首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Polyglutamate is found in various bacteria, but displays different functions depending on the species and their environment. Here, we describe a minimal polyglutamate synthesis system in Bacillus anthracis. In addition to the three genes previously described as sufficient for polyglutamate synthesis, this system includes a small open reading frame, capE, belonging to the cap operon. The polyglutamate system's requirement for the five cap genes, for capsulation and anchoring, was assayed in nonpolar mutants. The capA, capB, capC, and capE genes are all necessary and are sufficient for polyglutamate synthesis by B. anthracis. capD is required for polyglutamate anchoring to the peptidoglycan. The 47-amino-acid peptide encoded by capE is localized in the B. anthracis membrane. It is not a regulator and it is required for polyglutamate synthesis, suggesting that it has a structural role in polyglutamate synthesis. CapE appears to interact with CapA. Bacillus subtilis ywtC is similar to capE and we named it pgsE. Genes similar to capE or pgsE were found in B. subtilis natto, Bacillus licheniformis, and Staphylococcus epidermidis, species that produce polyglutamate. All the bacterial polyglutamate synthesis systems analyzed show a similar genetic organization and, we suggest, the same protein requirements.  相似文献   

2.
Abstract In the absence of added template and primer, DNA synthesis activity which required dATP, dTTP, magnesium ion, and ATP was detected in the cell extracts prepared from a thermophile Bacillus stearothermophilus carrying a plasmid pTB913, but not from the strain without plasmid. Polymer synthesis was detectable only after a lag period and then proceeded at an exponential rate. The DNA synthesized in vitro was the alternating copolymer of dAMP and dTMP, poly(dAT). This reaction was very similar to the de novo DNA synthesis by DNA polymerase I of Escherichia coli, Bacillus subtilis , and Micrococcus luteus , except for the requirement of ATP and thermostability.  相似文献   

3.
Many bacteria can adopt organized, sessile, communal lifestyles. The gram-positive bacterium, Bacillus subtilis,forms biofilms on solid surfaces and at air-liquid interfaces, and biofilm development is dependent on environmental conditions. We demonstrate that biofilm formation by B. subtilis strain JH642 can be either activated or repressed by glucose, depending on the growth medium used, and that these glucose effects are at least in part mediated by the catabolite control protein, CcpA. Starting with a chromosomal Tn917-LTV3 insertional library, we isolated mutants that are defective for biofilm formation. The biofilm defects of these mutants were observable in both rich and minimal media, and both on polyvinylchloride abiotic surfaces and in borosilicate tubes. Two mutants were defective in flagellar synthesis. Chemotaxis was shown to be less important for biofilm formation than was flagellar-driven motility. Although motility is known to be required for biofilm formation in other bacteria, this had not previously been demonstrated for B. subtilis. In addition, our study suggests roles for glutamate synthase, GltAB, and an aminopeptidase, AmpS. The loss of these enzymes did not decrease growth or cellular motility but had dramatic effects on biofilm formation under all conditions assayed. The effect of the gltAB defect on biofilm formation could not be due to a decrease in poly-gamma-glutamate synthesis since this polymer proved to be nonessential for robust biofilm formation. High exogenous concentrations of glutamate, aspartate, glutamine or proline did not override the glutamate synthase requirement. This is the first report showing that glutamate synthase and a cytoplasmic aminopeptidase play roles in bacterial biofilm formation. Possible mechanistic implications and potential roles of biofilm formation in other developmental processes are discussed.  相似文献   

