首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Assessment of free fatty acid (FFA) concentration and isotopic enrichment is useful for studies of FFA kinetics in vivo. A new procedure to recover the major FFA from plasma for concentration and isotopic enrichment measurements is described and validated. The procedure involves extraction of plasma lipids with hexane, methylation with iodomethane (CH(3)I) to form fatty acid methyl esters (FAME), and subsequent purification of FAME by solid phase extraction (SPE) chromatography. The new method was compared with a traditional method using thin-layer chromatography (TLC) to recover plasma FFA, with subsequent methylation by BF(3)/methanol. The TLC method was found to be less reliable than the new CH(3)I method because of contamination with extraneous fatty acids, chemical fractionation of FFA species, and incomplete recovery of FFA associated with TLC. In contrast, the CH(3)I/SPE method was free of contamination, did not exhibit chemical fractionation, and had higher recovery. The iodomethane reaction was specific for free fatty acids; no FAME were formed when esterified fatty acids (triglycerides, cholesteryl esters, phospholipids) were subjected to the methylation reaction.We conclude that the CH(3)I/SPE method provides rapid and convenient recovery of plasma fatty acids for quantification or GC/MS analysis as methyl esters, and is not subject to the problems of contamination, reduced recovery, and chemical fractionation associated with recovery of FFA by TLC.  相似文献   

2.
Conventional sample preparation for fatty acid analysis is a complicated, multiple-step process, and gas chromatography (GC) analysis alone can require >1 h per sample to resolve fatty acid methyl esters (FAMEs). Fast GC analysis was adapted to human plasma FAME analysis using a modified polyethylene glycol column with smaller internal diameters, thinner stationary phase films, increased carrier gas linear velocity, and faster temperature ramping. Our results indicated that fast GC analyses were comparable to conventional GC in peak resolution. A conventional transesterification method based on Lepage and Roy was simplified to a one-step method with the elimination of the neutralization and centrifugation steps. A robotics-amenable method was also developed, with lower methylation temperatures and in an open-tube format using multiple reagent additions. The simplified methods produced results that were quantitatively similar and with similar coefficients of variation as compared with the original Lepage and Roy method. The present streamlined methodology is suitable for the direct fatty acid analysis of human plasma, is appropriate for research studies, and will facilitate large clinical trials and make possible population studies.  相似文献   

3.
Thermally induced isomerisation leading to the formation of conjugated linoleic acids (CLAs) has been observed for the first time during the thermal treatment of 9t12t fatty acid triacylglycerol, and methyl ester. Fifteen microlitre portions of the triacylglycerol sample containing 9t12t fatty acid (trilinoelaidin) were placed in micro glass ampoules and sealed under nitrogen, then subjected to thermal treatment at 250 °C. The glass ampoules were removed at regular time intervals, cut open, and the contents were analysed by infrared spectroscopy using a single reflectance attenuated total internal reflectance crystal accessory. The samples were then subjected to derivatisation into their methyl esters. The methyl esters of the isomerised fatty acids were analysed by gas chromatography. The same procedure was repeated with methyl ester samples containing 9t12t fatty acid (methyl linoelaidate). Each sample was subjected to infrared measurements and gas chromatographic analysis after appropriate dilution in heptane.The results show that the thermally induced isomerisation of 9t12t fatty acids from both triacylglycerol molecules and methyl esters give identical CLA profiles as those found for the thermally induced isomerisation of 9c12c fatty acids. The infrared spectrometry provides additional evidence confirming the formation of CLA acids during thermal treatment. A mechanism for the formation of the CLAs from 9t12t fatty acid molecules is also formulated for the first time. This mechanism complements the pathways of formation of CLAs from 9c12c fatty acids during thermal treatment.  相似文献   

