首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intricate geometry of neuronal networks poses many unique cell-biological problems regarding the way a growing axon responds to its environment. Several groups of ligand-receptor pairs have been identified to regulate such processes. In this study, we take class 3 semaphorins as an example and review what is known about the intracellular movements of semaphorins throughout neuronal cells, transport support structures and location of release sites. We discuss how their receptor trafficking may contribute to regulate membrane dynamics underlying growth cone motility and the physiological contribution made by class 3 semaphorins-induced acceleration of axoplasmic transport on neurite development.  相似文献   

2.
Secreted semaphorins act as guidance cues in the developing nervous system and may have additional functions in mature neurons. How semaphorins are transported and secreted by neurons is poorly understood. We find that endogenous semaphorin 3A (Sema3A) displays a punctate distribution in axons and dendrites of cultured cortical neurons. GFP-Sema3A shows a similar distribution and co-localizes with secretory vesicle cargo proteins. Live-cell imaging reveals highly dynamic trafficking of GFP-Sema3A vesicles with distinct properties in axons and dendrites regarding directionality, velocity, mobility and pausing time. In axons, most GFP-Sema3A vesicles move fast without interruption, almost exclusively in the anterograde direction, while in dendrites many GFP-Sema3A vesicles are stationary and move equally frequent in both directions. Disruption of microtubules, but not of actin filaments, significantly impairs GFP-Sema3A transport. Interestingly, depolarization induces a reversible arrest of axonal transport of GFP-Sema3A vesicles but has little effect on dendritic transport. Conversely, action potential blockade using tetrodotoxin (TTX) accelerates axonal transport, but not dendritic transport. These data indicate that axons and dendrites regulate trafficking of Sema3A and probably other secretory vesicles in distinct ways, with axons specializing in fast, uninterrupted, anterograde transport. Furthermore, neuronal activity regulates secretory vesicle trafficking in axons by a depolarization-evoked trafficking arrest.  相似文献   

3.
Oxidative stress, which plays a critical role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD), is intimately linked to aging – the best established risk factor for AD. Studies in neuronal cells subjected to oxidative stress, mimicking the situation in AD brains, are therefore of great interest. This paper reports that, in human neuronal cells, oxidative stress induced by the free radical-generating xanthine/xanthine oxidase (X-XOD) system leads to apoptotic cell death. Microarray analyses showed a potent activation of the cholesterol biosynthesis pathway following reductions in the cell cholesterol synthesis caused by the X-XOD treatment; furthermore, the apoptosis was reduced by inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A reductase ( HMGCR ) expression with an interfering RNA. The potential importance of this mechanism in AD was investigated by genetic association, and it was found that HMGCR , a key gene in cholesterol metabolism and among those most strongly upregulated, was associated with AD risk. In summary, this work presents a human cell model prepared to mimic the effect of oxidative stress in neurons that might be useful in clarifying the mechanism involved in free radical-induced neurodegeneration. Gene expression analysis followed by genetic association studies indicates a possible link among oxidative stress, cholesterol metabolism and AD.  相似文献   

4.
R-Ras as a key player for signaling pathway of plexins   总被引:4,自引:0,他引:4  
Axon guidance represents an important step in the formation of neuronal networks. Axons are guided by various guidance factors, such as semaphorins, slits, ephrins, and netrins. Plexins are cell surface receptors for the repulsive molecules of the semaphorin family. Cytoplasmic regions of plexins are responsible for initiating cellular signal transduction, resulting in axon repulsion. Recent advances have shed light on the signal transduction mechanism of plexins and the mechanisms by which it leads to a repulsive response. Plexin-B1 possesses an intrinsic guanine triphosphate (GTP)ase activating protein activity for R-Ras, a member of Ras family of small GTPases that has been implicated in promoting cell adhesion and neurite outgrowth through integrin activation. Stimulation of Plexin-B1 by Sema4D induces collapse of the growth cone through down-regulation of R-Ras activity. This article summarizes current understanding of the signaling mechanisms of plexins.  相似文献   

