2 haplotype (odds ratio 3.18, 95% confidence interval 1.13-8.92 [P = 0.03] for homozygotes compared with all genotypes). The association was stronger in the presence of nodules (odds ratio 5.03, 95% confidence interval 1.44-17.56; P = 0.01). This haplotype was also more common in North Indian/Pakistani RA patients than in control individuals, but not significantly so. Logistic regression analyses suggested that FCGR3A remained the most significant gene at this locus. The increased association with an FCGR3A-FCGR3B haplotype suggests that other polymorphic variants within FCGR3A or FCGR3B, or in linkage disequilibrium with this haplotype, may additionally contribute to disease pathogenesis.  相似文献   

3.

Background

Graves Disease (GD) is an autoimmune disorder affected by an interaction of multiple genes such as Nuclear Factor-κB (NF-κB), Nuclear Factor-κB Inhibitor (NF-κBIA), Poly (ADP-ribose) polymerase-1 (PARP-1) and cytokines like Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and Tumor Necrosis Factor-α (TNF-α) and mostly accompanied by an ocular disorder, Graves Ophthalmopathy (GO). We hypothesize that there is a relationship between GD, GO, polymorphisms of inflammatory related genes and their association with cytokines, which may play important roles in autoimmune and inflammatory processes.

Subjects and methods

To confirm our hypothesis, we studied the polymorphisms and cytokine levels of 120 patients with GD and GO using PCR-RFLP and ELISA methods, respectively.

Results

We found that patients with GG genotype and carriers of G allele of PARP-1 G1672A polymorphism are at risk in the group having GD (p = 0.0007) while having GA genotype may be protective against the disease. PARP-1 C410T polymorphism was found to be associated with GO by increasing the risk by 1.7 times (p = 0.004). Another risk factor for development of GO was the polymorphism of del/ins of NFkB1 gene (p = 0.032) that increases the risk by 39%. Levels of cytokines were also elevated in patients with GD, but no association was found between levels of cytokines and the development of GO as there was no change in levels of cytokines.

Conclusions

We suggest that, PARP-1 and NFkB1 gene polymorphisms may be risk factors for developing Graves Disease and Ophthalmopathy.  相似文献   

4.
The ubiquitin-editing enzyme A20 (tumor necrosis factor-α-induced protein 3) serves as a critical brake on nuclear factor κB (NF-κB) signaling. In humans, polymorphisms in or near the A20 gene are associated with several inflammatory disorders, including psoriasis. We show here that epidermis-specific A20-knockout mice (A20(EKO)) develop keratinocyte hyperproliferation, but no signs of skin inflammation, such as immune cell infiltration. However, A20(EKO) mice clearly developed ectodermal organ abnormalities, including disheveled hair, longer nails and sebocyte hyperplasia. This phenotype resembles that of mice overexpressing ectodysplasin-A1 (EDA-A1) or the ectodysplasin receptor (EDAR), suggesting that A20 negatively controls EDAR signaling. We found that A20 inhibited EDAR-induced NF-κB signaling independent from its de-ubiquitinating activity. In addition, A20 expression was induced by EDA-A1 in embryonic skin explants, in which its expression was confined to the hair placodes, known to be the site of EDAR expression. In summary, our data indicate that EDAR-induced NF-κB levels are controlled by A20, which functions as a negative feedback regulator, to assure proper skin homeostasis and epidermal appendage development.  相似文献   

5.
Rheumatoid arthritis, a disabling autoimmune disease, is associated with altered gene expression in circulating immune cells and synovial tissues. Accumulating evidence has suggested that long non‐coding RNAs (lncRNAs), which modulate gene expression through multiple mechanisms, are important molecules involved in immune and inflammatory pathways. Importantly, many studies have reported that lncRNAs can be utilized as biomarkers for disease diagnosis and prognostication. Recently, dysregulation of lncRNAs in rheumatoid arthritis and other autoimmune diseases has been revealed. Experimental studies also confirmed their crosstalk with matrix metalloproteinases, nuclear factor‐κB signalling and T‐cell response pertinent to autoimmunity and inflammation. Circulating lncRNAs, such as HOTAIR, differentiated patients with rheumatoid arthritis from healthy subjects. Taken together, lncRNAs are good candidates as biomarkers and therapeutic targets in rheumatoid arthritis. Further investigation on in vivo delivery of these regulatory molecules and large‐cohort validation of their clinical applicability may be useful.  相似文献   