4.
Two glycolipids were isolated from pig brain and were shown to be the fatty acid esters of kerasin and cerebron in which the second fatty acid moiety is attached to the 6-position of the galactose. The point of attachment was shown in two ways: by permethylation and by cleavage with periodate. Methanolysis of the permethylated cerebroside esters yielded O-methyl sphingosines, methyl esters of nonhydroxy or 2-methoxy acids, and methyl 2,3,4-trimethyl galactoside. Cleavage of the cerebron ester with periodate, followed by treatment with sodium borohydride and dilute HCl, yielded ceramide plus 1-monoglyceride. The ester-linked fatty acids were primarily 16:0, 18:0, and 18:1, while the amide-linked fatty acids showed the wide assortment of chain lengths typical of brain cerebrosides. The methylation step, with silver oxide and methyl iodide, yielded two derivatives with the cerebroside esters, but the structural explanation for the difference was not elucidated. The galactose in the cerebron ester was shown to exist in the beta-pyranoside form.  相似文献   

5.
An improved method for fatty acids analysis with optimum recovery of highly polyunsaturated fatty acids methyl esters in biological systems is presented. The method is based on transesterification of phospholipid and triacylglycerols to fatty acid methyl esters using a commercially available reagent, Methyl-Prep II. Without proper precautions, as much as 50% of n-butylated hydroxytoluene (BHT) added to prevent oxidation of polyunsaturated fatty acids, could be methylated during the transesterification step. Methylated BHT elutes close to 14:0 (myristic acid) and no longer functions as an antioxidant, but the modified conditions virtually eliminate the methylation of BHT. Sample extraction and methylation was completed in 30 min at room temperature. A chelator (diethylenetriamine-pentaacetic acid; DTPA) is also added to prevent peroxidation of metal catalyzed free radical chain reactions. The standard deviations of the major fatty acids from multiple human plasma samples prepared on different days were less than 5%. The recovery of arachidonic acid, 20:4, from plasma was improved using the new method, and the recovery for docosahexaenoic acid, 22:6, spiked to human plasma was found to be 99%.  相似文献   

6.
A method to prepare fatty acid methyl esters was developed for fatty acid analysis of triacylglycerols by gas chromatography (GC). Triacylglycerols were mixed with methanolic CH3ONa in hexane containing a mid-polar solvent for 10 s at room temperature. Under these conditions, trioleoylglycerol was converted to methyl oleate with an average yield of 99.3%. This procedure gave reliable and reproducible data on fatty acid compositions determined by GC.  相似文献   

7.
To apply fatty acid analyses to the study of foraging ecology and diet determination, all compounds that may be deposited as fatty acids in a predator must be quantified in the prey. These compounds include the usual fatty acids in acyl lipids, but also the alcohols of wax esters and the vinyl ethers of plasmalogens. In routine fatty acid analysis, samples are extracted and transesterified (methylated), resulting in the formation of fatty acid methyl esters (FAMEs); however, fatty alcohols and dimethylacetals (DMAs) are also generated if wax esters or plasmalogens are present. Here, we present a new method using a modified Jones' reagent to oxidize these alcohols and DMAs to free fatty acids (FFAs). These FFAs are then easily methylated and quantitatively recombined with FAMEs from the same sample. This generates a fatty acid signature of prey that is equivalent to that which the predator has available for deposition upon digestion of that prey. This method is validated with alcohol and DMA standards. Its application to typical marine samples is also presented, demonstrating the change in effective fatty acid signature after inclusion of fatty acids derived from wax esters and plasmalogens.  相似文献   

8.
The production of low-cost biofuels in engineered microorganisms is of great interest due to the continual increase in the world's energy demands. Biodiesel is a renewable fuel that can potentially be produced in microbes cost-effectively. Fatty acid methyl esters (FAMEs) are a common component of biodiesel and can be synthesized from either triacylglycerol or free fatty acids (FFAs). Here we report the identification of a novel bacterial fatty acid methyltransferase (FAMT) that catalyzes the formation of FAMEs and 3-hydroxyl fatty acid methyl esters (3-OH-FAMEs) from the respective free acids and S-adenosylmethionine (AdoMet). FAMT exhibits a higher specificity toward 3-hydroxy free fatty acids (3-OH-FFAs) than FFAs, synthesizing 3-hydroxy fatty acid methyl esters (3-OH-FAMEs) in vivo. We have also identified bacterial members of the fatty acyl-acyl carrier protein (ACP) thioesterase (FAT) enzyme family with distinct acyl chain specificities. These bacterial FATs exhibit increased specificity toward 3-hydroxyacyl-ACP, generating 3-OH-FFAs, which can subsequently be utilized by FAMTs to produce 3-OH-FAMEs. PhaG (3-hydroxyacyl ACP:coenzyme A [CoA] transacylase) constitutes an alternative route to 3-OH-FFA synthesis; the coexpression of PhaG with FAMT led to the highest level of accumulation of 3-OH-FAMEs and FAMEs. The availability of AdoMet, the second substrate for FAMT, is an important factor regulating the amount of methyl esters produced by bacterial cells. Our results indicate that the deletion of the global methionine regulator metJ and the overexpression of methionine adenosyltransferase result in increased methyl ester synthesis.  相似文献   

