首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 822 毫秒
1.
Plasma phospholipid transfer protein (PLTP) is thought to be involved in the remodeling of high density lipoproteins (HDL), which are atheroprotective. It is also involved in the metabolism of very low density lipoproteins (VLDL). Hence, PLTP is thought to be an important factor in lipoprotein metabolism and the development of atherosclerosis. We have overexpressed PLTP in mice heterozygous for the low density lipoprotein (LDL) receptor, a model for atherosclerosis. We show that increased PLTP activity results in a dose-dependent decrease in HDL, and a moderate stimulation of VLDL secretion (相似文献   

2.
Phospholipid transfer protein (PLTP) facilitates the transfer of phospholipids from triglyceride-rich lipoproteins into HDL. PLTP has been shown to be an important factor in lipoprotein metabolism and atherogenesis. Here, we report that chronic high-fat, high-cholesterol diet feeding markedly increased plasma cholesterol levels in C57BL/6 mice. PLTP deficiency attenuated diet-induced hypercholesterolemia by dramatically reducing apolipoprotein E-rich lipoproteins (-88%) and, to a lesser extent, LDL (-40%) and HDL (-35%). Increased biliary cholesterol secretion, indicated by increased hepatic ABCG5/ABCG8 gene expression, and decreased intestinal cholesterol absorption may contribute to the lower plasma cholesterol in PLTP-deficient mice. The expression of proinflammatory genes (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) is reduced in aorta of PLTP knockout mice compared with wild-type mice fed either a chow or a high-cholesterol diet. Furthermore, plasma interleukin-6 levels are significantly lower in PLTP-deficient mice, indicating reduced systemic inflammation. These data suggest that PLTP appears to play a proatherogenic role in diet-induced hyperlipidemic mice.  相似文献   

3.
Lipopolysaccharides (LPS) are components of Gram-negative bacteria. The cellular response from the host to LPS is mediated through stepwise interactions involving the lipopolysaccharide-binding protein (LBP), CD14, and MD-2, which produces the rearrangement of TLR4. In addition to LBP, the lipid transfer/lipopolysaccharide-binding protein gene family includes the phospholipid transfer protein (PLTP). Here we show that the intravascular redistribution of LPS from the plasma lipoprotein-free fraction toward circulating lipoproteins is delayed in PLTP-deficient mice. In agreement with earlier in vitro studies, which predicted the neutralization of the endotoxic properties of LPS when associated with lipoproteins, significant increases in the plasma concentration of proinflammatory cytokines were found in PLTP-deficient as compared with wild type mice. Similar inflammatory damage occurred in tissues from wild type and PLTP-deficient mice 24 h after one single intraperitoneal injection of LPS but with a more severe accumulation of red blood cells in glomeruli of LPS-injected PLTP-deficient mice. Complementary ex vivo experiments on isolated splenocytes from wild type and PLTP-deficient mice further supported the ability of cell-derived PLTP to prevent LPS-mediated inflammation and cytotoxicity when combined with lipoprotein acceptors. Finally, PLTP deficiency in mice led to a significant increase in LPS-induced mortality. It is concluded that increasing circulating levels of PLTP may constitute a new and promising strategy in preventing endotoxic shock.  相似文献   

4.
5.
Plasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoproteins and mediates HDL conversion. PLTP-overexpressing mice have increased atherosclerosis. However, mice do not express cholesteryl ester transfer protein (CETP), which is involved in the same metabolic pathways as PLTP. Therefore, we studied atherosclerosis in heterozygous LDL receptor-deficient (LDLR(+/-)) mice expressing both human CETP and human PLTP. We used two transgenic lines with moderately and highly elevated plasma PLTP activity. In LDLR(+/-)/huCETPtg mice, cholesterol is present in both LDL and HDL. Both are decreased in LDLR(+/-)/huCETPtg/huPLTPtg mice (>50%). An atherogenic diet resulted in high levels of VLDL+LDL cholesterol. PLTP expression caused a strong PLTP dose-dependent decrease in VLDL and LDL cholesterol (-26% and -69%) and a decrease in HDL cholesterol (-70%). Surprisingly, atherosclerosis was increased in the two transgenic lines with moderately and highly elevated plasma PLTP activity (1.9-fold and 4.4-fold, respectively), indicating that the adverse effect of the reduction in plasma HDL outweighs the beneficial effect of the reduction in apolipoprotein B (apoB)-containing lipoproteins. The activities of the antiatherogenic enzymes paraoxonase and platelet-activating factor acetyl hydrolase were both PLTP dose-dependently reduced ( approximately -33% and -65%, respectively). We conclude that expression of PLTP in this animal model results in increased atherosclerosis in spite of reduced apoB-containing lipoproteins, by reduction of HDL and of HDL-associated antioxidant enzyme activities.  相似文献   

