首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ljungan virus (LV) is a suspected human pathogen recently isolated from bank voles (Clethrionomys glareolus). In the present study, it is revealed through comparative sequence analysis that three newly determined Swedish LV genomes are closely related and possess a deviant picornavirus-like organization: 5' untranslated region-VP0-VP3-VP1-2A1-2A2-2B-2C-3A-3B-3C-3D-3' untranslated region. The LV genomes and the polyproteins encoded by them exhibit several exceptional features, such as the absence of a predicted maturation cleavage of VP0, a conserved sequence determinant in VP0 that is typically found in VP1 of other picornaviruses, and a cluster of two unrelated 2A proteins. The 2A1 protein is related to the 2A protein of cardio-, erbo-, tescho-, and aphthoviruses, and the 2A2 protein is related to the 2A protein of parechoviruses, kobuviruses, and avian encephalomyelitis virus. The unprecedented association of two structurally different 2A proteins is a feature never previously observed among picornaviruses and implies that their functions are not mutually exclusive. Secondary polyprotein processing of the LV polyprotein is mediated by proteinase 3C (3C(pro)) possessing canonical affinity to Glu and Gln at the P1 position and small amino acid residues at the P1' position. In addition, LV 3C(pro) appears to have unique substrate specificity to Asn, Gln, and Asp and to bulky hydrophobic residues at the P2 and P4 positions, respectively. Phylogenetic analysis suggests that LVs form a separate division, which, together with the Parechovirus genus, has branched off the picornavirus tree most closely to its root. The presence of two 2A proteins indicates that some contemporary picornaviruses with a single 2A may have evolved from the ancestral multi-2A picornavirus.  相似文献   

2.
To investigate the degree of similarity between picornavirus proteases, we cloned the genomic cDNAs of an enterovirus, echovirus 9 (strain Barty), and two rhinoviruses, serotypes 1A and 14LP, and determined the nucleotide sequence of the region which, by analogy to poliovirus, encodes the protease. The nucleotide sequence of the region encoding the genome-linked protein VPg, immediately adjacent to the protease, was also determined. Comparison of nucleotide and deduced amino acid sequences with other available picornavirus sequences showed remarkable homology in proteases and among VPgs. Three highly conserved peptide regions were identified in the protease; one of these is specific for human picornaviruses and has no obvious counterpart in encephalomyocarditis virus, foot-and-mouth disease virus, or cowpea mosaic virus proteases. Within the other two peptide regions two conserved amino acids, Cys 147 and His 161, could be the reactive residues of the active site. We used a statistical method to predict certain features of the secondary structures, such as alpha helices, beta sheets, and turns, and found many of these conformations to be conserved. The hydropathy profiles of the compared proteases were also strikingly similar. Thus, the proteases of human picornaviruses very probably have a similar three-dimensional structure.  相似文献   

3.
Cowpea mosaic virus (CPMV), a plant virus that is a member of the picornavirus superfamily, is increasingly being used for nanotechnology applications, including material science, vascular imaging, vaccine development, and targeted drug delivery. For these applications, it is critical to understand the in vivo interactions of CPMV within the mammalian system. Although the bioavailability of CPMV in the mouse has been demonstrated, the specific interactions between CPMV and mammalian cells need to be characterized further. Here we demonstrate that although the host range for replication of CPMV is confined to plants, mammalian cells nevertheless bind and internalize CPMV in significant amounts. This binding is mediated by a conserved 54-kDa protein found on the plasma membranes of both human and murine cell lines. Studies using a deficient cell line, deglycosidases, and glycosylation inhibitors showed that the CPMV binding protein (CPMV-BP) is not glycosylated. A possible 47-kDa isoform of the CPMV-BP was also detected in the organelle and nuclear subcellular fraction prepared from murine fibroblasts. Further characterization of CPMV-BP is important to understand how CPMV is trafficked through the mammalian system and may shed light on how picornaviruses may have evolved between plant and animal hosts.  相似文献   

