首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Six out of eight human melanoma cell lines were found to be able to function as accessory cells in PHA-induced proliferation of autologous and allogeneic T cells. The accessory cell function of the melanoma cell lines appears to be similar to that of monocytes, requires the presence of viable cells, and does not correlate with the cell surface binding sites for PHA and with the level of expression of HMW-MAA and of HLA Class I antigens. HLA Class II antigens do not appear to play a major role in these phenomena, since there is no relationship between level of expression of HLA Class II antigens and accessory cell function of melanoma cells. Furthermore, addition of anti-HLA Class II monoclonal antibodies does not affect proliferation of T cells stimulated with PHA in the presence of melanoma cells with accessory cell function. Although melanoma cells exert accessory cell function, functional and immunological assays did not detect IL-1 in the spent medium of the melanoma cell lines. Furthermore, Northern blotting analysis with IL-1 alpha and IL-1 beta probes did not detect IL-1-specific mRNA in melanoma cell lines. These results suggest that PHA-induced proliferation of T cells in the presence of melanoma cells can bypass the requirement for IL-1 or utilizes factors other than IL-1.  相似文献   

2.
The capacity of peripheral blood monocytes and B lymphocytes to support staphylococcal protein A (SpA)-induced proliferation of autologous and allogeneic T cells, as well as the role of major histocompatibility complex (MHC) class I and II molecules in this activation process, were investigated. Highly purified peripheral T lymphocytes did not proliferate in response to SpA, but their response was reconstituted by both irradiated (or mitomycin C-treated) monocytes and B lymphocytes. The effect of B cells on the SpA-induced T-cell response could not be explained by a contamination of residual accessory cells because long-term continuous B-cell lines restored SpA-induced T-cell DNA synthesis as effectively as did monocytes. Support of SpA responsiveness by B cells could not be accounted for by polyclonal binding of SpA to cell surface immunoglobulins, since the ability of SpA-unreactive and SpA-reactive B cells was comparable. The cells from two human leukemic lines--K562 and Raji--showed the same ability in supporting the pokeweed mitogen-induced T-cell response, but the class II-positive Raji cells were much more effective than class II-negative K562 cells in restoring the T-cell responsiveness to SpA. Monoclonal antibodies specific for monomorphic determinants of MHC class II antigens, as well as their F(ab')2 fragments, consistently inhibited the SpA-induced proliferative response, whereas antibodies specific for MHC class I antigens were without effect. The antibodies specific for class II antigens appeared to act at the level of accessory cell, since pretreatment with these antibodies inhibited the ability of SpA-pulsed monocytes or Raji cells to present SpA to autologous or allogeneic T lymphocytes, respectively. These data indicate that either monocytes or normal and lymphoblastoid B cells can act as accessory cells for the proliferative response of human T cells to soluble SpA and that monomorphic determinants of MHC class II molecules play an important role in this activation process.  相似文献   

3.
Expression of class II antigens by subsets of activated T cells   总被引:1,自引:0,他引:1  
K S Zier 《Cellular immunology》1986,100(2):525-531
Gene products coded for within the HLA complex play an important role in the control of immune responses. Class I antigens, coded for by the HLA-A, B, and C loci, are expressed by virtually all mononuclear blood cells. Class II antigens, coded for by the DR, DQ, and DP loci, have a more limited tissue distribution. They are expressed by B cells, monocytes, and by activated, but not by resting, T cells. The class II molecules of B cells and antigen-presenting cells have long been of interest to immunologists, since they are involved in the presentation of antigen, in communication between T cells and B cells and between T cells and adherent cells, and in susceptibility to certain diseases. The class II antigens expressed by activated T cells, however, remain largely uncharacterized in terms of their specificity, functional significance, and molecular nature. We have studied the expression of DR and DQ antigens by activated T cells and then examined the expression of DR versus DQ antigens by Leu 2a and Leu 3a subsets of mitogen-activated populations. Our results demonstrated that, as for class II-positive macrophages, the intensity of staining with monoclonal antibodies directed against DR antigens was much greater than that obtained with those directed against DQ antigens. Interestingly, the percentages of Leu 2a- and Leu 3a-positive cells which expressed DR antigens were quite similar, as were the percentages of Leu 2a and Leu 3a cells which expressed DQ. Thus, there does not seem to be preferential expression of DR versus DQ antigens by mitogen-activated T-cell subsets. Finally, though both DR-positive-DQ-positive and DR-positive-DQ-negative populations were detected, few or no DR-negative-DQ-positive cells were observed in these populations.  相似文献   