6.
Chronic inflammation is acknowledged to be a hallmark of neoplasia—both in cancer initiation and metastasis progression. Here we summarise data suggesting that S100A4 is а trigger of the cascade events that establish an inflammatory milieu and provide a potent flame for primary tumour growth and especially for its metastatic dissemination. The S100A4 protein belongs to the S100 superfamily of small Ca2+-binding proteins. Well established function of S100A4 is associated with induction and promotion of tumour metastasis. However, this protein is also involved in the pathogenesis of major human non-communicable diseases (NCD), such as autoimmune diseases, fibrosis, and other disorders. Therefore, we suggest that S100A4 is a common pro-inflammatory factor involved in the pathogenesis of diverse NCD including cancer.  相似文献   

7.
doi:10.1111/j.1741‐2358.2009.00291.x
Interleukin‐6 (G‐174C) and tumour necrosis factor‐alpha (G‐308A) gene polymorphisms in geriatric patients with chronic periodontitis Background and objective: Periodontitis is a chronic inflammatory disease, and genetic factors may have an important role in its severity. Polymorphisms in the promoter regions of the interleukin‐6 (IL‐6) and tumour necrosis factor‐α (TNF‐α) genes have been reported to cause changes in the production of these cytokines. The aim of this study was to evaluate the possible role of IL‐6 (G?174C) and tumour necrosis factor (G?308A) polymorphisms, in the severity of chronic periodontitis in an elderly population. Materials and methods: In this study, a group of 65 elderly women, comprising 17 patients with moderate chronic periodontitis, 21 with severe chronic periodontitis and 27 healthy patients were selected. DNA was isolated from all subjects, and polymerase chain reaction was used to study the IL‐6 and TNF‐α gene polymorphisms. Results: The results of this study showed a significant difference in the allele and genotype frequencies of IL‐6 gene polymorphism between patients with periodontal disease and controls. Subjects carrying the G/G genotype of IL‐6 were most severely affected by periodontitis. The TNF‐α gene polymorphism showed no association with chronic periodontitis between patients and controls. Conclusion: The results suggest that the IL‐6 gene polymorphism may be associated with chronic periodontitis, and that TNF‐α gene polymorphism may not be involved in the progression of chronic periodontitis in the population of elderly Brazilian women.  相似文献   

8.
The sheep has worldwide agricultural importance, yet the genetic control of the immune responses underlying susceptibility or resistance to ovine disease is little understood. Here, we identify six novel polymorphisms in the ovine immune response genes interferon-γ (IFNG), tumour necrosis factor-α (TNF), interleukin-1β (IL1B) and interleukin-4 (IL4) in pedigree Charollais flocks. We confirm the presence of previously reported polymorphisms in IFNG and IL1B in Charollais. Restriction fragment length polymorphism (RFLP) genotyping assays have been developed for four polymorphisms, IFNGg.168C>T, IFNGg.285A>G, IL1Bg.689C>T and TNFg.3UTRA>G, and a Taqman genotyping assay has been developed for IL4g.485C>T. The previously described IL2g.647C>T polymorphism is adapted for RFLP analysis. Allele frequencies are described in Charollais, Lleyn and Suffolk cross sheep. Polymorphisms are typed in both Charollais ewes and lambs and analysed against abortion phenotypes. A subset of animals have also been analysed for the presence of Toxoplasma gondii, an abortion-causing protozoan. The IFNGg.168T allele is shown to be associated with increased risk of a ewe having an abortion, while the IFNGg.285G allele is associated with increased risk of a lamb being aborted. These assays provide tools for the investigation of the genetic basis of other phenotypes in sheep, including infectious disease susceptibility.  相似文献   