6.
Human plasma phospholipid transfer protein (PLTP) plays an important role in lipoprotein metabolism. In this study, we investigated the effects of lipoproteins on the secretion of PLTP in cultured BeWo choriocarcinoma cells. Low-density lipoproteins (LDLs) decreased PLTP secretion in a dose- and time-dependent manner, whereas very low density lipoproteins and high-density lipoproteins (HDLs) had little effect. LDL suppression of PLTP secretion was not altered by the inhibition of both LDL receptor and LDL receptor-related protein with receptor-associated protein. Mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor, U0126, could abolish the LDL-mediated inhibition of PLTP secretion. Furthermore, LDL, but not HDL, could stimulate the expression of MAPK phosphatase-1 (MKP-1) in BeWo cells that resulted in the inactivation of p44/p42 extracellular signal-regulated kinase (ERK) 1 and 2, the family members of MAPKs. These results support the conclusion that LDL-mediated suppression of PLTP secretion in BeWo cells is through a LDL receptor-independent MAPK signaling pathway.  相似文献   

7.
Current data suggest that phospholipid transfer protein (PLTP) has multiple metabolic functions, however, its physiological significance in humans remains to be clarified. To provide further insight into the role of PLTP in lipoprotein metabolism, plasma PLTP activity was measured, and lipoproteins were analyzed in 134 non-diabetic individuals on a controlled diet. Insulin sensitivity index (Si) and body fat composition were also determined. Plasma PLTP activity was comparable between men (n=56) and women (n=78). However, in women but not in men, plasma PLTP activity was positively correlated with cholesterol, triglyceride, low density lipoprotein (LDL) cholesterol, and apolipoprotein (apo) B (r=0.38-0.45, P< or =0.001), and with body mass index (BMI), subcutaneous and intra-abdominal fat (SCF, IAF) (r=0.27-0.29, P<0.02). Among the different apo B-containing lipoproteins (LpB) in women, PLTP was most highly correlated with intermediate density lipoproteins (IDL) and buoyant LDL (r=0.45-0.46, P<0.001). The correlation with IDL was significant only in women with BMI < or =27.5 kg/m(2) (n=56). In men with BMI < or =27.5 kg/m(2) (n=35), PLTP activity was significantly correlated with buoyant LDL (r=0.40, P<0.02) and high density lipoprotein (HDL) (r=0.43, P<0.01). These data provide evidence for a role of PLTP in LpB metabolism, particularly IDL and buoyant LDL. They also suggest that gender and obesity-related factors can modulate the impact of PLTP on LpB.  相似文献   

8.
Phospholipid transfer protein (PLTP), hepatic lipase (HL), and lipoprotein lipase (LPL) have all been reported to be intricately involved in HDL metabolism but the effect of PLTP on the apolipoprotein B-containing lipoproteins relative to that of HL and LPL has not been established. Due to our previous observation of a positive correlation of PLTP activity with plasma apoB and LDL cholesterol, the relationship of PLTP with the LDL subfractions was investigated and compared with that of HL and LPL. Plasma lipoproteins from 50 premenopausal women were fractionated by density gradient ultracentrifugation. Correlations were calculated between the cholesterol concentration of each fraction and plasma PLTP, HL, and LPL activity. Plasma PLTP activity was highly, positively, and selectively correlated with the cholesterol concentration of the buoyant LDL/dense IDL fractions, yet demonstrated a complete absence of an association with the dense LDL fractions. In contrast, HL was positively correlated with the dense LDL fractions but showed no association with buoyant LDL. LPL was also positively correlated with several buoyant LDL fractions; however, the correlations were weaker than those of PLTP. PLTP and LPL were positively correlated and HL was negatively correlated with HDL fractions. The results suggest that PLTP and HL may be important and independent determinants of the LDL subpopulation density distributions.  相似文献   