4.
ThiI has been identified as an essential enzyme involved in the biosynthesis of thiamine and the tRNA thionucleoside modification, 4-thiouridine. In Escherichia coli and Salmonella enterica, ThiI acts as a sulfurtransferase, receiving the sulfur donated from the cysteine desulfurase IscS and transferring it to the target molecule or additional sulfur carrier proteins. However, in Bacillus subtilis and most species from the Firmicutes phylum, ThiI lacks the rhodanese domain that contains the site responsible for the sulfurtransferase activity. The lack of the gene encoding for a canonical IscS cysteine desulfurase and the presence of a short sequence of ThiI in these bacteria pointed to mechanistic differences involving sulfur trafficking reactions in both biosynthetic pathways. Here, we have carried out functional analysis of B. subtilis thiI and the adjacent gene, nifZ, encoding for a cysteine desulfurase. Gene inactivation experiments in B. subtilis indicate the requirement of ThiI and NifZ for the biosynthesis of 4-thiouridine, but not thiamine. In vitro synthesis of 4-thiouridine by ThiI and NifZ, along with labeling experiments, suggests the occurrence of an alternate transient site for sulfur transfer, thus obviating the need for a rhodanese domain. In vivo complementation studies in E. coli IscS- or ThiI-deficient strains provide further support for specific interactions between NifZ and ThiI. These results are compatible with the proposal that B. subtilis NifZ and ThiI utilize mechanistically distinct and mutually specific sulfur transfer reactions.  相似文献   

5.
Streptomyces alboniger produces the antibiotic puromycin and expresses an enzymic activity which acetylates the drug using acetyl CoA. The N-acetyl-puromycin formed is biologically inactive against protein synthesis in Bacillus subtilis (as assayed in vivo).  相似文献   

6.
7.
The effect of various nutritional conditions on the levels of Krebs cycle enzymes in Bacillus subtilis, B. licheniformis, and Escherichia coli was determined. The addition of glutamate, alpha-ketoglutarate, or compounds capable of being catabolized to glutamate, to a minimal glucose medium resulted in complete repression of aconitase in B. subtilis and B. licheniformis. The synthesis of fumarase, succinic dehydrogenase, malic dehydrogenase, and isocitric dehydrogenase was not repressed by these compounds. It is postulated that glutamate or alpha-ketoglutarate is the true corepressor for the repression of aconitase. A rapidly catabolizable carbon source and alpha-ketoglutarate or glutamate must be simultaneously present for complete repression of the formation of aconitase. Conditions which repress the synthesis of aconitase in B. subtilis restrict the flow of carbon in the sequence of reactions leading to alpha-ketoglutarate but do not prevent glutamate oxidation in vivo. The data indicate that separate and independent mechanisms regulate the activity of the anabolic and catabolic reactions of the Krebs cycle in B. subtilis and B. licheniformis. The addition of glutamate to the minimal glucose medium results in the repression of aconitase, isocitric dehydrogenase, and fumarase, but not malic dehydrogenase in E. coli K-38.  相似文献   

8.
Taking trimethoprim as the selective agent in the presence of thymine, we adapted to Bacillus subtilis a selection procedure depending on the peculiar organisation of the one-carbon metabolism. The corresponding pathways couple synthesis of thymine to tetrahydrofolate consumption as a substrate of the reaction mediated by thymidylate synthase, instead of being a co-enzyme as in the other reactions transferring one-carbon groups. Mutants obtained are thymidylate synthase deficient, and therefore auxotrophic for thymine. This provides positive selection in a first step for gene replacement by a thymidylate synthase cassette, and subsequently against its presence. For systematic recombination of mutations constructed in vitro, we used the property of B. subtilis to grow at high temperature, noting that the thyB gene product is inactive at 46 degrees C, while the product of thyA remains active at this temperature. As the first step, we built up a recipient thyA- background, deleting the gene by in situ recombination. This method was used to investigate the function of the yrrU gene, which is presumably involved in a sulfur recycling pathway associated with polyamine biosynthesis. We showed that yrrU codes for a protein recycling methylthioadenosine, probably a nucleosidase. In addition we observed that B. subtilis can use methylthioribose as a sulfur source, and that it is an efficient sulfur scavenger.  相似文献   