4.
This study aimed at characterizing the mechanism(s) underlying the regulatory role of distinct determinants of HLA Class I antigens in PHA-P-induced T cell proliferation and the involvement of monocytes in this phenomenon. The anti-HLA-A2,A28 monoclonal antibodies (MoAb) CR11-351, the MoAb Q6/64 to a determinant restricted to the gene products of the I antigens HLA-B locus, and the MoAb CR10-215 and W6/32 to distinct monomorphic determinants of HLA Class I antigens were found to inhibit PHA-P-induced peripheral blood mononuclear cell (PBMC) proliferation in a dose-dependent fashion. The inhibition is specific and reflects neither inhibition of PHA-P binding to cells nor a toxic effect of the anti-HLA Class I MoAb. The latter differed in the concentration required to induce inhibition, in the influence of the concentration of PHA-P used as mitogen, in the differential effect on the donors used as a source of PBMC, and/or in the requirement of the Fc portion to induce inhibition. At variance with the information in the literature, the inhibitory effect of anti-HLA Class I MoAb on PHA-P-induced PBMC proliferation neither reflected their interaction with accessory cells nor was mediated by suppressor factors released by monocytes stimulated with PHA-P in the presence of anti-HLA Class I MoAb. Therefore, the regulatory role of HLA Class I antigens in T cell proliferation is not likely to be mediated by monocytes and/or factors released from them, but may reflect an involvement of these molecules in T cell activation pathways.  相似文献   

5.
The expression of histocompatibility leukocyte antigen (HLA) class I and class II antigens on human oocytes was investigated by the indirect immunofluorescence assay using well-defined monoclonal antibodies. Oocytes were obtained from an in vitro fertilization program or were studied on frozen sections from human ovaries. Neither HLA class I, beta 2-microglobulin, nor HLA class II molecules were detected on cultured oocytes or frozen sections. The zona pellucida also lacked these antigens, but granulosa cells expressed HLA class I molecules. Our results also indicate the presence of certain types of class II molecules on granulosa cells. The present experiments demonstrate that the human oocyte belongs to those few cell types in the human body which are devoid of both types of HLA molecules.  相似文献   

6.
Monoclonal antibodies (mAb) to monomorphic and polymorphic determinants on the heavy chain of histocompatibility leukocyte antigen (HLA) class I antigens inhibit mAb OKT3-induced T cell proliferation, whereas the anti-beta 2-microglobulin mAb NAMB-1 does not affect it. The inhibitory effect of anti-HLA class I mAb is specific, is not an Fc-mediated phenomenon, does not require accessory cells, and does not involve early stages of T cell activation. Distinct determinants of HLA class I antigens regulate T cell proliferation by different mechanisms, because the anti-HLA-A2, A28 mAb CR11-351, and the mAb W6/32 to a framework determinant of HLA class I antigens block interleukin 2 (IL-2) secretion and IL-2 receptor expression, whereas the mAb CR10-215 to a monomorphic determinant blocks only IL-2 receptor expression. The mAb CR10-215 and W6/32 induced a 50% of maximal inhibition of T cell proliferation, when added after 27 and 12 hr, respectively, of incubation of peripheral blood mononuclear cells with mAb OKT3. On the other hand, the mAb CR11-351 inhibited T cell proliferation even when added after 38 hr of incubation of peripheral blood mononuclear cells with mAb OKT3 and was the only one to inhibit proliferation of cycling T lymphocytes. It is suggested that HLA class I antigens regulate T cell proliferation by interacting with cell-surface molecules involved in T cell activation. The differential inhibitory activity of the anti-HLA class I monoclonal antibodies tested may reflect the different ability of the corresponding determinants to interact with activation molecules.  相似文献   