9.
Phospholipid transfer protein (PLTP) in plasma promotes phospholipid transfer from triglyceride-rich lipoproteins to HDL and plays a major role in HDL remodeling. Recent in vivo observations also support a key role for PLTP in cholesterol metabolism. Our immunohistochemical analysis of human carotid endarterectomy samples identified immunoreactive PLTP in areas that colocalized with CD68-positive macrophages, suggesting that PLTP could be produced locally by intimal macrophages. Using RT-PCR, Western blot analysis with a monoclonal anti-PLTP antibody, and a PLTP activity assay, we observed PLTP mRNA and protein expression in human macrophages. In adherent peripheral blood human macrophages, this PLTP expression was increased by culture with granulocyte macrophage colony-stimulating factor. Incubation of macrophages with acetylated-LDL induced an increase in PLTP mRNA and protein expression that paralleled cholesterol loading. PLTP expression was observed in elicited mouse peritoneal macrophages and in cultured Raw264.7 cells as well. Thus, this study demonstrates that PLTP is expressed by macrophages, is regulated by cholesterol loading, and is present in atherosclerotic lesions.  相似文献   

10.
The plasma phospholipid transfer protein (PLTP) plays an important role in the regulation of plasma high density lipoprotein (HDL) levels and governs the distribution of HDL sub-populations. In the present study, adenovirus mediated overexpression of human PLTP in mice was employed to investigate the distribution of PLTP in serum and its effect on plasma lipoproteins. Gel filtration experiments showed that the distributions of PLTP activity and mass in serum are different, suggesting that human PLTP circulated in mouse plasma as two distinct forms, one with high and the other with low specific activity. Our study further demonstrates that overexpression of PLTP leads to depletion of HDL and that, as PLTP activity declines, replenishment of the HDL fraction occurs. During this process, the lipoprotein profile displays transient particle populations, including apoA-IV and apoE-rich particles in the LDL size range and small particles containing apoA-II only. The possible role of these particles in HDL reassembly is discussed. The increased PLTP activity enhanced the ability of mouse sera to produce pre(beta)-HDL. The present results provide novel evidence that PLTP is an important regulator of HDL metabolism and plays a central role in the reverse cholesterol transport (RCT) process.  相似文献   

11.
The plasma phospholipid transfer protein (PLTP) plays an important role in the regulation of plasma high density lipoprotein (HDL) levels and governs the distribution of HDL sub-populations. In the present study, adenovirus mediated overexpression of human PLTP in mice was employed to investigate the distribution of PLTP in serum and its effect on plasma lipoproteins. Gel filtration experiments showed that the distributions of PLTP activity and mass in serum are different, suggesting that human PLTP circulated in mouse plasma as two distinct forms, one with high and the other with low specific activity. Our study further demonstrates that overexpression of PLTP leads to depletion of HDL and that, as PLTP activity declines, replenishment of the HDL fraction occurs. During this process, the lipoprotein profile displays transient particle populations, including apoA-IV and apoE-rich particles in the LDL size range and small particles containing apoA-II only. The possible role of these particles in HDL reassembly is discussed. The increased PLTP activity enhanced the ability of mouse sera to produce preβ-HDL. The present results provide novel evidence that PLTP is an important regulator of HDL metabolism and plays a central role in the reverse cholesterol transport (RCT) process.  相似文献   

12.
The liver X receptors (LXRs) are members of the nuclear receptor superfamily that are activated by oxysterols. In response to ligand binding, LXRs regulate a variety of genes involved in the catabolism, transport, and uptake of cholesterol and its metabolites. Here we demonstrate that LXRs also regulate plasma lipoprotein metabolism through control of the phospholipid transfer protein (PLTP) gene. LXR ligands induce the expression of PLTP in cultured HepG2 cells and mouse liver in vivo in a coordinate manner with known LXR target genes. Moreover, plasma phospholipid transfer activity is increased in mice treated with the synthetic LXR ligand GW3965. Unexpectedly, PLTP expression was also highly inducible by LXR in macrophages, a cell type not previously recognized to express this enzyme. The ability of synthetic and oxysterol ligands to regulate PLTP mRNA in macrophages and liver is lost in animals lacking both LXRalpha and LXRbeta, confirming the critical role of these receptors. We further demonstrate that the PLTP promoter contains a high-affinity LXR response element that is bound by LXR/RXR heterodimers in vitro and is activated by LXR/RXR in transient-transfection studies. Finally, immunohistochemistry studies reveal that PLTP is highly expressed by macrophages within human atherosclerotic lesions, suggesting a potential role for this enzyme in lipid-loaded macrophages. These studies outline a novel pathway whereby LXR and its ligands may modulate lipoprotein metabolism.  相似文献   