9.
This investigation was carried out to develop methods for a reverse-phase, high-performance liquid chromatography analysis of the monocarboxylic and dicarboxylic acids produced by permanganate-periodate oxidation of monoenoic fatty acids. Oxidation reactions were performed using [U-14C]oleic acid and [U-14C]oleic acid methyl ester in order to measure reaction yields and product distributions. The 14C-labeled oxidation products consisted of nearly equal amounts of monocarboxylic and dicarboxylic acid (or dicarboxylic acid monomethyl ester), with few side products (yield greater than 98%). Conversion of the carboxylic acids to phenacyl esters proceeded to completion. HPLC of carboxylic acid phenacyl esters was performed using a C18 column with a linear solvent gradient beginning with acetonitrile/water (1/1) and ending with 100% acetonitrile. Excellent resolution was achieved for all components of a mixture of C5 through C12 monocarboxylic acid phenacyl esters and C6 through C11 dicarboxylic acid phenacyl esters. Resolution was also achieved for all components of a mixture of C5 through C12 monocarboxylic acid phenacyl esters and C6 through C11 dicarboxylic acid monomethyl, monophenacyl esters. The resolution obtained by HPLC demonstrates that, for a wide range of monoenoic fatty acids, both products of a permanganate-periodate oxidation can be identified on a single chromatogram. Free fatty acids and fatty acid methyl esters were analyzed with equal success. Neither the oxidation nor the esterification reaction caused detectable hydrolysis of methyl ester. The method is illustrated for free acids and methyl esters of 14:1 (cis-9), 16:1 (cis-9), 18:1 (cis-6), 18:1 (cis-9), and 18:1 (cis-11).  相似文献   

10.
A convenient method using commercial aqueous concentrated HCl (conc. HCl; 35%, w/w) as an acid catalyst was developed for preparation of fatty acid methyl esters (FAMEs) from sterol esters, triacylglycerols, phospholipids, and FFAs for gas-liquid chromatography (GC). An 8% (w/v) solution of HCl in methanol/water (85:15, v/v) was prepared by diluting 9.7 ml of conc. HCl with 41.5 ml of methanol. Toluene (0.2 ml), methanol (1.5 ml), and the 8% HCl solution (0.3 ml) were added sequentially to the lipid sample. The final HCl concentration was 1.2% (w/v). This solution (2 ml) was incubated at 45°C overnight or heated at 100°C for 1–1.5 h. The amount of FFA formed in the presence of water derived from conc. HCl was estimated to be <1.4%. The yields of FAMEs were >96% for the above lipid classes and were the same as or better than those obtained by saponification/methylation or by acid-catalyzed methanolysis/methylation using commercial anhydrous HCl/methanol. The method developed here could be successfully applied to fatty acid analysis of various lipid samples, including fish oils, vegetable oils, and blood lipids by GC.  相似文献   

11.
Abstract

An improved procedure is described for the collection and elution of low levels of radioactive fatty acid methyl esters separated by gas-liquid chromatography. A gas chromatographic effluent splitter was employed to partition fatty acid methyl ester samples in the column effluent, Condensation of a portion of the eluted fatty acids was accomplished in borosilicate glass tubing collectors maintained at ?70°C, Quantitation of nanomolar levels of fatty acid methyl esters was accomplished by calibrating the gas chromatographic flame ionization detectors with the splitters opened or closed. The elution of condensed radioactive fatty acid methyl esters from the glass collectors was complete when benzene followed by a toluene based scintillation fluid were employed as solvents. The method described may be applicable to the analysis of cis-trans isomers of unsaturated fatty acids.  相似文献   

