首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new sulfur- or non-sulfur-dependent archaeal isolates, including a Pyrococcus strain, from Guaymas Basin hydrothermal vents (Gulf of California; depth, 2,010 m) were characterized and physiologically compared with four known hyperthermophiles, previously isolated from other vent sites, with an emphasis on growth and survival under the conditions particular to the natural habitat. Incubation under in situ pressure (200 atm [1 atm = 101.29 kPa]) did not increase the maximum growth temperature by more than 1°C for any of the organisms but did result in increases in growth rates of up to 15% at optimum growth temperatures. At in situ pressure, temperatures considerably higher than those limiting growth (i.e., > 105°C) were survived best by isolates with the highest maximum growth temperatures, but none of the organisms survived at temperatures of 150°C or higher for 5 min. Free oxygen was toxic to all isolates at growth range temperatures, but at ambient deep-sea temperature (3 to 4°C), the effect varied in different isolates, the non-sulfur-dependent isolate being the most oxygen tolerant. Hyperthermophiles could be isolated from refrigerated and oxygenated samples after 5 years of storage. Cu, Zn, and Pb ions were found to be toxic under nongrowth conditions (absence of organic substrate), with the non-sulfur-dependent isolate again being the most tolerant.  相似文献   

2.
This study was undertaken to determine the influence of temperature (20, 37, and 50°C) and pressure (1, 100 and 200 atm) on a strain of sulphate-reducing bacteria (SRB), isolated from an oil reservoir in Alaska. The effect of different concentrations (100, 200 and 500 ppm) of biocides isothiazolone (ITZ) and formaldehyde (FA) on planktonic population of SRB was tested in order to determine the efficacy of biocides under these conditions.The highest bacterial growth rate was 0.26±0.03 h−1 at 37°C under pressure of 100 atm. Statistical evaluation showed that although both temperature and pressure had exerted an effect on bacteria by significantly increasing their growth rate; temperature rather than pressure had greater influence on bacterial proliferation.The effectiveness of both FA and ITZ in controlling planktonic populations of SRB was comparable except at 37°C/200 atm, under which conditions FA proved to be more potent. The effectiveness of both biocides decreased with an increase in cell number, as observed at 37°C/100 atm.  相似文献   

3.
Most biologists do not take into account that the greatest portion of today's biosphere is in the realm of environmental extremes, most of it being cold and under pressure. Since bacteria have the ability to adapt to environmental extremes, a close examination for the presence and/or growth of bacteria at high and low temperatures, low temperature and reduced pressure (less than 1 atm), low temperature and increased hydrostatic pressure should be made. It is also within the realm of possibility that life may have arisen in an environmental extreme on the primordial earth and then evolved over time to live under moderate temperatures and 1 atm. Microbial life has been demonstrated at temperatures slightly greater than 90°C, below 0°C, at hydrostatic pressures of 1100 atm, and possibly at cold temperatures in the atmosphere (less than 1 atm). Laboratory experiments have shown that certain enzyme reactions can occur above 100°C under hydrostatic pressure, at –26°C and at 5°C under hydrostatic pressure.Proceedings of the Fourth College Park Colloquium on Chemical Evolution:Limits of Life, University of Maryland, College Park, 18–20 October 1978.  相似文献   

4.
The deep-sea archaeon Methanococcus jannaschii was grown at 86 degrees C and under 8, 250, and 500 atm (1 atm = 101.29 kPa) of hyperbaric pressure in a high-pressure, high-temperature bioreactor. The core lipid composition of cultures grown at 250 or 500 atm, as analyzed by supercritical fluid chromatography, exhibited an increased proportion of macrocyclic archaeol and corresponding reductions in aracheol and caldarchaeol compared with the 8-atm cultures. Thermal analysis of a model core-lipid system (23% archaeol, 37% macrocyclic archaeol, and 40% caldarchaeol) using differential scanning calorimetry revealed no well-defined phase transition in the temperature range of 20 to 120 degrees C. Complementary studies of spin-labeled samples under 10 and 500 atm in a special high-pressure, high-temperature electron paramagnetic resonance spectroscopy cell supported the differential scanning calorimetry phase transition data and established that pressure has a lipid-ordering effect over the full range of M. jannaschii's growth temperatures. Specifically, pressure shifted the temperature dependence of lipid fluidity by ca. 10 degrees C/500 atm.  相似文献   