13.
Fibrate treatment in mice is known to modulate high density lipoprotein (HDL) metabolism by regulating apolipoprotein (apo)AI and apoAII gene expression. In addition to alterations in plasma HDL levels, fibrates induce the emergence of large, cholesteryl ester-rich HDL in treated transgenic mice expressing human apoAI (HuAITg). The mechanisms of these changes may not be restricted to the modulation of apolipoprotein gene expression, and the aim of the present study was to determine whether the expression of factors known to affect HDL metabolism (i.e. phospholipid transfer protein (PLTP), lecithin:cholesterol acyltransferase, and hepatic lipase) are modified in fenofibrate-treated mice. Significant rises in plasma PLTP activity were observed after 2 weeks of fenofibrate treatment in both wild-type and HuAITg mice. Simultaneously, hepatic PLTP mRNA levels increased in a dose-dependent fashion. In contrast to PLTP, lecithin:cholesterol acyltransferase mRNA levels in HuAITg mice were not significantly modified by fenofibrate despite a significant decrease in plasma cholesterol esterification activity. Fenofibrate did not induce any change in hepatic lipase activity. Fenofibrate significantly increased HDL size, an effect that was more pronounced in HuAITg mice than in wild-type mice. This effect in wild-type mice was completely abolished in PLTP-deficient mice. Finally, fenofibrate treatment did not influence PLTP activity or hepatic mRNA in peroxisome proliferator-activated receptor-alpha-deficient mice. It is concluded that 1) fenofibrate treatment increases plasma phospholipid transfer activity as the result of up-regulation of PLTP gene expression through a peroxisome proliferator-activated receptor-alpha-dependent mechanism, and 2) increased plasma PLTP levels account for the marked enlargement of HDL in fenofibrate-treated mice.  相似文献   

14.
In low density lipoprotein receptor (LDLR)-deficient mice, overexpression of human plasma phospholipid transfer protein (PLTP) results in increased atherosclerosis. PLTP strongly decreases HDL levels and might alter the antiatherogenic properties of HDL particles. To study the potential interaction between human PLTP and apolipoprotein A-I (apoA-I), double transgenic animals (hPLTPtg/hApoAItg) were compared with hApoAItg mice. PLTP activity was increased 4.5-fold. Plasma total cholesterol and phospholipid were decreased. Average HDL size (analyzed by gel filtration) increased strongly, hPLTPtg/hApoAItg mice having very large, LDL-sized, HDL particles. Also, after density gradient ultracentrifugation, a substantial part of the apoA-I-containing lipoproteins in hPLTPtg/hApoAItg mice was found in the LDL density range. In cholesterol efflux studies from macrophages, HDL isolated from hPLTPtg/hApoAItg mice was less efficient than HDL isolated from hApoAItg mice. Furthermore, it was found that the largest subfraction of the HDL particles present in hPLTPtg/hApoAItg mice was markedly inferior as a cholesterol acceptor, as no labeled cholesterol was transferred to this fraction. In an LDLR-deficient background, the human PLTP-expressing mouse line showed a 2.2-fold increased atherosclerotic lesion area. These data demonstrate that the action of human PLTP in the presence of human apoA-I results in the formation of a dysfunctional HDL subfraction, which is less efficient in the uptake of cholesterol from cholesterol-laden macrophages.  相似文献   