7.
Cross-linking of CD8 and HLA class I molecules with appropriate monoclonal antibodies (mAb) and goat anti-mouse Ig (GaMIg) antibody resulted in a marked proliferation of resting human CD8 cells in the presence of interleukin-2 (IL-2). These cells also expressed IL-2 receptor (IL-2R), transferrin receptor, HLA-DR and -DQ antigens. Activation of the cross-linked CD8 cells is apparently independent of accessory monocytes. Various anti-CD8 and anti-HLA class I mAb recognizing nonpolymorphic antigenic determinants were examined for the efficacy of activating CD8 cells. Among mAb specific for HLA class I molecules, PA2.6, MB40.5, BB7.7, A1.4, and W6/32 mAb markedly stimulated the proliferation of cross-linked CD8 cells, whereas BBM.1, Q1/28, and HC10 mAb were found inactive. Footprinting analysis of HLA class I molecules suggested that the activity of these anti-HLA class I mAb appeared to be related to the corresponding peptides they protect from enzymatic digestion. In contrast to the anti-HLA class I mAb, all anti-CD8 mAb examined (C8, OKT8A, and anti-Leu-2a) induced the proliferation of CD8-HLA class I cross-linked cells with similar efficacy. These results suggest that physical interaction between CD8 and at least one specific region of HLA class I molecules can trigger the activation of resting human CD8 cells.  相似文献   

8.
The function of the T cell differentiation antigens CD4 (Leu-3/T4) and CD8 (Leu-2/T8) on human cytotoxic T lymphocytes (CTL) is presently seen only in conjugate formation between CTL and target cell via class II or class I MHC antigens rather than in the later killing steps. In this study, human CD4+ and CD8+ CTL clones were used to investigate the effects of monoclonal antibodies against these differentiation antigens on nonspecific triggering of cytotoxicity. Cytotoxicity was induced either by antibodies against the CD3 (T3) antigen or by the lectins Con A and PHA. Anti-CD4 or anti-CD8 antibodies specifically inhibited all types of cytotoxicity of CD4+ or CD8+ CTL, respectively, regardless of the specificity of the CTL for class I or class II HLA antigens and regardless of whether target cells expressed class I or class II antigens. These results are incompatible with an exclusive role of the CD4 and CD8 molecules in MHC class recognition and are discussed with respect to a function as negative signal receptors for these molecules on CTL.  相似文献   

9.
The monoclonal antibodies (MoAb) CR10-214, CR11-115, and Q1/28 to distinct monomorphic determinants of HLA class I antigens, the MoAb CL413 and PTF29.12 recognizing monomorphic determinants of HLA-DR antigens, the anti-HLA-DQw1 MoAb KS11, the anti-HLA-DPw1 MoAb B7/21, and the anti-HLA-DR,DP MoAb CR11-462 were tested for their ability to modulate human B-lymphocyte proliferation and maturation to IgM-forming cells. Purified tonsillar B cells were stimulated with Staphylococcus aureus bacteria of the Cowan first strain (SAC) or anti-human mu-chain xenoantibodies, as well as in growth factor- or T-cell-dependent activation cultures. The B-cell proliferative responses induced by SAC or by mitogenic concentrations of anti-mu-chain xenoantibodies were inhibited by some of the anti-HLA class I and anti-HLA class II monoclonal antibodies tested. The same antibodies were effective inhibitors of the proliferation of B cells stimulated with interferon-gamma (IFN-gamma) or interleukin-2 (IL-2) and with submitogenic concentrations of anti-mu-chain xenoantibodies. The proliferation induced by IL-2 of SAC-preactivated B cells was inhibited by some of the anti-HLA class II monoclonal antibodies, but not by the anti-HLA class I monoclonal antibodies tested. This inhibition appeared to reflect at least in part a direct effect on later events of the B-cell activation cascade, since some anti-HLA class II monoclonal antibodies still exerted considerable inhibitory activity when added together with IL-2 to SAC-preactivated B cells after the third day of culture. Anti HLA-DR, DQ, and DP monoclonal antibodies consistently inhibited the IgM production induced in B cells by T cells alone, T cells plus pokeweed mitogen (PWM), SAC plus IL-2, or IL-2 alone. In contrast, two of the three anti-HLA class I monoclonal antibodies tested inhibited the IgM production in cultures stimulated with SAC plus IL-2 and one the IgM production induced by IL-2 alone, but none of them had inhibitory effects on T-cell dependent IgM production. The results reported herein indicate that HLA class II molecules directly participate in different phases of the B-cell activation cascade. In addition, our data also suggest that HLA class I molecules can be involved in the events leading to B-cell proliferation and differentiation into immunoglobulin-secreting cells.  相似文献   