5.
Phosphate activated glutaminase (PAG) was evaluated in the neocortex of Alzheimer and control cases. Consistent with previously reported results in rat cerebral cortex, pyramidal cells were stained immunohistochemically by a PAG specific polyclonal rabbit antibody, especially in layers II, III and V. An Alzheimer's case showed drastic depletion of PAG-positive pyramidal neurons, especially in layers II and III. Cortical PAG levels by biochemical assay were reduced to 18% of control in a small series of Alzheimer's cases (n=3), while choline acetyltransferase (ChAT) was reduced to 28% of control in the same tissue samples. PAG staining was also observed in large neurons of the rat neostriatum. Double immunostaining for PAG and ChAT established that these large neurons also contained both enzymes.Special issue dedicated to Dr. Elling Kvamme  相似文献   

6.
Multiple genetic and environmental factors are likely to contribute to the development of Alzheimer's disease (AD). The most important known risk factor for AD is presence of the E4 isoform of apolipoprotein E (apoE). Epidemiological studies demonstrated that apoE4 carriers have a higher risk and develop the disease and an early onset. Moreover, apoE4 is the only molecule that has been associated with all the biochemical disturbances characteristic of the disease: amyloid-beta (Abeta) deposition, tangle formation, oxidative stress, lipid homeostasis deregulation, synaptic plasticity loss and cholinergic dysfunction. This large body of evidence suggest that apoE is a key player in the pathogenesis of AD. This short review examines the current facts and hypotheses of the association between apoE4 and AD, as well as the therapeutic possibilities that apoE might offer for the treatment of this disease.  相似文献   

7.
Alzheimer's disease (AD) affects more than 18 million people worldwide and is characterized by progressive memory deficits, cognitive impairment and personality changes. The main cause of AD is generally attributed to the increased production and accumulation of amyloid-beta (Abeta), in association with neurofibrillary tangle (NFT) formation. Increased levels of pro-inflammatory factors such as cytokines and chemokines, and the activation of the complement cascade occurs in the brains of AD patients and contributes to the local inflammatory response triggered by senile plaque. The existence of an inflammatory component in AD is now well known on the basis of epidemiological findings showing a reduced prevalence of the disease upon long-term medication with anti-inflammatory drugs, and evidence from studies of clinical materials that shows an accumulation of activated glial cells, particularly microglia and astrocytes, in the same areas as amyloid plaques. Glial cells maintain brain plasticity and protect the brain for functional recovery from injuries. Dysfunction of glial cells may promote neurodegeneration and, eventually, the retraction of neuronal synapses, which leads to cognitive deficits. The focus of this review is on glial cells and their diversity properties in AD.  相似文献   

8.
Proteomic identification of nitrated proteins in Alzheimer's disease brain   总被引:20,自引:0,他引:20  
Nitration of tyrosine in biological conditions represents a pathological event that is associated with several neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease (AD). Increased levels of nitrated proteins have been reported in AD brain and CSF, demonstrating the potential involvement of reactive nitrogen species (RNS) in neurodegeneration associated with this disease. Reaction of NO with O2- leads to formation of peroxynitrite ONOO-, which following protonation, generates cytotoxic species that oxidize and nitrate proteins. Several findings suggest an important role of protein nitration in modulating the activity of key enzymes in neurodegenerative disorders, although extensive studies on specific targets of protein nitration in disease are still missing. The present investigation represents a further step in understanding the relationship between oxidative modification of protein and neuronal death in AD. We previously applied a proteomics approach to determine specific targets of protein oxidation in AD brain, by successfully coupling immunochemical detection of protein carbonyls with two-dimensional polyacrylamide gel electrophoresis and mass spectrometry analysis. In the present study, we extend our investigation of protein oxidative modification in AD brain to targets of protein nitration. The identification of six targets of protein nitration in AD brain provides evidence to the importance of oxidative stress in the progression of this dementing disease and potentially establishes a link between RNS-related protein modification and neurodegeneration.  相似文献   