9.
The gene that encodes thermostable glucose isomerase in Clostridium thermosulfurogenes was cloned by complementation of glucose isomerase activity in a xylA mutant of Escherichia coli. A new assay method for thermostable glucose isomerase activity on agar plates, using a top agar mixture containing fructose, glucose oxidase, peroxidase, and benzidine, was developed. One positive clone, carrying plasmid pCGI38, was isolated from a cosmid library of C. thermosulfurogenes DNA. The plasmid was further subcloned into a Bacillus cloning vector, pTB523, to generate shuttle plasmid pMLG1, which is able to replicate in both E. coli and Bacillus subtilis. Expression of the thermostable glucose isomerase gene in both species was constitutive, whereas synthesis of the enzyme in C. thermosulfurogenes was inducible by D-xylose. B. subtilis and E. coli produced higher levels of thermostable glucose isomerase (1.54 and 0.46 U/mg of protein, respectively) than did C. thermosulfurogenes (0.29 U/mg of protein). The glucose isomerases synthesized in E. coli and B. subtilis were purified to homogeneity and displayed properties (subunit Mr, 50,000; tetrameric molecular structure; thermostability; metal ion requirement; and apparent temperature and pH optima) identical to those of the native enzyme purified from C. thermosulfurogenes. Simple heat treatment of crude extracts from E. coli and B. subtilis cells carrying the recombinant plasmid at 85 degrees C for 15 min generated 80% pure glucose isomerase. The maximum conversion yield of glucose (35%, wt/wt) to fructose with the thermostable glucose isomerase (10.8 U/g of dry substrate) was 52% at pH 7.0 and 70 degrees C.  相似文献   

10.
The gene that encodes thermostable glucose isomerase in Clostridium thermosulfurogenes was cloned by complementation of glucose isomerase activity in a xylA mutant of Escherichia coli. A new assay method for thermostable glucose isomerase activity on agar plates, using a top agar mixture containing fructose, glucose oxidase, peroxidase, and benzidine, was developed. One positive clone, carrying plasmid pCGI38, was isolated from a cosmid library of C. thermosulfurogenes DNA. The plasmid was further subcloned into a Bacillus cloning vector, pTB523, to generate shuttle plasmid pMLG1, which is able to replicate in both E. coli and Bacillus subtilis. Expression of the thermostable glucose isomerase gene in both species was constitutive, whereas synthesis of the enzyme in C. thermosulfurogenes was inducible by D-xylose. B. subtilis and E. coli produced higher levels of thermostable glucose isomerase (1.54 and 0.46 U/mg of protein, respectively) than did C. thermosulfurogenes (0.29 U/mg of protein). The glucose isomerases synthesized in E. coli and B. subtilis were purified to homogeneity and displayed properties (subunit Mr, 50,000; tetrameric molecular structure; thermostability; metal ion requirement; and apparent temperature and pH optima) identical to those of the native enzyme purified from C. thermosulfurogenes. Simple heat treatment of crude extracts from E. coli and B. subtilis cells carrying the recombinant plasmid at 85 degrees C for 15 min generated 80% pure glucose isomerase. The maximum conversion yield of glucose (35%, wt/wt) to fructose with the thermostable glucose isomerase (10.8 U/g of dry substrate) was 52% at pH 7.0 and 70 degrees C.  相似文献   

11.
Pulse labeling studies with Bacillus subtilis showed that DuP 721 inhibited protein synthesis. The IC50 of DuP 721 for protein synthesis was 0.25 micrograms/ml but it was greater than 32 micrograms/ml for RNA and DNA synthesis. In cell-free systems, DuP 721 concentrations up to 100 microM did not inhibit peptide chain elongation reactions under conditions where chloramphenicol, tetracycline and hygromycin B inhibited these reactions. Furthermore, Dup 721 did not cause phenotypic suppression of nonsense mutations suggesting that DuP 721 did not inhibit peptide chain termination. Thus, the mechanism of action of DuP 721 is at a target preceeding chain elongation.  相似文献   

12.
The metal dependence of Bacillus subtilis phytase   总被引:5,自引:0,他引:5  
The metal ion requirement of a Bacillus subtilis phytase has been studied. Removal of metal ions from the enzyme by EDTA resulted in complete inactivation. Circular dichroism spectroscopy was used to study the effect of metal ion removal on the protein conformation. The loss of enzymatic activity is most likely due to a conformational change, as the circular dichroism spectra of holoenzyme and metal-depleted enzyme were different. Metal-depleted enzyme was partially able to restore the active conformation when incubated in the presence of calcium. Only minor reactivation was detected with other divalent metal ions and their combinations. Based on the data we conclude that B. subtilis phytase requires calcium for active conformation. Calcium has also a strong stabilizing effect on the enzyme against thermal denaturation. However, the conformational change resulted by calcium depletion does not affect the protease susceptibility.  相似文献   