15.
Previous studies have examined lipoprotein metabolism by macrophages following prolonged exposure (>24 h) to macrophage colony-stimulating factor (M-CSF). Because M-CSF activates several signaling pathways that could rapidly affect lipoprotein metabolism, we examined whether acute exposure of macrophages to M-CSF alters the metabolism of either native or modified lipoproteins. Acute incubation of cultured J774 macrophages and resident mouse peritoneal macrophages with M-CSF markedly enhanced low density lipoproteins (LDL) and beta-migrating very low density lipoproteins (beta-VLDL) stimulated cholesteryl [(3)H]oleate deposition. In parallel, M-CSF treatment increased the association and degradation of (125)I-labeled LDL or beta-VLDL without altering the amount of lipoprotein bound to the cell surface. The increase in LDL and beta-VLDL metabolism did not reflect a generalized effect on lipoprotein endocytosis and metabolism because M-CSF did not alter cholesterol deposition during incubation with acetylated LDL. Moreover, M-CSF did not augment beta-VLDL cholesterol deposition in macrophages from LDL receptor (-/-) mice, indicating that the effect of M-CSF was mediated by the LDL receptor. Incubation of macrophages with pertussis toxin, a specific inhibitor of G(i/o) protein signaling, had no effect on cholesterol deposition during incubation with beta-VLDL alone, but completely blocked the augmented response promoted by M-CSF. In addition, incubation of macrophages with the direct G(i/o) protein activator, mastoparan, mimicked the effect of M-CSF by enhancing cholesterol deposition in cells incubated with beta-VLDL, but not acetylated LDL. In summary, M-CSF rapidly enhances LDL receptor-mediated metabolism of native lipoproteins by macrophages through activation of a G(i/o) protein signaling pathway. Together, these findings describe a novel pathway for regulating lipoprotein metabolism.  相似文献   

16.
Plasma phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) are homologous molecules that mediate neutral lipid and phospholipid exchange between plasma lipoproteins. Biochemical experiments suggest that only CETP can transfer neutral lipids but that there could be overlap in the ability of PLTP and CETP to transfer or exchange phospholipids. Recently developed PLTP gene knock-out (PLTP0) mice have complete deficiency of plasma phospholipid transfer activity and markedly reduced high density lipoprotein (HDL) levels. To see whether CETP can compensate for PLTP deficiency in vivo, we bred the CETP transgene (CETPTg) into the PLTP0 background. Using an in vivo assay to measure the transfer of [(3)H]PC from VLDL into HDL or an in vitro assay that determined [(3)H]PC transfer from vesicles into HDL, we could detect no phospholipid transfer activity in either PLTP0 or CETPTg/PLTP0 mice. On a chow diet, HDL-PL, HDL-CE, and HDL-apolipoprotein AI in CETPTg/PLTP0 mice were significantly lower than in PLTP0 mice (45 +/- 7 versus 79 +/- 9 mg/dl; 9 +/- 2 versus 16 +/- 5 mg/dl; and 51 +/- 6 versus 100 +/- 9, arbitrary units, respectively). Similar results were obtained on a high fat, high cholesterol diet. These results indicate 1) that there is no redundancy in function of PLTP and CETP in vivo and 2) that the combination of the CETP transgene with PLTP deficiency results in an additive lowering of HDL levels, suggesting that the phenotype of a human PLTP deficiency state would include reduced HDL levels.  相似文献   

17.
Systemic phospholipid transfer protein (PLTP) is a recognized risk factor for coronary heart disease. In apolipoprotein E-deficient mice, systemic PLTP deficiency is atheroprotective, whereas PLTP overexpression is proatherogenic. As expected, we also observed significantly smaller lesions (P < 0.0001) in hypercholesterolemic double mutant low density lipoprotein receptor-deficient (LDLr(-/-)) PLTP-deficient (PLTP(-/-)) mice compared with LDLr(-/-) mice expressing systemic PLTP. To assess the specific contribution of only macrophage-derived PLTP to atherosclerosis progression, bone marrow transplantation was performed in LDLr(-/-) mice that also lacked systemic PLTP. Groups of double mutant PLTP(-/-)LDLr(-/-) mice were irradiated with 1,000 rad and injected with bone marrow (BM) cells collected from either PLTP(-/-) or wild-type mice. When fed a high-fat diet, BM cell expression of PLTP decreased plasma cholesterol of PLTP(-/-)LDLr(-/-) mice from 878 +/- 220 to 617 +/- 183 mg/dl and increased HDL cholesterol levels from 54 +/- 11 to 117 +/- 19 mg/dl. This decreased total plasma cholesterol and increased HDL cholesterol contributed to the significantly smaller atherosclerotic lesions in both aortas and heart sinus valves observed in these mice. Thus, unlike total systemic PLTP, locally produced macrophage-derived PLTP beneficially alters lipoprotein metabolism and reduces lesion progression in hyperlipidemic mice.  相似文献   

