首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Obtaining soluble proteins in sufficient concentrations is a major obstacle in various experimental studies. How to predict the propensity of targets in large-scale proteomics projects to be soluble is a significant but not fairly resolved scientific problem. Chaos game representation (CGR) can investigate the patterns hiding in protein sequences, and can visually reveal previously unknown structure. Fractal dimensions are good tools to measure sizes of complex, highly irregular geometric objects. In this paper, we convert each protein sequence into a high-dimensional vector by CGR algorithm and fractal dimension, and then predict protein solubility by these fractal features together with Chou's pseudo amino acid composition features and support vector machine (SVM). We extract and study six groups of features computed directly from the primary sequence, and each group is evaluated by the 10-fold cross-validation test. As the results of comparisons, the group of 445-dimensional vector gets the best results, the average accuracy is 0.8741 and average MCC is 0.7358. The resulting predictor is also compared with existing methods and shows significant improvement.  相似文献   

2.
To evaluate the possibility of an unknown protein to be a resistant gene against Xanthomonas oryzae pv. oryzae, a different mode of pseudo amino acid composition (PseAAC) is proposed to formulate the protein samples by integrating the amino acid composition, as well as the Chaos games representation (CGR) method. Some numerical comparisons of triangle, quadrangle and 12-vertex polygon CGR are carried to evaluate the efficiency of using these fractal figures in classifiers. The numerical results show that among the three polygon methods, triangle method owns a good fractal visualization and performs the best in the classifier construction. By using triangle + 12-vertex polygon CGR as the mathematical feature, the classifier achieves 98.13% in Jackknife test and MCC achieves 0.8462.  相似文献   

3.
Nakariyakul S  Liu ZP  Chen L 《Amino acids》2012,42(5):1947-1953
Detecting thermophilic proteins is an important task for designing stable protein engineering in interested temperatures. In this work, we develop a simple but efficient method to classify thermophilic proteins from mesophilic ones using the amino acid and dipeptide compositions. Since most of the amino acid and dipeptide compositions are redundant, we propose a new forward floating selection technique to select only a useful subset of these compositions as features for support vector machine-based classification. We test the proposed method on a benchmark data set of 915 thermophilic and 793 mesophilic proteins. The results show that our method using 28 amino acid and dipeptide compositions achieves an accuracy rate of 93.3% evaluated by the jackknife cross-validation test, which is higher not only than the existing methods but also than using all amino acid and dipeptide compositions.  相似文献   

4.
Chen YL  Li QZ  Zhang LQ 《Amino acids》2012,42(4):1309-1316
Due to the complexity of Plasmodium falciparum (PF) genome, predicting mitochondrial proteins of PF is more difficult than other species. In this study, using the n-peptide composition of reduced amino acid alphabet (RAAA) obtained from structural alphabet named Protein Blocks as feature parameter, the increment of diversity (ID) is firstly developed to predict mitochondrial proteins. By choosing the 1-peptide compositions on the N-terminal regions with 20 residues as the only input vector, the prediction performance achieves 86.86% accuracy with 0.69 Mathew’s correlation coefficient (MCC) by the jackknife test. Moreover, by combining with the hydropathy distribution along protein sequence and several reduced amino acid alphabets, we achieved maximum MCC 0.82 with accuracy 92% in the jackknife test by using the developed ID model. When evaluating on an independent dataset our method performs better than existing methods. The results indicate that the ID is a simple and efficient prediction method for mitochondrial proteins of malaria parasite.  相似文献   

5.
Wang  Cui-cui  Fang  Yaping  Xiao  Jiamin  Li  Menglong 《Amino acids》2011,40(1):239-248
RNA–protein interactions play a pivotal role in various biological processes, such as mRNA processing, protein synthesis, assembly, and function of ribosome. In this work, we have introduced a computational method for predicting RNA-binding sites in proteins based on support vector machines by using a variety of features from amino acid sequence information including position-specific scoring matrix (PSSM) profiles, physicochemical properties and predicted solvent accessibility. Considering the influence of the surrounding residues of an amino acid and the dependency effect from the neighboring amino acids, a sliding window and a smoothing window are used to encode the PSSM profiles. The outer fivefold cross-validation method is evaluated on the data set of 77 RNA-binding proteins (RBP77). It achieves an overall accuracy of 88.66% with the Matthew’s correlation coefficient (MCC) of 0.69. Furthermore, an independent data set of 39 RNA-binding proteins (RBP39) is employed to further evaluate the performance and achieves an overall accuracy of 82.36% with the MCC of 0.44. The result shows that our method has good generalization abilities in predicting RNA-binding sites for novel proteins. Compared with other previous methods, our method performs well on the same data set. The prediction results suggest that the used features are effective in predicting RNA-binding sites in proteins. The code and all data sets used in this article are freely available at .  相似文献   