4.
Gill-associated virus (GAV), a positive-stranded RNA virus of prawns, is the prototype of newly recognized taxa (genus Okavirus, family Roniviridae) within the order NIDOVIRALES: In this study, a putative GAV cysteine proteinase (3C-like proteinase [3CL(pro)]), which is predicted to be the key enzyme involved in processing of the GAV replicase polyprotein precursors, pp1a and pp1ab, was characterized. Comparative sequence analysis indicated that, like its coronavirus homologs, 3CL(pro) has a three-domain organization and is flanked by hydrophobic domains. The putative 3CL(pro) domain including flanking regions (pp1a residues 2793 to 3143) was fused to the Escherichia coli maltose-binding protein (MBP) and, when expressed in E. coli, was found to possess N-terminal autoprocessing activity that was not dependent on the presence of the 3CL(pro) C-terminal domain. N-terminal sequence analysis of the processed protein revealed that cleavage occurred at the location (2827)LVTHE downward arrow VRTGN(2836). The trans-processing activity of the purified recombinant 3CL(pro) (pp1a residues 2832 to 3126) was used to identify another cleavage site, (6441)KVNHE downward arrow LYHVA(6450), in the C-terminal pp1ab region. Taken together, the data tentatively identify VxHE downward arrow (L,V) as the substrate consensus sequence for the GAV 3CL(pro). The study revealed that the GAV and potyvirus 3CL(pro)s possess similar substrate specificities which correlate with structural similarities in their respective substrate-binding sites, identified in sequence comparisons. Analysis of the proteolytic activities of MBP-3CL(pro) fusion proteins carrying replacements of putative active-site residues provided evidence that, in contrast to most other 3C/3CL(pro)s but in common with coronavirus 3CL(pro)s, the GAV 3CL(pro) employs a Cys(2968)-His(2879) catalytic dyad. The properties of the GAV 3CL(pro) define a novel RNA virus proteinase variant that bridges the gap between the distantly related chymotrypsin-like cysteine proteinases of coronaviruses and potyviruses.  相似文献   

5.
6.
Hepatitis A virus (HAV) differs from other members of the family Picornaviridae in that the cleavage of the polyprotein at the 2A/2B junction, commonly considered to be the primary polyprotein cleavage by analogy with other picornaviruses, is mediated by 3C(pro), the only proteinase encoded by the virus. However, it has never been formally demonstrated that the 2A/2B junction is the site of primary cleavage, and the actual function of the 2A sequence, which lacks homology with sequence of other picornaviruses, remains unknown. To determine whether 2A functions in cis as a precursor with the nonstructural proteins, we constructed dicistronic HAV genomes in which a heterologous picornaviral internal ribosome entry site was inserted at the 2A/2B junction. Transfection of permissive FRhK-4 cells with these dicistronic RNAs failed to result in the rescue of infectious virus, indicating a possible cis replication function spanning the 2A/2B junction. However, infectious virus was recovered from recombinant HAV genomes containing exogenous protein-coding sequences inserted in-frame at the 2A/2B junction and flanked by consensus 3C(pro) cleavage sites. The replication of these recombinants was less efficient than that of the parent virus but was variable and not dependent upon the length of the inserted sequence. An HAV recombinant containing a 420-nt insertion encoding the bleomycin resistance protein Zeo was stable for up to five passages in cell culture. Inserted sequences were deleted from replicating viruses, but this did not result from homologous recombination at the flanking 3C(pro) cleavage sites, since the 5' and 3' segments of the inserted sequence were retained in the deletion mutants. These results indicate that the HAV polyprotein can tolerate an insertion at the 2A/2B junction and that the 2A polypeptide does not function in cis as a 2AB precursor. Recombinant HAV genomes containing foreign protein-coding sequences inserted at the 2A/2B junction are novel and potentially useful protein expression vectors.  相似文献   

7.
Computer analyses have revealed sequence homology between two non-structural proteins encoded by cowpea mosaic virus (CPMV), and corresponding proteins encoded by two picornaviruses, poliovirus and foot-and-mouth disease virus. A region of 535 amino acids in the 87-K polypeptide from CPMV was found to be homologous to the RNA-dependent RNA polymerases from both picornaviruses, the best matches being found where the picornaviral proteins most resemble each other. Additionally, the 58-K polypeptide from CPMV and polypeptide P2-X from poliovirus contain a conserved region of 143 amino acids. Based on the homology observed, a genetic map of the CPMV genome has been constructed in which the 87-K polypeptide represents the core polymerase domain of the CPMV replicase. These results have implications for the evolution of RNA viruses, and mechanisms are discussed which may explain the existence of homology between picornaviruses (animal viruses with single genomic RNAs) and comoviruses (plant viruses with two genomic RNAs).  相似文献   