12.
Dong L  Li J  Li L  Li T  Zhong H 《Nature protocols》2011,6(9):1377-1390
Covalent attachment of palmitic acid or other fatty acids to the thiol groups of cysteine residues of proteins through reversible thioester bonds has an important role in the regulation of diverse biological processes. We describe here the development of a mass spectrometry protocol based on stable isotope-coded fatty acid transmethylation (iFAT) for qualitative and comparative analysis of protein S-fatty acylation under different experimental conditions. In this approach, cellular proteins extracted from different cell states are separated by SDS-PAGE and then the gel is stained with either Coomassie blue or Nile red for improved sensitivity. Protein bands are excised and then an in-gel stable iFAT procedure is performed. The fatty acid methyl esters resulting from derivatization with d0- and d3-methanol are identified by mass spectrometry. By measuring the intensities of labeled and unlabeled fragment ion pairs of fatty acid methyl esters, the levels of S-fatty acylation in different cells or tissues can be compared. This approach has been applied to monitor the changes of S-fatty acylation of zebrafish liver proteome in response to environmental dichlorodiphenyltrichloroethane exposure. Compared with the approach using metabolic incorporation of radioactive fatty acid analogs, it is not only simple and effective but also eliminates the hazards of handling radioactive isotopes.  相似文献   

13.
Three protocols for fatty acid analysis in Sinorhizobium meliloti were improved by the addition of a number of standards/controls and a silylation step which allowed the determination of recoveries, extents of conversion of lipids to fatty acid methyl esters (FAMEs) and extents of side reactions. Basic hydrolysis followed by acid-catalyzed methylation and transmethylation with sodium methoxide, were the best for the analysis of 3-hydroxy- and cyclopropane fatty acids, respectively. A micro-scale, one-vial method that employed sodium methoxide/methanol was equally efficient and on a 1000-fold smaller scale than standard methods. Because this method avoids aqueous extractions, 3-hydroxybutanoic acid was detected as its trimethylsilyloxy methyl ester along with FAMEs.  相似文献   

14.
W S Powell 《Prostaglandins》1980,20(5):947-957
A rapid procedure for the efficient extraction of prostaglandins, thromboxanes and hydroxy fatty acids from urine, plasma and tissue homogenates has been developed. Fractions containing these substances are acidified and passed through a column of octadecylsilyl silica, which retains oxygenated metabolites of arachidonic acid. Phospholipids, proteins and very polar materials either are not retained or can be eluted with dilute aqueous ethanol. Nonpolar lipids and monohydroxy fatty acids are then eluted with petroleum ether or benzene. Subsequent elution of the column with methyl formate gives a fraction containing prostaglandins and thromboxanes which is much less contaminated with extraneous material than that obtained by conventional extraction of aqueous media with organic solvents. The methyl formate can be removed rapidly under a stream of nitrogen and the components of the sample purified directly by high pressure liquid chromatography (HPLC). An improved method for the purification of prostaglandins and TXB2 by HPLC on silica columns is reported.  相似文献   

15.
A rapid procedure for the efficient extraction of prostaglandins, thromboxanes and hydroxy fatty acids from urine, plasma and tissue homogenates has been developed. Fractions containing these substances are acidified and passed through a column of octadecylsilyl silica, which retains oxygenated metabolites of arachidonic acid. Phospholipids, proteins and very polar materials either are not retained or can be eluted with dilute aqueous ethanol. Nonpolar lipids and monohydroxy fatty acids are then eluted with petroleum ether or benzene. Subsequent elution of the column with methyl formate gives a fraction containing prostaglandins and thromboxanes which is much less contaminated with extraneous material than that obtained by conventional extraction of aqueous media with organic solvents. The methyl formate can be removed rapidly under a stream of nitrogen and the components of the sample purified directly by high pressure liquid chromatography (HPLC). An improved method for the purification of prostaglandins and TXB2 by HPLC on silica columns is reported.  相似文献   