10.
Human herpesvirus 6 (HHV-6) has a tropism for T lymphocytes and monocytes/macrophages, suggesting that HHV-6 infection affects the immunosurveillance system. In the present study, we investigated the HHV-6-induced phenotypic and functional alterations of dendritic cells (DCs), which are professional antigen-presenting cells. HHV-6 infection of monocyte-derived immature DCs appeared to induce the up-regulation of CD80, CD83, CD86, and HLA class I and class II molecules, suggesting that HHV-6 infection induces the maturation of DCs. In addition, the antigen capture capacity of DCs was found to decrease following infection with HHV-6. In contrast to up-regulation of mature-DC-associated surface molecules on HHV-6-infected DCs, their capacity for presentation of alloantigens and exogenous virus antigens to T lymphocytes decreased significantly from that of uninfected DCs. In contrast, there appeared to be no reduction in the capacity for presentation of an HLA class II-binding peptide to the peptide-specific CD4(+) T lymphocytes. These data indicate that HHV-6 infection induces phenotypic alterations and impairs the antigen presentation capacity of DCs. The present data also suggest that the dysfunction of HHV-6-infected DCs is attributable mainly to impairment of the antigen capture and intracellular antigen-processing pathways.  相似文献   

11.
We have examined the effect of several monoclonal antibodies (MoAb) to monomorphic determinants of class II HLA antigens, and MoAb to monomorphic determinants of class I HLA antigens and to beta-2-microglobulin (beta 2-mu) on lectin- and MoAb OKT3-induced proliferation of human peripheral blood mononuclear cells (PBMNC) and cultured T cells (CTC). Some, but not all, anti-class II HLA MoAb inhibited the proliferative response of PBMNC to MoAb OKT3 and pokeweed mitogen (PWM). The degree of inhibitory effect varied considerably. This effect was not limited to anti-class II HLA MoAb since anti-class I HLA MoAb and anti-beta 2-mu MoAb also inhibited MoAb OKT3- or PWM-induced proliferative responses. In contrast, the response of PBMNC to phytohemagglutinin (PHA) and concanavalin A (Con A) was not blocked by any anti-class II HLA MoAb. However, some anti-class II HLA MoAb also inhibited the proliferative response of CTC plus allogeneic peripheral blood adherent accessory cells (AC) to PHA or Con A as well as to MoAb OKT3 or PWM. This may be attributable to the substantially greater class II HLA antigen expression by CTC than by fresh lymphocytes. Pretreatment of either CTC or AC with anti-class II HLA MoAb inhibited OKT3-induced proliferation. In contrast, pretreatment of CTC, but not AC, with anti-class I HLA MoAb inhibited the proliferative response of CTC to OKT3. Pretreatment of CTC with anti-class I HLA MoAb inhibited PHA-, Con A and PWM-induced proliferation, to a greater degree than the anti-class II HLA MoAb. It appears as if lymphocyte activation by different mitogens exhibits variable requirements for the presence of cells expressing major histocompatibility determinants. Binding of Ab to membrane markers may interfere with lymphocyte-AC cooperation, perhaps by inhibiting binding of mitogens to their receptors or by interfering with lymphocyte and AC function. We also have examined the role of class II HLA antigens on CTC by depleting class II HLA-positive cells. As expected, elimination of class II HLA-positive AC with anti-class II HLA MoAb plus complement caused a decrease in proliferation of CTC in response to all the mitogens tested. In contrast, elimination of class II HLA-positive CTC was shown to clearly increase proliferation of CTC, perhaps because this may deplete class II HLA-positive suppressor cells.  相似文献   

12.
It is generally accepted that as the result of positive thymic selection, CD8-expressing T cells recognize peptide antigens presented in the context of MHC class I molecules and CD4-expressing T cells interact with peptide antigens presented by MHC class II molecules. Here we report the generation of TCRalpha/beta(+), CD3(+), CD4(+), CD8(-), MHC class I-restricted alloreactive T-cell clones which were induced using peripheral blood mononuclear cells from healthy individuals following in vitro stimulation with transporter associated with antigen processing (TAP)-deficient cell lines T2. The CD4(+) T-cell clones showed an HLA-A2.1-specific proliferative response against T2 cells which was inhibited by anti-CD3 and anti-CD4 monoclonal antibodies. These results suggest that interaction of the TCR with peptide-bound HLA class I molecules contributes to antigen-specific activation of these co-receptor-mismatched T-cell clones. Antigen recognition by alloreactive MHC class I-restricted CD4(+) T cells was inhibited by removing peptides bound to HLA molecules on T2 cells suggesting that the alloreactive CD4(+) T cells recognize peptides that bind in a TAP-independent manner to HLA-A2 molecules. The existence of such MHC class I-restricted CD4(+) T cells which can recognize HLA-A2 molecules in the absence of TAP function may provide a basis for the development of immunotherapy against TAP-deficient tumor variants which would be tolerant to immunosurveillance by conventional MHC class I-restricted cytotoxic lymphocytes.  相似文献   