8.
A family of hypothetical proteins, identified predominantly from archaeal genomes, has been analyzed in order to understand its functional characteristics. Using extensive sequence similarity searches it is inferred that this family is remotely related (best sequence identity is 19%) to ClpP proteinases that belongs to serine proteinase class. This family of hypothetical proteins is referred to as SDH proteinase family based on conserved sequential order of Ser, Asp and His residues and predicted serine proteinase activity. Results of fold recognition of SDH family sequences confirmed the remote relationship between SDH proteinases and Clp proteinases and revealed similar tertiary location of putative catalytic triad residues critical for serine proteinase function. However, the best sequence alignment we could obtain suggests that while catalytic Ser is conserved across Clp and SDH proteinases the location of the other catalytic triad residues, namely, His and Asp are swapped in their amino acid alignment positions and hence in 3-D structure. The evidence of conserved catalytic triad suggests that SDH could be a new family of serine proteinases with the fold of Clp proteinase, however sharing the catalytic triad order of carboxypeptidase clan. Signal peptide sequence identified at the N-terminus of some of the homologues suggests that these might be secretory serine proteinases involved in cleavage of extracellular proteins while the remote homologues, ClpP proteinases, are known to work in intracellular environment.  相似文献   

9.
We discovered a novel canine picornavirus in fecal, nasopharyngeal, and urine samples from dogs. The coding potential of its genome (5'-VP4-VP2-VP3-VP1-2A-2B-2C-3A-3B-3C(pro)-3D(pol)-3', where 3C(pro) is 3C protease and 3D(pol) is 3D polymerase) is similar to those of other picornaviruses, with putative P1, P2, and P3 sharing 54% to 58%, 60%, and 64% to 67% amino acid identities with bat picornavirus groups 1, 2, and 3.  相似文献   

10.
The murine coronavirus mouse hepatitis virus gene 1 is expressed as a polyprotein, which is cleaved into multiple proteins posttranslationally. One of the proteins is p28, which represents the amino-terminal portion of the polyprotein and is presumably generated by the activity of an autoproteinase domain of the polyprotein (S. C. Baker, C. K. Shieh, L. H. Soe, M.-F. Chang, D. M. Vannier, and M. M. C. Lai, J. Virol. 63:3693-3699, 1989). In this study, the boundaries and the critical amino acid residues of this putative proteinase domain were characterized by deletion analysis and site-directed mutagenesis. Proteinase activity was monitored by examining the generation of p28 during in vitro translation in rabbit reticulocyte lysates. Deletion analysis defined the proteinase domain to be within the sequences encoded from the 3.6- to 4.4-kb region from the 5' end of the genome. A 0.7-kb region between the substrate (p28) and proteinase domain could be deleted without affecting the proteolytic cleavage. However, a larger deletion (1.6 kb) resulted in the loss of proteinase activity, suggesting the importance of spacing sequences between proteinase and substrate. Computer-assisted analysis of the amino acid sequence of the proteinase domain identified potential catalytic cysteine and histidine residues in a stretch of sequence distantly related to papain-like cysteine proteinases. The role of these putative catalytic residues in the proteinase activity was studied by site-specific mutagenesis. Mutations of Cys-1137 or His-1288 led to a complete loss of proteinase activity, implicating these residues as essential for the catalytic activity. In contrast, most mutations of His-1317 or Cys-1172 had no or only minor effects on proteinase activity. This study establishes that mouse hepatitis virus gene 1 encodes a proteinase domain, in the region from 3.6 to 4.4 kb from the 5' end of the genome, which resembles members of the papain family of cysteine proteinases and that this proteinase domain is responsible for the cleavage of the N-terminal peptide.  相似文献   