18.
Vitamin E is a lipophilic anti-oxidant that can prevent the oxidative damage of atherogenic lipoproteins. However, human trials with vitamin E have been disappointing, perhaps related to ineffective levels of vitamin E in atherogenic apoB-containing lipoproteins. Phospholipid transfer protein (PLTP) promotes vitamin E removal from atherogenic lipoproteins in vitro, and PLTP deficiency has recently been recognized as an anti-atherogenic state. To determine whether PLTP regulates lipoprotein vitamin E content in vivo, we measured alpha-tocopherol content and oxidation parameters of lipoproteins from PLTP-deficient mice in wild type, apoE-deficient, low density lipoprotein (LDL) receptor-deficient, or apoB/cholesteryl ester transfer protein transgenic backgrounds. In all four backgrounds, the vitamin E content of very low density lipoprotein (VLDL) and/or LDL was significantly increased in PLTP-deficient mice, compared with controls with normal plasma PLTP activity. Moreover, PLTP deficiency produced a dramatic delay in generation of conjugated dienes in oxidized apoB-containing lipoproteins as well as markedly lower titers of plasma IgG autoantibodies to oxidized LDL. The addition of purified PLTP to deficient plasma lowered the vitamin E content of VLDL plus LDL and normalized the generation of conjugated dienes. The data show that PLTP regulates the bioavailability of vitamin E in atherogenic lipoproteins and suggest a novel strategy for achieving more effective concentrations of anti-oxidants in lipoproteins, independent of dietary supplementation.  相似文献   

19.
Phospholipid transfer protein knock-out (PLTP0) mice have defective transfer of phospholipids (PL) from triglyceride-rich lipoproteins (TRL) into high-density lipoproteins (HDL). In this study, we examined the role of diet, hepatic lipase (HL) and scavenger receptor BI (SRBI) in determining the accumulation of excess PL and free cholesterol (FC, "surface remnants") in plasma of PLTP0 mice. PL and FC accumulated in the very low-density lipoprotein (VLDL)-LDL region of PLTP0 mice on a highly saturated, coconut oil-based diet, but not on chow or milk-fat based Western diets. Accumulation of PL and FC was dramatically increased in PLTP0/HL0 mice, compared to PLTP0 mice, but only on the coconut oil diet. Turnover studies indicated that the coconut oil diet was associated with delayed catabolism of PL of PL/FC-rich particles. Incubation of these particles with primary hepatocytes in the presence of SRBI neutralizing antibody indicated that SRBI was primarily responsible for removal of FC and PL on the Western diet. In hepatocytes of coconut oil-fed mice, removal of FC and PL from these particles by SRBI was markedly reduced, even though SRBI protein expression levels were unchanged. These studies indicate that HL and SRBI both have major role in the clearance of PL and FC of surface remnants in PLTP0 mice. SRBI appears to be dysfunctional in coconut oil diet-fed animals, possibly related to changes in hepatocyte membrane fatty acid composition.  相似文献   

20.
Increased secretion and levels of ApoB-containing lipoproteins (BLp) commonly occur in familial hyperlipidemia, obesity and diabetes. The plasma phospholipid-transfer protein (PLTP) is known to mediate transfer of phospholipids between BLp and HDL during their intravascular metabolism. To address a possible role of PLTP in dyslipidemia and atherogenesis, we bred mice deficient in the gene encoding PLTP (PLTP-deficient mice) using different hyperlipidemic mouse strains. In ApoB-transgenic and ApoE-deficient backgrounds, PLTP deficiency resulted in reduced production and levels of BLp and markedly decreased atherosclerosis. BLp secretion was diminished in hepatocytes from ApoB-transgenic PLTP-deficient mice, a defect that was corrected when PLTP was reintroduced in adenovirus. The studies reveal a major, unexpected role of PLTP in regulating the secretion of BLp and identify PLTP as a therapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号