6.
Protein solubility plays a major role for understanding the crystal growth and crystallization process of protein. How to predict the propensity of a protein to be soluble or to form inclusion body is a long but not fairly resolved problem. After choosing almost 10,000 protein sequences from NCBI database and eliminating the sequences with 90% homologous similarity by CD-HIT, 5692 sequences remained. By using Chou's pseudo amino acid composition features, we predict the soluble protein with the three methods: support vector machine (SVM), back propagation neural network (BP Neural Network) and hybrid method based on SVM and BP Neural Network, respectively. Each method is evaluated by re-substitution test and 10-fold cross-validation test. In the re-substitution test, the BP Neural Network performs with the best results, in which the accuracy achieves 0.9288 and Matthews Correlation Coefficient (MCC) achieves 0.8513. Meanwhile, the other two methods are better than BP Neural Network in 10-fold cross-validation test. The hybrid method based on SVM and BP Neural Network is the best. The average accuracy is 0.8678 and average MCC is 0.7233. Although all of the three methods achieve considerable evaluations, the hybrid method is deemed to be the best, according to the performance comparison.  相似文献   

7.
Due to the complexity of Plasmodium falciparumis genome, predicting secretory proteins of P. falciparum is more difficult than other species. In this study, based on the measure of diversity definition, a new K-nearest neighbor method, K-minimum increment of diversity (K-MID), is introduced to predict secretory proteins. The prediction performance of the K-MID by using amino acids composition as the only input vector achieves 88.89% accuracy with 0.78 Mathew’s correlation coefficient (MCC). Further, the several reduced amino acids alphabets are applied to predict secretory proteins and the results show that the prediction results are improved to 90.67% accuracy with 0.83 MCC by using the 169 dipeptide compositions of the reduced amino acids alphabets obtained from Protein Blocks method.  相似文献   

8.
Zhu Y  Li T  Li D  Zhang Y  Xiong W  Sun J  Tang Z  Chen G 《Amino acids》2012,42(5):1749-1755
Numerous methods for predicting γ-turns in proteins have been developed. However, the results they generally provided are not very good, with a Matthews correlation coefficient (MCC) ≤0.18. Here, an attempt has been made to develop a method to improve the accuracy of γ-turn prediction. First, we employ the geometric mean metric as optimal criterion to evaluate the performance of support vector machine for the highly imbalanced γ-turn dataset. This metric tries to maximize both the sensitivity and the specificity while keeping them balanced. Second, a predictor to generate protein shape string by structure alignment against the protein structure database has been designed and the predicted shape string is introduced as new variable for γ-turn prediction. Based on this perception, we have developed a new method for γ-turn prediction. After training and testing the benchmark dataset of 320 non-homologous protein chains using a fivefold cross-validation technique, the present method achieves excellent performance. The overall prediction accuracy Q total can achieve 92.2% and the MCC is 0.38, which outperform the existing γ-turn prediction methods. Our results indicate that the protein shape string is useful for predicting protein tight turns and it is reasonable to use the dihedral angle information as a variable for machine learning to predict protein folding. The dataset used in this work and the software to generate predicted shape string from structure database can be obtained from anonymous ftp site freely.  相似文献   

9.
Yan C  Hu J  Wang Y 《Amino acids》2008,35(1):65-73
Identification of outer membrane proteins (OMPs) from genome is an important task. This paper presents a k-nearest neighbor (K-NN) method for discriminating outer membrane proteins (OMPs). The method makes predictions based on a weighted Euclidean distance that is computed from residue composition. The method achieves 89.1% accuracy with 0.668 MCC (Matthews correlation coefficient) in discriminating OMPs and non-OMPs. The performance of the method is improved by including homologous information into the calculation of residue composition. The final method achieves an accuracy of 96.1%, with 0.873 MCC, 87.5% sensitivity, and 98.2% specificity. Comparisons with multiple recently published methods show that the method proposed in this study outperforms the others.  相似文献   

10.
The thermostability of proteins is particularly relevant for enzyme engineering. Developing a computational method to identify mesophilic proteins would be helpful for protein engineering and design. In this work, we developed support vector machine based method to predict thermophilic proteins using the information of amino acid distribution and selected amino acid pairs. A reliable benchmark dataset including 915 thermophilic proteins and 793 non-thermophilic proteins was constructed for training and testing the proposed models. Results showed that 93.8% thermophilic proteins and 92.7% non-thermophilic proteins could be correctly predicted by using jackknife cross-validation. High predictive successful rate exhibits that this model can be applied for designing stable proteins.  相似文献   