9.
Current research on skeletal muscle injury and regeneration highlights the crucial role of nerve–muscle interaction in the restoration of innervation during that process. Activities of muscle satellite or stem cells, recognized as the ‘currency’ of myogenic repair, have a pivotal role in these events, as shown by ongoing research. More recent investigation of myogenic signalling events reveals intriguing roles for semaphorin3A (Sema3A), secreted by activated satellite cells, in the muscle environment during development and regeneration. For example, Sema3A makes important contributions to regulating the formation of blood vessels, balancing bone formation and bone remodelling, and inflammation, and was recently implicated in the establishment of fibre‐type distribution through effects on myosin heavy chain gene expression. This review highlights the active or potential contributions of satellite‐cell‐derived Sema3A to regulation of the processes of motor neurite ingrowth into a regenerating muscle bed. Successful restoration of functional innervation during muscle repair is essential; this review emphasizes the integrative role of satellite‐cell biology in the progressive coordination of adaptive cellular and tissue responses during the injury‐repair process in voluntary muscle.  相似文献   

10.
Proteomics involves the identification of unknown proteins following their separation, often using two-dimensional electrophoresis, digestion of particular proteins of interest by trypsin, determination of the molecular weight of the resulting peptides, and database searching to make the identification of the proteins. Application of proteomics to Alzheimer's disease (AD), the major dementing disorder of the elderly, has just begun. Differences in protein expression and post-translational modification (mostly oxidative modification) of proteins from AD brain and peripheral tissue, as well as in brain from rodent models of AD, have yielded insights into potential molecular mechanisms of neurodegeneration in this dementing disorder. This review surveys the proteomics studies relevant to AD, from which new understandings of the pathology, biochemistry, and physiology of AD are beginning to emerge.  相似文献   

11.
New functions have been identified for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) including its role in neurodegenerative disease and in apoptosis. GAPDH binds specifically to proteins implicated in the pathogenesis of a variety of neurodegenerative disorders including the beta-amyloid precursor protein and the huntingtin protein. However, the pathophysiological significance of such interactions is unknown. In accordance with published data, our initial results indicated there was no measurable difference in GAPDH glycolytic activity in crude whole-cell sonicates of Alzheimer's and Huntington's disease fibroblasts. However, subcellular-specific GAPDH-protein interactions resulting in diminution of GAPDH glycolytic activity may be disrupted or masked in whole-cell preparations. For that reason, we examined GAPDH glycolytic activity as well as GAPDH-protein distribution as a function of its subcellular localization in 12 separate cell strains. We now report evidence of an impairment of GAPDH glycolytic function in Alzheimer's and Huntington's disease subcellular fractions despite unchanged gene expression. In the postnuclear fraction, GAPDH was 27% less glycolytically active in Alzheimer's cells as compared with age-matched controls. In the nuclear fraction, deficits of 27% and 33% in GAPDH function were observed in Alzheimer's and Huntington's disease, respectively. This evidence supports a functional role for GAPDH in neurodegenerative diseases. The possibility is considered that GAPDH:neuronal protein interaction may affect its functional diversity including energy production and as well as its role in apoptosis.  相似文献   

12.
The interaction between CD40 and its cognate ligand, CD40 ligand, is a primary regulator of the peripheral immune response, including modulation of T lymphocyte activation, B lymphocyte differentiation and antibody secretion, and innate immune cell activation, maturation, and survival. Recently, we and others have identified CD40 expression on a variety of CNS cells, including endothelial cells, smooth muscle cells, astroglia and microglia, and have found that, on many of these cells, CD40 expression is enhanced by pro-inflammatory stimuli. Importantly, the CD40–CD40 ligand interaction on microglia triggers a series of intracellular signaling events that are discussed, beginning with Src-family kinase activation and culminating in microglial activation as evidenced by tumor necrosis factor- secretion. Based on the involvement of microglial activation and brain inflammation in Alzheimer's disease pathogenesis, we have investigated co-stimulation of microglia, smooth muscle, and endothelial cells with CD40 ligand in the presence of low doses of freshly solubilized amyloid-β peptides. Data reviewed herein show that CD40 ligand and amyloid-β act synergistically to promote pro-inflammatory responses by these cells, including secretion of interleukin-1β by endothelial cells and tumor necrosis factor- by microglia. As these cytokines have been implicated in neuronal injury, a comprehensive model of pro-inflammatory CD40 ligand and amyloid-β initiated Alzheimer's disease pathogenesis (mediated by multiple CNS cells) is proposed.  相似文献   