9.
Interleukin 7 (IL-7), originally described as a B cell growth factor, has recently been found to play a critical role in T and B lymphocyte development and function. This study evaluated the effects of IL-7 on myelin specific T cells. IL-7 strongly enhanced proliferation of proteolipid protein (PLP) 139-151 specific T cells in association with elevated secretion of the T cell growth factor IL-2. Co-stimulation with IL-7 preferentially increased the levels of pro-inflammatory cytokines secreted by PLP 139-151 specific T cells and adoptive transfer of these cells into naive recipients induced a profound enhancement of experimental autoimmune encephalomyelitis, an animal model for the human disease multiple sclerosis. These results suggest that IL-7 may be a critical co-stimulatory factor that enhances the extrathymic expansion of inflammatory T cells and may play an important role in the pathogenesis of a number of inflammatory autoimmune disorders.  相似文献   

10.
The importance of tumor necrosis factor (TNF)-alpha and the TNF receptor gene polymorphisms in the etipathogenesis of inflammatory bowel disease (IBD) has not been elucidated. DNA from peripheral blood samples was obtained from 124 patients with Crohn's disease (CD), 106 patients with ulcerative colitis (UC), and 111 unrelated healthy controls. We examined two single nucleotide polymorphisms (SNPs) of the TNF-alpha gene, TNF (-308 G/A and -238 G/A), an SNP of the TNF receptor superfamily member 1A gene, TNFRSF1A(also known as TNFR1), at codon 12 in exon 1 (CCA/CCG), and two SNPs of the 1B gene, TNFRSF1B (also known as TNFR2), (1466 A/G and 1493 C/T). There was a difference in the carrier frequency for haplotype AG (-308 A, -238 G) between UC patients and the controls (OR=4.76, 95% CI=1.53-14.74, P<0.01). We found a significant difference in carrier frequency for haplotype AT (1466 A, 1493 T) of the TNFRSF1B gene between CD patients and the controls (OR=2.13, 95% CI=1.08-4.21, P<0.05). The significance proved to be greater in CD patients with both internal and external fistula (OR=4.8, 95% CI=1.73-13.33, P<0.01), and in those who were poor responders ( n=22) to our treatments, which consisted of nutritional therapy, medical therapy and surgical therapy (OR=9.24, 95% CI=3.37-25.36, P<0.001). This study suggests that one of the genes responsible for UC may be the TNF gene, or an adjacent gene, and that TNFRSF1B gene polymorphisms contribute greatly to the increased onset risk of CD and to the disease behavior.  相似文献   

11.
Numerous reports have demonstrated that CD4(+)CD25(+) regulatory T cells (Tregs) from individuals with a range of human autoimmune diseases, including type 1 diabetes, are deficient in their ability to control autologous proinflammatory responses when compared with nondiseased, control individuals. Treg dysfunction could be a primary, causal event or may result from perturbations in the immune system during disease development. Polymorphisms in genes associated with Treg function, such as IL2RA, confer a higher risk of autoimmune disease. Although this suggests a primary role for defective Tregs in autoimmunity, a link between IL2RA gene polymorphisms and Treg function has not been examined. We addressed this by examining the impact of an IL2RA haplotype associated with type 1 diabetes on Treg fitness and suppressive function. Studies were conducted using healthy human subjects to avoid any confounding effects of disease. We demonstrated that the presence of an autoimmune disease-associated IL2RA haplotype correlates with diminished IL-2 responsiveness in Ag-experienced CD4(+) T cells, as measured by phosphorylation of STAT5a, and is associated with lower levels of FOXP3 expression by Tregs and a reduction in their ability to suppress proliferation of autologous effector T cells. These data offer a rationale that contributes to the molecular and cellular mechanisms through which polymorphisms in the IL-2RA gene affect immune regulation, and consequently upon susceptibility to autoimmune and inflammatory diseases.  相似文献   

12.
The RING domain protein RNF11 is overexpressed in breast cancers and promotes tumour growth factor‐beta (TGF‐β) signalling. RNF11 has been proposed to regulate TGF‐β signalling by interacting with HECT‐ and SCF‐type E3 ligases; however, the role of RNF11 in other signalling pathways is poorly understood. Here, we demonstrate a novel function of RNF11 as a negative regulator of NF‐κB and jun N‐terminal kinase (JNK) signalling pathways. Knockdown of RNF11 with siRNA resulted in persistent tumour necrosis factor (TNF)‐ and lipopolysaccharide (LPS)‐mediated NF‐κB and JNK signalling. RNF11 interacted with the NF‐κB inhibitor A20 and its regulatory protein TAX1BP1 in a stimulus‐dependent manner. RNF11 negatively regulated RIP1 and TRAF6 ubiquitination upon stimulation with TNF and LPS, respectively. Furthermore, RNF11 was required for A20 to interact with and inactivate RIP1 to inhibit TNF‐mediated NF‐κB activation. Our studies reveal that RNF11, together with TAX1BP1 and Itch, is an essential component of an A20 ubiquitin‐editing protein complex that ensures transient activation of inflammatory signalling pathways.  相似文献   