13.
S Kobayshi  Y Gao  R L Ong  C S Pittman 《Life sciences》1986,38(24):2231-2238
Studies were carried out to compare the 5'-deiodination reactions of thyroxine (T4) and 3,3'-5'-triiodothyronine (rT3) in 2.5% rat liver homogenates. The 5'-deiodinase activity was assayed by the 3,5,3'-triiodothyronine (T3) produced from T4 or by 125I-rT3. Under our experimental conditions, the two 5'-monodeiodination reactions resulted in similar apparent KMs: 1.5 microM for T4 and 1.1 microM for rT3. However, the apparent Vmax values of T4 and rT3 deiodination reactions were, respectively, 0.91 and 222 pmol/mg protein/min. Both reactions were stimulated by thiol reagents but only rT3 deiodination showed complete thiol dependence. The inhibitory effect of 6-propyl-2-thiouracil on the 5'-deiodination of rT3 was at least 50 fold greater than that of T4. The divalent ion requirement of the deiodination system was tested with CaCl2, MgCl2, and ZnCl2 at a range of concentrations. Zinc ion appeared to be a potent inhibitor in both T4 and rT3 deiodination systems. Only the 5'-deiodination of rT3 was inhibited slightly by low concentrations of calcium and magnesium ions. Our results suggest that based on their apparently distinct regulation mechanisms, the 5'-monodiodination of T4 and rT3 in rat liver homogenates is likely mediated by more than one enzyme, despite the similarity of observed KMs.  相似文献   

14.
The relationships between macromolecular synthesis and viability have been studied in the pleuropneumonia-like organism Mycoplasma laidlawii B adapted to a semidefined grwoth medium. This organism exhibited an absolute growth requirement for the nucleosides uridine and thymidine, a partial requirement for guanosine and deoxyguanosine, but no requirement for adenosine, deoxyadenosine, cytosine, and deoxycytosine. Cytosine and deoxycytosine partially satisfied the requirement for uridine. Loss in viability resulted from thymidine deprivation, but not from a deficiency in other growth requirements. This phenomenon of thymineless death in a mycoplasma is similar in many respects to that reported in other bacterial systems. Chloramphenicol specifically inhibited protein synthesis and allowed deoxyribonucleic acid synthesis to proceed to only about 40% of that normally produced per generation period, while causing less inhibition of ribonucleic acid synthesis. Protein synthesis inhibition permitted thymineless death to a survival level of less than 0.5%, but ribonucleic acid synthesis inhibition resulted in a higher (10%) survival level. These results are consistent with previously noted aspects of thymineless death in Escherichia coli strains, which suggest that thymineless death is coupled to ribonucleic acid synthesis.  相似文献   

15.
Undomesticated strains of Bacillus subtilis exhibit extensive colony spreading on certain soft agarose media: first the formation of dendritic clusters of cells, followed by spreading (pellicle-like) growth to cover the entire surface. These phases of colonization are dependent on the level of potassium ion (K(+)) but independent of flagella, as verified with a mutant with a hag gene replacement; this latter finding highlights the importance of sliding motility in colony spreading. Exploring the K(+) requirement, directed mutagenesis of the higher-affinity K(+) transporter KtrAB, but not the lower-affinity transporter KtrCD, was found to inhibit surface colonization unless sufficient KCl was added. To identify other genes involved in K(+)-dependent colony spreading, transposon insertion mutants in wild-type strain 3610 were screened. Disruption of genes for pyrimidine (pyrB) or purine (purD, purF, purH, purL, purM) biosynthetic pathways abolished the K(+)-dependent spreading phase. Consistent with a requirement for functional nucleic acid biosynthesis, disruption of purine synthesis with the folic acid antagonist sulfamethoxazole also inhibited spreading. Other transposon insertions disrupted acetoin biosynthesis (the alsS gene), acidifying the growth medium, glutamine synthetase (the glnA gene), and two surfactin biosynthetic genes (srfAA, srfAB). This work identified four classes of surface colonization mutants with defective (i) potassium transport, (ii) surfactin formation, (iii) growth rate or yield, or (iv) pH control. Overall, the ability of B. subtilis to colonize surfaces by spreading is highly dependent on balanced nucleotide biosynthesis and nutrient assimilation, which require sufficient K(+) ions, as well as growth conditions that promote sliding motility.  相似文献   