13.
Axonal receptors for class 3 semaphorins (Sema3s) are heterocomplexes of neuropilins (Nrps) and Plexin-As signalling coreceptors. In the developing cerebral cortex, the Ig superfamily cell adhesion molecule L1 associates with Nrp1. Intriguingly, the genetic removal of L1 blocks axon responses of cortical neurons to Sema3A in vitro despite the expression of Plexin-As in the cortex, suggesting either that L1 substitutes for Plexin-As or that L1 and Plexin-A are both required and mediate distinct roles. We report that association of Nrp1 with L1 but not Plexin-As mediates the recruitment and activation of a Sema3A-induced focal adhesion kinase-mitogen-activated protein kinase cascade. This signalling downstream of L1 is needed for the disassembly of adherent points formed in growth cones and subsequently their collapse response to Sema3A. Plexin-As and L1 are coexpressed and present in common complexes in cortical neurons and both dominant-negative forms of Plexin-A and L1 impair their response to Sema3A. Consistently, Nrp1-expressing cortical projections are defective in mice lacking Plexin-A3, Plexin-A4 or L1. This reveals that specific signalling activities downstream of L1 and Plexin-As cooperate for mediating the axon guidance effects of Sema3A.  相似文献   

14.
Premature centromere division (PCD) represents a loss of control over the sequential separation and segregation of chromosome centromeres. Although first described in aging women, PCD on the X chromosome (PCD,X) is markedly elevated in peripheral blood lymphocytes of individuals suffering from Alzheimer disease (AD). The present study evaluated PCD,X, using a fluorescent in situ hybridization method, in interphase nuclei of frontal cerebral cortex neurons from sporadic AD patients and age-matched controls. The average frequency of PCD,X in AD patients (8.60 ± 1.20%) was almost three times higher ( p  < 0.01) than in the control group (2.96 ± 1.20). However, consistent with previous studies, no mitotic cells were found in neurons in either AD or control brain, suggesting an intrinsic inability of post-mitotic neurons to divide. In view of the fact that it has been well-documented that neurons in AD can re-enter into the cell division cycle, the findings presented here of increased PCD advance the hypothesis that deregulation of the cell cycle may contribute to neuronal degeneration and subsequent cognitive deficits in AD.  相似文献   

15.
16.
In the head of vertebrate embryos, neural crest cells migrate from the neural tube into the presumptive facial region and condense to form cranial ganglia and skeletal elements in the branchial arches. We show that newly formed neural folds and migrating neural crest cells express the neuropilin 2 (npn2) receptor in a manner that is highly conserved in amniotes. The repulsive npn2 ligand semaphorin (sema) 3F is expressed in a complementary pattern in the mouse. Furthermore, mice carrying null mutations for either npn2 or sema3F have abnormal cranial neural crest migration. Most notably, "bridges" of migrating cells are observed crossing between neural crest streams entering branchial arches 1 and 2. In addition, trigeminal ganglia fail to form correctly in the mutants and are improperly condensed and loosely organized. These data show that npn2/sema3F signaling is required for proper cranial neural crest development in the head.  相似文献   