13.
Human T-cell lines responsive to the polypeptide antigens GAT and (T, G)-A--L were developed. They were specific for the priming antigens and required the participation of accessory cells matched for HLA-linked determinants, as shown in family studies. In panel studies, the ability of accessory cells to present antigen was shown to be associated with HLA-D-region antigens. However, the specificity of these determinants did not fully correspond to any HLA antigens as currently defined. One GAT-specific subline, derived by limiting dilution, utilized a restriction determinant associated with, but distinct from, the DQw3 (MB3) allospecificity. Blocking studies with mouse monoclonal antibodies indicated that this restriction determinant was carried by HLA-DQ molecules. The epitopes recognized in these molecules appear to be distinct from the alloantigenic determinants currently defined by serology.  相似文献   

14.
The class I molecules encoded by the major histocompatibility complex (MHC) present endogenously synthesized antigenic peptide fragments to cytotoxic T lymphocytes. We show here that these proteins are an essential component of the cell surface receptor for simian virus 40 (SV40). First, SV40 binding to cells can be blocked by two monoclonal antibodies against class I human lymphocyte antigen (HLA) proteins but not by monoclonal antibodies specific for other cell surface proteins. Second, SV40 does not bind to cells of two different human lymphoblastoid cell lines which do not express surface class I MHC proteins because of genetic defects in the beta 2-microglobulin gene in one line and in the HLA complex in the other. Transfection of these cell lines with cloned genes for beta 2-microglobulin and HLA-B8, respectively, restored expression of their surface class I MHC proteins and resulted in concomitant SV40 binding. Finally, SV40 binds to purified HLA proteins in vitro and selectively binds to class I MHC proteins in a cell surface extract.  相似文献   

15.
The T4 molecule has been identified as a marker of human T cell differentiation, but the function of this molecule remains to be defined. We have investigated its possible functional involvement in T cell proliferative responses to class II HLA antigens encoded by the recently described SB locus. The responses of SB-primed cells (specific for each of four different SB antigens) were studied with the use of two proliferation-inducing stimuli, SB antigen or TCGF. The proliferative responses to both stimuli were found to be mediated by T4+, T8- cells. Monoclonal antibodies against some epitopes on the T4 molecule (OKT4A and OKT4B) substantially blocked antigen-stimulated proliferative responses; antibodies against other epitopes of the T4 molecule (OKT4, T4C, T4D) blocked less well. Inhibition of SB-specific proliferation by antibodies to the T4 molecule was maximal only when the antibodies were incubated with the responder cells before the addition of stimulator cells. Proliferative responses of SB-primed cells stimulated with TCGF alone were not inhibited by any of the OKT4-related antibodies, but were completely inhibited by the anti-Tac monoclonal antibody, which reacts with the TCGF receptor. These results lend further support for the hypothesis that the T4 molecule is involved in T cell recognition of and/or activation by class II HLA antigens. We suggest that 1) the T4 molecule binds a nonpolymorphic epitope on class II HLA molecules, and 2) this interaction may facilitate, but not be an obligate requirement for, T cell activation by class II antigens.  相似文献   