5.
6.
Benthic animals and sediment samples were collected at deep-sea stations in the northwest (3,600-m depth) and southeast (4,300- and 5200-m depths) Atlantic Ocean. Utilization rates of [14C]glutamate (0.67 to 0.74 nmol) in sediment suspensions incubated at in situ temperatures and pressures (3 to 5 degrees C and 360, 430, or 520 atmospheres) were relatively slow, ranging from 0.09 to 0.39 nmol g-1 day-1, whereas rates for pressurized samples of gut suspensions varied widely, ranging from no detectable activity to a rapid rate of 986 nmol g-1 day-1. Gut flora from a holothurian specimen and a fish demonstrated rapid, barophilic substrate utilization, based on relative rates calculated for pressurized samples and samples held at 1 atm (101.325 kPa). Substrate utilization by microbial populations in several sediment samples was not inhibited by in situ pressure. Deep-sea pressures did not restrict growth, measured as doubling time, of culturable bacteria present in a northwest Atlantic sediment sample and in a gut suspension prepared from an abyssal scavenging amphipod. From the results of this study, it was concluded that microbial populations in benthic environments can demonstrate significant metabolic activity under deep-ocean conditions of temperature and pressure. Furthermore, rates of microbial activity in the guts of benthic macrofauna are potentially more rapid than in surrounding deep-sea sediments.  相似文献   

7.
Benthic animals and sediment samples were collected at deep-sea stations in the northwest (3,600-m depth) and southeast (4,300- and 5200-m depths) Atlantic Ocean. Utilization rates of [14C]glutamate (0.67 to 0.74 nmol) in sediment suspensions incubated at in situ temperatures and pressures (3 to 5 degrees C and 360, 430, or 520 atmospheres) were relatively slow, ranging from 0.09 to 0.39 nmol g-1 day-1, whereas rates for pressurized samples of gut suspensions varied widely, ranging from no detectable activity to a rapid rate of 986 nmol g-1 day-1. Gut flora from a holothurian specimen and a fish demonstrated rapid, barophilic substrate utilization, based on relative rates calculated for pressurized samples and samples held at 1 atm (101.325 kPa). Substrate utilization by microbial populations in several sediment samples was not inhibited by in situ pressure. Deep-sea pressures did not restrict growth, measured as doubling time, of culturable bacteria present in a northwest Atlantic sediment sample and in a gut suspension prepared from an abyssal scavenging amphipod. From the results of this study, it was concluded that microbial populations in benthic environments can demonstrate significant metabolic activity under deep-ocean conditions of temperature and pressure. Furthermore, rates of microbial activity in the guts of benthic macrofauna are potentially more rapid than in surrounding deep-sea sediments.  相似文献   

8.
The thermodynamic parameters for the heat activation of the sporangiospores of Phycomyces blakesleeanus were determined. For the apparent activation enthalpy (DeltaH(#)) a value of 1,151 kJ/mol was found, whereas a value of 3,644 J./ degrees K.mol was calculated for the apparent activation entropy (DeltaS(#)). n-Alcohols (from methanol to octanol), phenethyl alcohol, and furfural lowered the activation temperature of P. blakesleeanus spores. The heat resistance of the spores was lowered concomitantly. The effect of the alcohols was a linear function of the concentration in the range that could be applied. When the log of the concentration needed to produce an equal shift of the activation temperature was plotted for each alochol against the log of the octanol/water partition coefficient, a straight line was obtained. The free energy of adsorption of the n-alcohols to their active sites was calculated to be -2,487 J/mol of CH(2) groups. Although still inconclusive, this points toward an involvement of protein in the activation process. The effect of phenethyl alcohol was similar to the effect of n-alcohols, but furfural produced a greater shift than would be expected from the value of its partition coefficient. When the heat activation of the spores was performed under high pressure, the activation temperature was raised by 2 to 4 degrees K/1,000 atm. However, with pressures higher than 1,000 atm (1.013 x 10(5) kPa) the activation temperature was lowered until the pressure became lethal (more than 2,500 atm). It is known that membrane phase transition temperatures are shifted upward by about 20 degrees K/1,000 atm and that protein conformational changes are shifted upward by 2 to 6 degrees K/1,000 atm. Consequently, heat activation of fungal spores seems to be triggered by a protein conformational change and not by a membrane phase transition. Activation volumes of -54.1 cm(3)/mol at 38 degrees C and -79.3 cm(2)/mol at 40 degrees C were found for the lowering effect of high pressure on the heat activation temperature.  相似文献   