13.
The inflammatory response to chronic infections such as periodontitis may be central to the systemic implications of these diseases. This study examined the possible association between specific gene polymorphisms and the systemic inflammatory response in individuals suffering from severe generalized periodontitis. Ninety-four subjects with periodontitis were genotyped for polymorphisms in IL-1A (-889), IL-1B (-511, +3954), TNF-A (-308), IL-6 (-174) and TLR4 (-299, -399) genes. We found that the genotypes for IL-1A or IL-6 are associated with higher levels of serum IL-6 (P < 0.03) and serum CRP (P < 0.05), similarly the TNF-A genotype is associated with higher levels of serum IL-6 (P < 0.05) after correction for age, body mass index, gender, ethnicity and cigarette smoking. Systemic inflammatory responses are higher in severe periodontitis patients carrying rare alleles for functional inflammatory gene polymorphisms. These results suggest that cytokine genotypes are important determinants of the systemic inflammatory response in subjects with periodontitis. Genetic polymorphism therefore, may in part explain the reported association between periodontitis and systemic disease.  相似文献   

14.
The role of cytokines in the pathogenesis of inflammatory eye disease.   总被引:10,自引:0,他引:10  
A coherent view of the role of cytokines in inflammatory eye disease is emerging as a result of studies both in man and experimental animals. Cytokines have been demonstrated in ocular tissue obtained from patients with intraocular inflammation (uveitis) (gamma interferon, IL-2) and have been shown to induce inflammation in experimental animals after intraocular injection [(IL-1, IL-6, IL-8, tumour necrosis factor (TNF), granulocyte macrophage-colony stimulating factor (GM-CSF)]. Several unique features of the immunology of the eye such as the immunosuppression associated with anterior chamber associated immune deviation (ACAID) may be due to the effects of cytokines. Similarly, common complications of ocular inflammation such as glaucoma, keratic precipitates, retinal (macular) oedema and neovascularization may be mediated by cytokines. Understanding of the role of cytokines in inflammatory eye disease has the potential to lead to the development of therapies to abrogate the effects of these important mediators of the inflammatory response.  相似文献   

15.
16.
Zhu S  Pan W  Song X  Liu Y  Shao X  Tang Y  Liang D  He D  Wang H  Liu W  Shi Y  Harley JB  Shen N  Qian Y 《Nature medicine》2012,18(7):1077-1086
Inflammatory cytokines such as interleukin-17 (IL-17) promote inflammatory autoimmune diseases. Although several microRNAs (miRNAs) have been shown to regulate autoimmune pathogenesis by affecting lymphocyte development and function, the role of miRNAs in resident cells present in inflammatory lesions remains unclear. Here we show that miR-23b is downregulated in inflammatory lesions of humans with lupus or rheumatoid arthritis, as well as in the mouse models of lupus, rheumatoid arthritis or multiple sclerosis. IL-17 downregulates miR-23b expression in human fibroblast-like synoviocytes, mouse primary kidney cells and astrocytes and is essential for the downregulation of miR-23b during autoimmune pathogenesis. In turn, miR-23b suppresses IL-17-, tumor necrosis factor α (TNF-α)- or IL-1β-induced NF-κB activation and inflammatory cytokine expression by targeting TGF-β-activated kinase 1/MAP3K7 binding protein 2 (TAB2), TAB3 and inhibitor of nuclear factor κ-B kinase subunit α (IKK-α) and, consequently, represses autoimmune inflammation. Thus, IL-17 contributes to autoimmune pathogenesis by suppressing miR-23b expression in radio-resident cells and promoting proinflammatory cytokine expression.  相似文献   