16.
A one-step extraction procedure to directly quantify cholesterol, phospholipids, and fatty acids in red blood cell membranes has been developed. The method uses a single solvent, isopropanol, which extracts lipids and allows the rapid formation of isopropylic esters of fatty acids by acid catalysis. The efficiency of this new technique has been confirmed by comparing yields of cholesterol and total and individual phospholipids with yields obtained following conventional extraction procedures. Moreover, in comparison to the formation of methyl esters, we demonstrate that directly obtained isopropylic esters immediately allow the quantitative determination of fatty acids, without involving the hydrolytic degradation of fatty acids and the oxidation of unsaturated fatty acids.  相似文献   

17.
This work reports an efficient Lewis acid catalysed N‐methylation procedure of lipophilic α‐amino acid methyl esters in solution phase. The developed methodology involves the use of the reagent system AlCl3/diazomethane as methylating agent and α‐amino acid methyl esters protected on the amino function with the (9H‐fluoren‐9‐yl)methanesulfonyl (Fms) group. The removal of Fms protecting group is achieved under the same conditions to those used for Fmoc removal. Thus the Fms group can be interchangeable with the Fmoc group in the synthesis of N‐methylated peptides using standard Fmoc‐based strategies. Finally, the absence of racemization during the methylation reaction and the removal of Fms group were demonstrated by synthesising a pair of diastereomeric dipeptides. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
A novel procedure for the deprotection of the carboxyl group of amino acid methyl esters is presented. The process is carried out by the reagent system aluminium trichloride/N,N-dimethylaniline that can successfully be applied to unblock the carboxyl moiety either of N-Fmoc-protected amino acid methyl esters and N-Fmoc-protected short dipeptide methyl esters. The chiralities of the optically pure amino acid or peptide precursors are maintained totally unchanged.  相似文献   

19.
Phospholipid fatty acid (PLFA) as biomarkers, is widely used to profile microbial communities in environmental samples. However, PLFA extraction and derivatization protocols are not standardized and have widely varied among published studies. Specifically investigators have used either HCl/MeOH or KOH/MeOH or both for the methylation step of PLFA analysis, without justification or research to support either one. It seems likely that each method could have very different outcomes and conclusions for PLFA based studies. Therefore, the objective of this study was to determine the effect of catalyst type for methylation on detecting PLFAs and implications for interpreting microbial profiling in soil. Fatty acid samples extracted from soils obtained from a wetland, an intermittently flooded site, and an adjacent upland site were subjected to HCl/MeOH or KOH/MeOH catalyzed methylation procedures during PLFA analyses. The methylation method using HCl/MeOH resulted in significantly higher concentrations of most PLFAs than the KOH/MeOH method. Another important outcome was that fatty acids with a methyl group (18:1ω,7c 11Me, TBSA 10Me 18:0, 10Me 18:0, 17:0 10Me and 16:0 10Me being an actinomycetes biomarker) could not be detected by HCl/MeOH catalyzed methylation but were found in appreciable concentrations with KOH/MeOH method. From our results, because the HCl/MeOH method did not detect the fatty acids containing methyl groups that could strongly influence the microbial community profile, we recommend that the KOH/MeOH catalyzed transesterification method should become the standard procedure for PLFA profiling of soil microbial communities.  相似文献   

20.
Abstract— —Cholesteryl esters were isolated from the cerebral cortex and white matter of human brains at different ages, and their concentration and composition determined. The esters were separated from other lipids by chromatography on silicic acid and finally purified by TLC. The fatty acids were converted to the methyl esters by alkaline trans-methylation and analysed by GLC. A TLC method was elaborated for quantitative determination of small amounts of cholesteryl esters in the presence of free cholesterol. The concentration of cholesteryl esters was only 0·1–0·2 per cent of the total cholesterol content of cerebral tissue in older children and adults. During early myelination the concentration was many times greater, especially in the white matter but it never exceeded 2 per cent of the total cholesterol in any subject. The major fatty acids of human brain cholesteryl esters were oleic, palmitic, palmitoleic and arachidonic acid. After completion of myelination, arachidonic acid constituted the major fatty acid. There were fairly small differences in the fatty acid pattern of the cholesteryl esters between grey and white matter, but the concentration of polyunsaturated fatty acids was larger in the grey matter. Cholesteryl esters appear to play an important role in the metabolism of the phosphoglyceride fatty acids in cerebral tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号