9.
Osmotic Behavior of Bacterial Protoplasts: Temperature Effects   总被引:1,自引:0,他引:1  
Among protoplasts released from cells of Bacillus megaterium grown at 20, 30, or 37 C, osmotic swelling in NaCl solution at a given external osmotic pressure was greatest for protoplasts from cells grown at 20 C and least for protoplasts from cells grown at 37 C. Protoplasts from cells grown at lower temperaturs were also less stable to osmotic shock and lysed at higher external osmotic pressures than did protoplasts from cells grown at higher temperatures. But for cells grown at any one temperature, osmotic stabilization was itself temperature dependent so that the higher the ambient incubation temperature, the higher the osmotic pressure needed to prevent lysis of a given fraction of the input protoplast population. However, comparison of the osmotic stability of protoplasts from cells grown at different temperatures at various ambient incubation temperatures revealed that, except at 5 C where no differences were discerned, protoplasts from cells grown at lower temperatures still lysed at higher osmotic pressures than did those from cells grown at higher temperatures. The apparent internal osmolality (28 to 31 atm) did not vary significantly among whole cells from the three growth temperatures. Therefore, the observed differences in osmotic behavior could not be attributed to changes in internal osmotic pressure. Rather, it seemed likely that the differences were due to changes in membrane properties.  相似文献   

10.
Barophilic bacteria are microorganisms that grow preferentially (facultative barophiles) or exclusively (obligate barophiles) under elevated hydrostatic pressure. Barophilic bacteria have been isolated from a variety of deep-sea environments. Attempts to characterize these organisms have been hampered by a lack of appropriate methodologies. A colorimetric method for the detection of 19 constitutively expressed enzymes under in situ conditions of pressure and temperature has been devised, using a simple modification of the commercially available API ZYME enzyme assay kit. By using this method, enzyme profiles of 11 barophilic isolates, including an obligate barophile, were determined. Nine of the 10 facultatively barophilic isolates examined exhibited a change of phenotype in at least one enzyme reaction when tested at 1 atm (1 atm = 101.29 kPa), compared with results obtained under in situ pressure. The assay is simple and rapid and allows for direct determination of enzyme activity under conditions of high pressure and low temperature.  相似文献   

11.
Barophilic bacteria are microorganisms that grow preferentially (facultative barophiles) or exclusively (obligate barophiles) under elevated hydrostatic pressure. Barophilic bacteria have been isolated from a variety of deep-sea environments. Attempts to characterize these organisms have been hampered by a lack of appropriate methodologies. A colorimetric method for the detection of 19 constitutively expressed enzymes under in situ conditions of pressure and temperature has been devised, using a simple modification of the commercially available API ZYME enzyme assay kit. By using this method, enzyme profiles of 11 barophilic isolates, including an obligate barophile, were determined. Nine of the 10 facultatively barophilic isolates examined exhibited a change of phenotype in at least one enzyme reaction when tested at 1 atm (1 atm = 101.29 kPa), compared with results obtained under in situ pressure. The assay is simple and rapid and allows for direct determination of enzyme activity under conditions of high pressure and low temperature.  相似文献   

12.
In this paper, elevated pressures up to 750 atm (1 atm = 101 kPa) were found to have a strong stabilizing effect on two extremely thermophilic glutamate dehydrogenases (GDHs): the native enzyme from the hyperthermophile Pyrococcus furiosus (Pf), and a recombinant GDH mutant containing an extra tetrapeptide at the C-terminus (rGDHt). The presence of the tetrapeptide greatly destabilized the recombinant mutant at ambient pressure; however, the destabilizing effect was largely reversed by the application of pressure. Electron spin resonance (ESR) spectroscopy of a spin-label attached to the terminal cysteine of rGDHt revealed a high degree of mobility, suggesting that destabilization is due to weakened intersubunit ion-pair interactions induced by thermal fluctuations of the tetrapeptide. For both enzymes, the stabilizing effect of pressure increased with temperature as well as pressure, reaching 36-fold for rGDHt at 105 degrees C and 750 atm, the largest pressure-induced thermostabilization of an enzyme reported to date. Stabilization of both native GDH and rGDHt was also achieved by adding glycerol. Based on the kinetics of thermal inactivation and the known effects of glycerol on protein structure, a mechanism of pressure-induced thermostabilization is proposed.  相似文献   

13.
The water relations of the inundated forest of the Rio Negro in the Amazon have been investigated. The sap pressure in trees and bushes standing in several meters of water was found to average between −15 and −20 atm in sunshine. and above −10 in overcast. In rainy weather and at night. the pressure would remain close to ambient. Submerged leaves had ambient or sometimes very slightly positive pressure. Pinnate leaves of legumes folded when the pressure rose above a critical level characteristic of the species. Dehydration curves from full turgor to negative turgor showed 3 characteristic phases: A) a steep decline in pressure when the turgor disappeared; B) a linear decline at zero turgor proportional to the increase in osmotic pressure; and C) a steep decline as negative turgor (intracellular packing) developed. The tensions in the drowned forests were similar to those found in inundated plants of temperate lakes. and hence like many plants in a humid forest. However, in the daytime many flooded plants of the Amazon reached zero turgor without any external sign of wilting.  相似文献   