11.
Developing an efficient method for determination of the DNA-binding proteins, due to their vital roles in gene regulation, is becoming highly desired since it would be invaluable to advance our understanding of protein functions. In this study, we proposed a new method for the prediction of the DNA-binding proteins, by performing the feature rank using random forest and the wrapper-based feature selection using forward best-first search strategy. The features comprise information from primary sequence, predicted secondary structure, predicted relative solvent accessibility, and position specific scoring matrix. The proposed method, called DBPPred, used Gaussian naïve Bayes as the underlying classifier since it outperformed five other classifiers, including decision tree, logistic regression, k-nearest neighbor, support vector machine with polynomial kernel, and support vector machine with radial basis function. As a result, the proposed DBPPred yields the highest average accuracy of 0.791 and average MCC of 0.583 according to the five-fold cross validation with ten runs on the training benchmark dataset PDB594. Subsequently, blind tests on the independent dataset PDB186 by the proposed model trained on the entire PDB594 dataset and by other five existing methods (including iDNA-Prot, DNA-Prot, DNAbinder, DNABIND and DBD-Threader) were performed, resulting in that the proposed DBPPred yielded the highest accuracy of 0.769, MCC of 0.538, and AUC of 0.790. The independent tests performed by the proposed DBPPred on completely a large non-DNA binding protein dataset and two RNA binding protein datasets also showed improved or comparable quality when compared with the relevant prediction methods. Moreover, we observed that majority of the selected features by the proposed method are statistically significantly different between the mean feature values of the DNA-binding and the non DNA-binding proteins. All of the experimental results indicate that the proposed DBPPred can be an alternative perspective predictor for large-scale determination of DNA-binding proteins.  相似文献   

12.
嗜热蛋白在高温下能保持稳定性和活性,是研究蛋白质热稳定性的理想模型,开发一个蛋白质热稳定性识别的方法将对蛋白质工程和蛋白质的设计很有帮助。目前的研究中,氨基酸的组成及其物化性质一直被认为和蛋白质的热稳定性相关。本研究筛选出可靠的数据集,包括915个嗜热蛋白和793个非嗜热蛋白。利用蛋白质氨基酸的物化性质和氨基酸的组成表征嗜热蛋白,将二肽氨基酸组成整合到9组氨基酸物化性质中使蛋白序列公式化。支持向量机5折叠交叉验证表明:当gap=0时,290个特征产生的精度最高,为92.74%。因此说明对于分析蛋白质的热稳定性,所建立的预测模型将是一个很有效的工具。  相似文献   

13.
Ge  Li  Liu  Jiaguo  Zhang  Yusen  Dehmer  Matthias 《Journal of mathematical biology》2019,78(1-2):441-463

We generalize chaos game representation (CGR) to higher dimensional spaces while maintaining its bijection, keeping such method sufficiently representative and mathematically rigorous compare to previous attempts. We first state and prove the asymptotic property of CGR and our generalized chaos game representation (GCGR) method. The prediction follows that the dissimilarity of sequences which possess identical subsequences but distinct positions would be lowered exponentially by the length of the identical subsequence; this effect was taking place unbeknownst to researchers. By shining a spotlight on it now, we show the effect fundamentally supports (G)CGR as a similarity measure or feature extraction technique. We develop two feature extraction techniques: GCGR-Centroid and GCGR-Variance. We use the GCGR-Centroid to analyze the similarity between protein sequences by using the datasets 9 ND5, 24 TF and 50 beta-globin proteins. We obtain consistent results compared with previous studies which proves the significance thereof. Finally, by utilizing support vector machines, we train the anticancer peptide prediction model by using both GCGR-Centroid and GCGR-Variance, and achieve a significantly higher prediction performance by employing the 3 well-studied anticancer peptide datasets.

  相似文献   

14.
Improved method for predicting beta-turn using support vector machine   总被引:2,自引:0,他引:2  
MOTIVATION: Numerous methods for predicting beta-turns in proteins have been developed based on various computational schemes. Here, we introduce a new method of beta-turn prediction that uses the support vector machine (SVM) algorithm together with predicted secondary structure information. Various parameters from the SVM have been adjusted to achieve optimal prediction performance. RESULTS: The SVM method achieved excellent performance as measured by the Matthews correlation coefficient (MCC = 0.45) using a 7-fold cross validation on a database of 426 non-homologous protein chains. To our best knowledge, this MCC value is the highest achieved so far for predicting beta-turn. The overall prediction accuracy Qtotal was 77.3%, which is the best among the existing prediction methods. Among its unique attractive features, the present SVM method avoids overtraining and compresses information and provides a predicted reliability index.  相似文献   