16.
Cultures of human thymic epithelial cells (TEC) were tested for the expression of HLA class I (A, B, C) and class II (DR and DC) antigens by indirect immunofluorescence. The epithelial nature of the cells was proven by using an antikeratin antiserum. A high level of expression (close to 100% positive cells) of HLA class I antigens was observed on TEC at the beginning of the culture and remained unchanged for up to 12 days. In contrast, HLA class II antigen expression (85% DR+ and 75% DC+ cells on day 2) decreased gradually and reached very low levels (less than 5% DR+ or DC+) by day 7 of culture. This loss of class II antigen expression was not seen when cultures were performed in the presence of supernatants from activated T cells containing interferon-gamma (IFN-gamma). Furthermore, the presence of recombinant IFN-gamma (rIFN-gamma) in the medium from the onset of culture maintained HLA-DR and DC antigen expression on a high number of cells (comparable to that observed on day 2 of culture). A large percentage of rIFN-gamma-treated cells also showed intracytoplasmic HLA-DR antigen expression. Addition of rIFN-gamma at various times after the onset of the culture led to a reinduction of DR and DC antigen expression. This effect of rIFN-gamma was observed in 48 hr with concentrations as low as 10 IU/ml and was apparently specific for this IFN species, in that rIFN-alpha was unable to modify HLA class II antigen expression at concentrations up to 1000 IU/ml. The increased expression of HLA class II antigen was truly due to induction in individual TEC, rather than selection of class II-positive cells, because induction under the influence of IFN-gamma was reversible and occurred in the absence of proliferation in mitomycin-treated or gamma-irradiated cultures. Our results indicate that synthesis and membrane expression of class II HLA antigens are enhanced by IFN-gamma in TEC cultures. This finding raises the possibility that IFN-gamma participates in the mechanisms that assure the permanent expression of DR and DC antigens observed in TEC in vivo, with potentially important functional consequences in terms of education for self recognition.  相似文献   

17.
The cytotoxic effector cells that recognize HLA-D-region determinants and their precursors were characterized using monoclonal antibodies against human T lymphocytes and T-cell subsets. These studies were performed using MLC combinations giving rise to cytotoxic cells specific for both class I (HLA-A, B, C) and class 11 (HLA-D-region) antigens, and then tested against target cells displaying relevant antigens of only one class. Both class I and class II specific CTL (cytotoxic T lymphocytes) were inhibited by treatment with the OKT3 monoclonal antibody and complement, indicating that the effector cells were T lymphocytes. A major portion.of class II specific CTL, and their precursors, were inhibited by OKT4 and complement, while class I specific CTL from the same cultures were not. The T4+T8 — cell subset has previously been associated with helper or inducer functions, but not with cytotoxicity. The present findings indicate that class I and class 11 specific CTL, and their precursors, are different on the basis of the class of target antigen recognized and on the basis of surface phenotype detected by monoclonal antibodies.  相似文献   

18.
19.
Evidence has been presented to show that CD4+ autoreactive T cell lines (ATs)2 in the rat require periodic stimulation with syngeneic spleen cells for in vitro proliferation. This proliferation can be blocked by treatment of the stimulator (spleen) cells with mAb to Ia antigens. Although ATs are Ia+ and can activate the allogeneic MLR, they fail to be autostimulatory. Fractionation of the spleen cells revealed that ATs can be stimulated with B cells and not by macrophages, although the latter were efficient in several accessory cell functions, including antigen presentation, lectin-dependent T cell activation and allogenic MLR response. Moreover, B cells proliferated and differentiated in response to AT cells. These data are compatible with a model in which ATs respond to hitherto undetermined B cell membrane antigen(s) in association with MHC class II antigens. These results may have important implications in understanding autoimmune responses.  相似文献   

20.
T cells from an insulin-treated diabetic (ML, HLA DR1, w6) were stimulated in vitro with insulin, cloned at limiting dilution, and examined for their fine specificity and genetic restriction. T cell lines (TCL) derived from beef insulin stimulation were highly specific for epitopes on beef insulin, whereas pork insulin stimulation generated T cells that recognized determinants shared with beef insulin. Included among TCL reactive with pork insulin is one line (P2/9) that is autoreactive with human insulin. Antigen-presenting cells of known HLA type and monoclonal antibodies directed at class II major histocompatibility complex antigens were used to confirm the role of HLA-DR in restricting the response of insulin immune T cells. No preference or determinant selection within the donor's haplotypes was identified because either DR1 or DRw6 antigen-presenting cells could present the A loop of beef insulin. A TCL that recognized the A loop of beef insulin in association with DR1 was also alloreactive to HLA DR3, or a molecule closely linked to it, in the absence of insulin. A second T cell clone with insulin specificity and alloreactivity was also derived by allo stimulation of the donor's cells with DR3+ cells. When tested with a series of DR3+ stimulator cells, the alloreactivity was directed at diabetes-associated haplotypes. These data show that the T cell repertoire for insulin of a single diabetic donor encompasses that of multiple inbred animal strains and includes fine specificity for one to two amino acids, recognition of autologous insulin, and cross-reactivity with an allogeneic major histocompatibility complex antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号