17.
Wnt-3a overcomes beta-amyloid toxicity in rat hippocampal neurons   总被引:7,自引:0,他引:7  
The aim of this study was to evaluate whether the direct activation of the Wnt signaling pathway by its endogenous Wnt-3a ligand prevents the toxic effects induced by amyloid-beta-peptide (Abeta) in rat hippocampal neurons. We report herein that the Wnt-3a ligand was indeed able to overcome toxic effects induced by Abeta in hippocampal neurons, including a neuronal impairment on cell survival, an increase in glycogen synthase kinase-3beta (GSK-3beta) and tau phosphorylation, a decrease in cytoplasmic beta-catenin and a decrease in the expression of the Wnt target gene engrailed-1. We further demonstrate that Wnt-3a protects hippocampal neurons from apoptosis induced by Abeta. Our results support the hypothesis that a loss of function of Wnt signaling may play a role in the progression of neurodegenerative diseases such as Alzheimer's disease.  相似文献   

18.
The proposal of cholinomimetic treatment as a rational basis for the therapy of Alzheimer's disease has been prematurely dismissed by some workers on the hypothesis of impaired coupling/signal transduction of postsynaptic cholinergic receptors. Disparity of reports studying such impairment may be due to inappropriate extrapolation of experimental systems to the physiological stituation, as well as inadequate consideration of disease epiphenoma. In the present study we have used samples with short duration of terminal coma, collected using techniques to minimise postmortem autolysis, and samples obtained during neurosurgery to examine carbachol stimulated hydrolysis of [3H]phosphatidylinositol (PI) as a marker for receptor/signal transduction integrity. The influence of postmortem delay was also studied using another series of samples and a rat model. While a significant correlation of postmortem delay and carbachol stimulated [3H]PI hydrolysis was found, comparison of pooled neurosurgical and postmortem controls with AD samples revealed no significant reduction. Thus this study concurs with a similar one previously reported here, using [3H]phosphatidylinositol 4,5-bisphosphate (1). They provide evidence for competent receptor-signal transduction events in AD, supporting the use of cholinomimetic therapy for disease treatment.  相似文献   

19.
Oxidative abnormalities precede clinical and pathological manifestations of Alzheimer's disease and are the earliest pathological changes reported in the disease. The olfactory pathways and mucosa also display the pathological features associated with Alzheimer's disease in the brain. Olfactory neurons are unique because they can undergo neurogenesis and are able to be readily maintained in cell culture. In this study, we examined neuronal cell cultures derived from olfactory mucosa of Alzheimer's disease and control patients for oxidative stress responses. Levels of lipid peroxidation (hydroxynonenal), N(epsilon)-(carboxymethyl)lysine (glycoxidative and lipid peroxidation), and oxidative stress response (heme oxygenase-1) were measured immunocytochemically. We found increased levels for all the oxidative stress markers examined in Alzheimer's disease neurons as compared to controls. Interestingly, in one case of Alzheimer's disease, we found hydroxynonenal adducts accumulated in cytoplasmic lysosome-like structures in about 20% of neurons cultured, but not in neurons from control patients. These lysosome-like structures are found in about 100% of the vulnerable neurons in brains of cases of Alzheimer's disease. This study suggests that manifestations of oxidative imbalance in Alzheimer's disease extend to cultured olfactory neurons. Primary culture of human olfactory neurons will be useful in understanding the mechanism of oxidative damage in Alzheimer's disease and can even be utilized in developing therapeutic strategies.  相似文献   

20.
阿茨海默氏病研究   总被引:1,自引:0,他引:1  
王寒松  茹炳根 《生命科学》2002,14(3):180-181,167
阿茨海默氏病(Alzheimer‘s disease,AD)受到科学界的广泛关注。已发现的AD相关基因的突变,只能解释某有族性病例,而至少60%的AD患者没有家族史,对这些散发性AD的病理,van Leeuwen等做了有意义 探索,他们的实验证明,AD脑部存在由于GA缺失造成移码突变的β淀粉样蛋白前体和泛素-B,并推测这种移码突变是AD病理的重要起妈因子。该实验开辟了从蛋白合成错误的角度研究AD的新视点,并为RNA编辑提供了新的类型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号