15.
《Genomics》2020,112(2):1847-1852
A novel method is proposed to detect the acceptor and donor splice sites using chaos game representation and artificial neural network. In order to achieve high accuracy, inputs to the neural network, or feature vector, shall reflect the true nature of the DNA segments. Therefore it is important to have one-to-one numerical representation, i.e. a feature vector should be able to represent the original data. Chaos game representation (CGR) is an iterative mapping technique that assigns each nucleotide in a DNA sequence to a respective position on the plane in a one-to-one manner. Using CGR, a DNA sequence can be mapped to a numerical sequence that reflects the true nature of the original sequence. In this research, we propose to use CGR as feature input to a neural network to detect splice sites on the NN269 dataset. Computational experiments indicate that this approach gives good accuracy while being simpler than other methods in the literature, with only one neural network component. The code and data for our method can be accessed from this link: https://github.com/thoang3/portfolio/tree/SpliceSites_ANN_CGR.  相似文献   

16.
In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position–specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα‐Cα atoms. First, using a rigorous leave‐one‐protein‐out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state‐of‐the‐art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/ . Proteins 2016; 84:332–348. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
Lipocalins are functionally diverse proteins that are composed of 120–180 amino acid residues. Members of this family have several important biological functions including ligand transport, cryptic coloration, sensory transduction, endonuclease activity, stress response activity in plants, odorant binding, prostaglandin biosynthesis, cellular homeostasis regulation, immunity, immunotherapy and so on. Identification of lipocalins from protein sequence is more challenging due to the poor sequence identity which often falls below the twilight zone. So far, no specific method has been reported to identify lipocalins from primary sequence. In this paper, we report a support vector machine (SVM) approach to predict lipocalins from protein sequence using sequence-derived properties. LipoPred was trained using a dataset consisting of 325 lipocalin proteins and 325 non-lipocalin proteins, and evaluated by an independent set of 140 lipocalin proteins and 21,447 non-lipocalin proteins. LipoPred achieved 88.61% accuracy with 89.26% sensitivity, 85.27% specificity and 0.74 Matthew’s correlation coefficient (MCC). When applied on the test dataset, LipoPred achieved 84.25% accuracy with 88.57% sensitivity, 84.22% specificity and MCC of 0.16. LipoPred achieved better performance rate when compared with PSI-BLAST, HMM and SVM-Prot methods. Out of 218 lipocalins, LipoPred correctly predicted 194 proteins including 39 lipocalins that are non-homologous to any protein in the SWISSPROT database. This result shows that LipoPred is potentially useful for predicting the lipocalin proteins that have no sequence homologs in the sequence databases. Further, successful prediction of nine hypothetical lipocalin proteins and five new members of lipocalin family prove that LipoPred can be efficiently used to identify and annotate the new lipocalin proteins from sequence databases. The LipoPred software and dataset are available at .  相似文献   

18.
Matrix metalloproteinase (MMPs) and disintegrin and metalloprotease (ADAMs) belong to the zinc-dependent metalloproteinase family of proteins. These proteins participate in various physiological and pathological states. Thus, prediction of these proteins using amino acid sequence would be helpful. We have developed a method to predict these proteins based on the features derived from Chou’s pseudo amino acid composition (PseAAC) server and support vector machine (SVM) as a powerful machine learning approach. With this method, for ADAMs and MMPs families, an overall accuracy and Matthew’s correlation coefficient (MCC) of 95.89 and 0.90% were achieved respectively. Furthermore, the method is able to predict two major subclasses of MMP family; Furin-activated secreted MMPs and Type II trans-membrane; with MCC of 0.89 and 0.91%, respectively. The overall accuracy for Furin-activated secreted MMPs and Type II trans-membrane was 98.18 and 99.07, respectively. Our data demonstrates an effective classification of Metalloproteinase family based on the concept of PseAAC and SVM.  相似文献   

19.
20.
Feng ZP 《Biopolymers》2001,58(5):491-499
A new representation of protein sequence is devoted in this paper, in which each protein can be represented by a 20-dimensional (20D) vector of unit length. Inspired by the principle of superposition of state in quantum mechanics, the squares of the 20 components of the vector correspond to the amino acid composition. Using the new representation of the primary sequence and Bayes Discriminant Algorithm, the subcellular location of prokaryotic proteins was predicted. The overall predictive accuracy in the jackknife test can be 3% higher than the result of using amino acid composition directly for the database of sequence identity is less than 90%, but 5% higher when sequence identity is less than 80%. The higher predictive accuracy indicates that the current measure of extracting the information from the primary sequence is efficient. Since the subcellular location restricting a protein's possible function, the present method should also be a useful measure for the systematic analysis of genome data. The program used in this paper is available on request.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号