17.
18.
NOD1 {nucleotide-binding oligomerization domain 1; NLRC [NOD-LRR (leucine-rich repeat) family with CARD (caspase recruitment domain) 1]} and NOD2 (NLRC2) are among the most prominent members of the NLR (NOD-LRR) family –proteins that contain nucleotide-binding NACHT domains and receptor-like LRR domains. With over 20 members identified in humans, NLRs represent important components of the mammalian innate immune system, serving as intracellular receptors for pathogens and for endogenous molecules elaborated by tissue injury. NOD1 and NOD2 proteins operate as microbial sensors through the recognition of specific PG (peptidoglycan) constituents of bacteria. Upon activation, these NLR family members initiate signal transduction mechanisms that include stimulation of NF-κB (nuclear factor-κB), stress kinases, IRFs (interferon regulatory factors) and autophagy. Hereditary polymorphisms in the genes encoding NOD1 and NOD2 have been associated with an increasing number of chronic inflammatory diseases. In fact, potential roles for NOD1 and NOD2 in inflammatory disorders have been revealed by investigations using a series of animal models. In the present review, we describe recent experimental findings associating NOD1 and NOD2 with various autoimmune and chronic inflammatory disorders, and we discuss prospects for development of novel therapeutics targeting these NLR family proteins.  相似文献   

19.
Combining different standard therapies with immunotherapy for the treatment of solid tumours has proven to yield a greater clinical benefit than when each is applied separately; however, the percentage of complete responses is still far from optimal, and there is an urgent need for improved treatment modalities. The latest literature data suggest that tertiary lymphoid structures (TLS), previously shown to correlate with the severity of autoimmune diseases or transplant rejection, are also formed in tumours, have a significant beneficial effect on survival and might reflect the generation of an effective immune response in close proximity to the tumour. Thus, the facilitation of TLS formation in tumour stroma could provide novel means to improve the efficiency of immunotherapy and other standard therapies. However, little is known about the mechanisms regulating the formation of tumour-associated TLS. Studies of chronic inflammatory diseases and transplant rejection have demonstrated that TLS formation and/or function requires the presence of B cells. Additionally, the infiltration of B cells into the tumour stroma has been demonstrated to be a significant prognostic factor for improved survival in different human tumours. This suggests that B cells could play a beneficial role in anti-tumour immune response not only in the context of antibody production, antigen presentation and Th1-promoting cytokine production, but also TLS formation. This review focuses on the latest discoveries in tumour-infiltrating B cell functions, their role in TLS formation and relevance in human tumour control, revealing novel opportunities to improve cancer therapies.  相似文献   

20.
Monocyte-derived cells display highly variable cytokine secretion upon pattern recognition receptor (PRR) stimulation across individuals; such variability likely affects interindividual inflammatory/autoimmune disease susceptibility. To define mechanisms for this heterogeneity, we examined PRR-induced monocyte-derived cell cytokine secretion from a large cohort of healthy individuals. Although cytokine secretion ranged widely among individuals, the magnitude of cytokine induction after individual nucleotide-binding oligomerization domain 2 (Nod2) and TLR2 stimulation (a cohort of 86 individuals) or stimulation of multiple TLRs (a cohort of 77 individuals), either alone or in combination with Nod2, was consistent intraindividually across these stimuli. Nod2 and TLRs signal through IFN regulatory factor 5 (IRF5), and common IRF5 polymorphisms confer risk for autoimmunity. We find that cells from rs2004640 IRF5 risk-associated allele carriers secrete increased cytokines upon individual or synergistic PRR stimulation in a gene dose- and ligand dose-dependent manner in both monocyte-derived dendritic cells and monocyte-derived macrophages. IRF5 expression knockdown in IRF5 risk allele carrier cells significantly decreases PRR-induced cytokines. Moreover, we find that IRF5 knockdown profoundly decreases Nod2-mediated MAPK and NF-κB pathway activation, whereas the PI3K and mammalian target of rapamycin pathways are not impaired. Finally, the IRF5 rs2004640 polymorphism is a major determinant of the variance (r(2) = 0.53) in Nod2-induced cytokine secretion by monocyte-derived cells from different individuals. We therefore show a profound contribution of a single gene to the variance in interindividual PRR-induced cytokines. The hyperresponsiveness of IRF5 disease-associated polymorphisms to a wide spectrum of microbial triggers has broad implications on global immunological responses, host defenses against pathogens, and inflammatory/autoimmune disease susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号