14.
To clarify the influence of internal and skin temperature on the active cutaneous vasodilation during exercise, the body temperature thresholds for the onset of active vasodilation during light or moderate exercise under different ambient temperature conditions were compared. Seven male subjects performed 30 min of a cycling exercise at 20 % or 50 % of peak oxygen uptake in a room maintained at 20, 24, or 28 °C. Esophageal (Tes) and mean skin temperature (Tsk) as measured by a thermocouple, deep thigh temperature (Tdt) by the zero-heat-flow (ZHF) method, and forearm skin blood flow by laser-Doppler flowmetry (LDF) were monitored. The mean arterial pressure (MAP) was also monitored non-invasively, and the cutaneous vascular conductance (CVC) was calculated as the LDF/MAP. Throughout the experiment, the Tsk at ambient temperatures of 20, 24, and 28 °C were approximately 30, 32, and 34 °C, respectively, for both 20 % and 50 % exercise. During 50 % exercise, the Tes or Tdt thresholds for the onset of the increase in CVC were observed to be similar among the 20, 24, and 28 °C ambient conditions. During 20 % exercise, the increase in Tes and Tdt was significantly lower than those found at 50 %, and the onset of the increase in CVC was only observed at 28 °C. These results suggest that the onset of active vasodilation was affected more strongly by the internal or exercising tissue temperatures than by the skin temperatures during exercise performed at a moderate load in comparison to a light load under Tsk variations ranging from 30 °C to 34 °C. Therefore, the modification by skin temperature of the central control on cutaneous vasomotor tone during exercise may differ between different exercise loads.  相似文献   

15.
SUMMARY. Hippuris vulgaris was found growing down to a depth of 6 m in two clear-water lakes. Mean summer water temperatures of the epilimnia were 15–18°C. Midsummer photosynthetically available radiation, (PAR 400–700 nm) at 6 m was 100 μeinsteins m−2s−1. In the laboratory, shoots of H. vulgaris continued to elongate at temperatures of 15 and 20°C and at pressures of 1.0, 1.8 and 2.3 atm. (corresponding to 0 m, 8.0 m and 13.3 m depths of water, respectively) providing PAR was kept above 100 °E m−2s−1. Leaf primordia were initiated further from the apex in shoots grown under a pressure of 2.3 atm., but the site of initiation is not critical for the subsequent growth of leaves in H. vulgaris . Lacunae in shoots grown under a pressure of 2.3 atm. were also larger than those in control shoots, implying that pressure does not constrict air spaces. Root growth is not inhibited by a pressure of 2.3 atm. Field measurements and laboratory experiments indicate that in warm water, PAR is the environmental factor most likely to control the depth limits of H. vulgaris in the field.  相似文献   

16.
Elevated hydrostatic pressure has been used to increase catalytic activity and thermal stability of alpha-chymotrypsin (CT). For an anilide substrate, characterized by a negative value of the reaction activation volume (DeltaV( not equal)), an increase in pressure at 20 degrees C results in an exponential acceleration of the hydrolysis rate catalyzed by CT reaching a 6.5-fold increase in activity at 4700 atm (4.7 kbar). Due to a strong temperature dependence of DeltaV( not equal), the acceleration effect of high pressure becomes more pronounced at high temperatures. For example, at 50 degrees C, under a pressure of 3.6 kbar, CT shows activity which is more than 30 times higher than the activity at normal conditions (20 degrees C, 1 atm). At pressures of higher than 3.6 kbar, the enzymatic activity is decreased due to a pressure-induced denaturation.Elevated hydrostatic pressure is also efficient for increasing stability of CT against thermal denaturation. For example, at 55 degrees C, CT is almost instantaneously inactivated at atmospheric pressure, whereas under a pressure of 1.8 kbar CT retains its anilide-hydrolyzing activity during several dozen minutes. Additional stabilization can be achieved in the presence of glycerol, which is most effective for protection of CT at an intermediate concentration of 40% (v/v). There has been observed an additivity in stabilization effects of high pressure and glycerol: thermal inactivation of pressure-stabilized CT can be decelerated in a supplementary manner by addition of 40% (v/v) glycerol. The protection effect of glycerol on the catalytic activity and stability of CT becomes especially pronounced when both extreme factors of temperature and pressure reach critical values. For example, at approximately 55 degrees C and 4.7 kbar, enzymatic activity of CT in the presence of 40% (v/v) glycerol is severalfold higher than in aqueous buffer.The results of this study are discussed in terms of the hypotheses which explain the action of external and medium effects on protein structure, such as preferential hydration and osmotic pressure. (c) 1996 John Wiley & Sons, Inc.  相似文献   