16.
Ion dependence of the Bacillus subtilis RNase P reaction   总被引:22,自引:0,他引:22  
The properties of the Bacillus subtilis RNase P are characterized with regard to the types and concentrations of monovalent and divalent ions required to potentiate precursor tRNA cleavage by the protein-RNA holoenzyme and the catalytic RNA alone. The ionic dependence of the RNase P RNA-catalyzed reaction in part seems due to a requirement for ion shielding between substrate and catalytic RNAs. The RNase P protein, which binds to RNA nonspecifically and tightly, likely serves, in part, as a cation screen. However, the character of the ion dependence of the RNA catalysis, the inhibition by high SO2-4 concentration, and potentiation by solvents suggest that RNA conformational transition may be involved in the reaction. It is proposed that the reason for catalysis by RNA in the RNase P reaction may be a requirement for fluidity in the structure of the catalyst, so that it can accommodate many tRNA substrates, which vary in their structural details.  相似文献   

17.
The relationship between protein synthesis and processes of cell division was studied by using synchronized cells of Bacillus subtilis 168. The addition of chloramphenicol at the beginning of synchronous growth prevented septum formation and cell division, suggesting the requirement of protein synthesis for the processes of cell division. Experiments in which the drug was added to the cells at different cell ages showed that the protein synthesis required for the initiation of septum formation was completed at about 15 min and that the protein synthesis required for cell division was completed at about 45 min. By interpreting the result from the concept of the transition point for protein synthesis, it was suggested that the processes of cell division in B. subtilis require at least two kinds of protein molecules which are synthesized at distinct stages in the cell cycle. This was supported by the result of an experiment in which starvation and the readdition of a required amino acid to exponentially growing cells induced two steps of synchronous cell division. Further, the two transition points are in agreement with the estimations obtained by residual division after the inhibition of protein synthesis in asynchronous cells. The relationship of the timing between the completion of chromosome replication and the two transition points was also studied.  相似文献   

18.
A pantothenate-methionine auxotroph (J741) of Pseudomonas denitrificans was isolated whose growth requirement for methionine could not be satisfied by known precursors of the amino acid, including homocysteine. However, some "methyl rich" compounds such as betaine and dimethylacetothetin (DMT) could satisfy the requirement. S-Methyl-methionine and S-adenosylmethionine were ineffective. Extracts were found to contain an enzyme, betaine-homocysteine transmethylase (BHTase), that uses betaine or DMT as a methyl donor and homocysteine as an acceptor to produce methionine. Growth of J741 in methionine leads to a total repression of the BHTase, whereas the use of DMT leads to a three- to sixfold stimulation of enzyme synthesis compared to betaine-grown cells. The pantothenate requirement is unrelated to the methionine auxotrophy, since the growth of other single auxotrophic mutants as well as revertants of J741 still have their methionine requirement satisfied by betaine or DMT. Another methionine auxotroph that could not use betaine for growth was devoid of BHTase activity.  相似文献   

19.
Phenylalanyl-tRNA synthetase exhibits an absolute requirement for magnesium ion in its transfer reaction when assayed in 10 mM Tris-acetate buffer at pH 7.2. This magnesium requirement can be largely eliminated by the use of 50 mM sodium cacodylate, citrate or succinate buffers at pH 6. It is thus demonstrated that, depending upon the assay conditions which are employed, an aminoacyl-tRNA synthetase can exhibit ambivalence with respect to the magnesium requirement of its transfer reaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号