17.
The physiology of the deep-sea hyperthermophilic, anaerobic vent archaeon Pyrococcus abyssi, originating from the Fiji Basin at a depth of 2,000 m, was studied under diverse conditions. The emphasis of these studies lay in the growth and survival of this archaeon under the different conditions present in the natural habitat. Incubation under in situ pressure (20 MPa) and at 40 MPa increased the maximal and minimal growth temperatures by 4(deg)C. In situ pressure enhanced survival at a lethal high temperature (106 to 112(deg)C) relative to that at low pressure (0.3 MPa). The whole-cell protein profile, analyzed by one-dimensional sodium dodecyl sulfate gel electrophoresis, did not change in cultures grown under low or high pressure at optimal and minimal growth temperatures, but several changes were observed at the maximal growth temperature under in situ pressure. The complex lipid pattern of P. abyssi grown under in situ and 0.1- to 0.5-MPa pressures at different temperatures was analyzed by thin-layer chromatography. The phospholipids became more complex at a low growth temperature at both pressures but their profiles were not superimposable; fewer differences were observed in the core lipids. The polar lipids were composed of only one phospholipid in cells grown under in situ pressure at high temperatures. Survival in the presence of oxygen and under starvation conditions was examined. Oxygen was toxic to P. abyssi at growth range temperature, but the strain survived for several weeks at 4(deg)C. The strain was not affected by starvation in a minimal medium for at least 1 month at 4(deg)C and only minimally affected at 95(deg)C for several days. Cells were more resistant to oxygen in starvation medium. A drastic change in protein profile, depending on incubation time, was observed in cells when starved at growth temperature.  相似文献   

18.
Undecompressed microbial populations from the deep sea.   总被引:7,自引:5,他引:2       下载免费PDF全文
Metabolic transformations of glutamate and Casamino Acids by natural microbial populations collected from deep waters (1,600 to 3,100 m) were studied in decompressed and undecompressed samples. Pressure-retaining sampling/incubation vessels and appropriate subsampling/incubation vessels and appropriate subsampling techniques permitted time course experiments. In all cases the metabolic activity in undecompressed samples was lower than it was when incubated at 1 atm. Surface water controls showed a reduced activity upon compression. The processes involving substrate incorporation into cell material were more pressure sensitive than was respiration. The low utilization of substrates, previously found by in situ incubations for up to 12 months, was confirmed and demonstrated to consist of an initial phase of activity, in the range of 5 to 60 times lower than the controls, followed by a stationary phase of virtually no substrate utilization. No barophilic growth response (higher rates at elevated pressure than at 1 atm) was recorded; all populations observed exhibition various degrees of barotolerance.  相似文献   

19.
Digestive tracts of abyssal scavenging amphipods and a deep-sea holothurian were examined for the presence of intestinal microflora capable of rapid proliferation under in situ pressures of 430 to 520 atmospheres (atm) and temperatures of 3–5°C. For two amphipod specimens, population doubling times of 5 and 6 hours were observed under in situ conditions, compared to 8 and 6 hours, respectively, at 1 atm. Growth enhancement under pressure was related inversely to initial population size and directly to concentration of available nutrient. In the case of the deposit-feeding holothurian, attached bacteria scraped from the intestinal lining showed a doubling time, under pressure, of 11 hours, compared to 36 hours for transient sediment bacteria that comprised the gut contents. These data suggest that deep-sea animals possess a commensal gut flora capable of responding to increased nutrient levels, via feeding of the host, without inhibition by the elevated hydrostatic pressures encountered in the deep ocean environment.  相似文献   

20.
The floral scent emission and endogenous level of its components in Petunia axillaris under different conditions (20, 25, 30, and 35 degrees C) were investigated under the hypothesis that floral scent emission would be regulated by both metabolic and vaporization processes. The total endogenous amount of scent components decreased as the temperature increased, the total emission showing a peak at 30 degrees C. This decrease in endogenous amount was compensated for by increased vaporization, resulting in an increase of floral scent emission from 20 degrees C to 30 degrees C. The ambient temperature differently and independently influenced the metabolism and vaporization of the scent compounds, and differences in vapor pressure among the scent compounds were reduced as the temperature increased. These characteristics suggest the operation of an unknown regulator to change the vaporization of floral scent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号