11.
12.
The related 3C and 3C-like proteinase (3C(pro) and 3CL(pro)) of picornaviruses and coronaviruses, respectively, are good drug targets. As part of an effort to generate broad-spectrum inhibitors of these enzymes, we screened a library of inhibitors based on a halopyridinyl ester from a previous study of the severe acute respiratory syndrome (SARS) 3CL proteinase against Hepatitis A virus (HAV) 3C(pro). Three of the compounds, which also had furan rings, inhibited the cleavage activity of HAV 3C(pro) with K(ic)s of 120-240nM. HPLC-based assays revealed that the inhibitors were slowly hydrolyzed by both HAV 3C(pro) and SARS 3CL(pro), confirming the identity of the expected products. Mass spectrometric analyses indicated that this hydrolysis proceeded via an acyl-enzyme intermediate. Modeling studies indicated that the halopyridinyl moiety of the inhibitor fits tightly into the S1-binding pocket, consistent with the lack of tolerance of the inhibitors to modification in this portion of the molecule. These compounds are among the most potent non-peptidic inhibitors reported to date against a 3C(pro).  相似文献   

13.
Computer-assisted analysis of the amino acid sequence of the product encoded by the sequenced 3' portion of the cricket paralysis virus (CrPV), an insect picornavirus, genome showed that this protein is homologous not to the RNA-directed RNA polymerases, as originally suggested, but to the capsid proteins of mammalian picornaviruses. Alignment of the CrPV protein sequence with those of picornavirus and calicivirus capsid proteins demonstrated that the sequenced portion of the insect picornavirus genome encodes the C-terminal part of VP3 and the entire VP1. Thus CrPV seems to have a genome organization distinct from that of other picornaviruses but closely resembling that of caliciviruses, with the capsid proteins encoded in the 3' part of the genome. On the other hand, the tentative phylogenetic trees generated from the VP3 alignment revealed grouping of CrPV with hepatitis A virus, a true picornavirus, not with caliciviruses. Thus CrPV may be a picornavirus with a calicivirus-like genome organization. Different options for CrPV genome expression are discussed.  相似文献   

14.
Cloning of a cysteine proteinase gene from Acanthamoeba culbertsoni   总被引:1,自引:0,他引:1  
  相似文献   

15.
Human complement component C1s was purified from fresh blood by conventional methods of precipitation and chromatography. The single-chain zymogen form was activated by treatment with C1r. Reduction and carboxymethylation then allowed the light chain and heavy chain to be separated on DEAE-Sepharose CL-6B in 8 M-urea. Liquid-phase sequencing of the light chain determined 50 residues from the N-terminus. CNBr-cleavage fragments of the light chain were separated by high-pressure liquid chromatography on gel-permeation and reverse-phase columns. N-Terminal sequencing of these fragments determined the order of a further 138 residues, giving a total of 188 residues or about 75% of the light chain. Seven of these eight sequences could be readily aligned with the amino acid sequences of other serine proteinases. The typical serine proteinase active-site residues are clearly conserved in C1s, and the specificity-related side chain of the substrate-binding pocket is aspartic acid, as in trypsin, consistent with the proteolytic action of C1s on C4 at an arginine residue. Somewhat surprisingly, when the C1s sequence is compared with that of complement subcomponent C1r, the percentage difference (59%) is approximately the same as that found between the other mammalian serine proteinases (56-71%).  相似文献   

16.
Cowpea mosaic virus (CPMV) is a plant comovirus in the picornavirus superfamily, and is used for a wide variety of biomedical and material science applications. Although its replication is restricted to plants, CPMV binds to and enters mammalian cells, including endothelial cells and particularly tumor neovascular endothelium in vivo. This natural capacity has lead to the use of CPMV as a sensor for intravital imaging of vascular development. Binding of CPMV to endothelial cells occurs via interaction with a 54 kD cell-surface protein, but this protein has not previously been identified. Here we identify the CPMV binding protein as a cell-surface form of the intermediate filament vimentin. The CPMV-vimentin interaction was established using proteomic screens and confirmed by direct interaction of CPMV with purified vimentin, as well as inhibition in a vimentin-knockout cell line. Vimentin and CPMV were also co-localized in vascular endothelium of mouse and rat in vivo. Together these studies indicate that surface vimentin mediates binding and may lead to internalization of CPMV in vivo, establishing surface vimentin as an important vascular endothelial ligand for nanoparticle targeting to tumors. These results also establish vimentin as a ligand for picornaviruses in both the plant and animal kingdoms of life. Since bacterial pathogens and several other classes of viruses also bind to surface vimentin, these studies suggest a common role for surface vimentin in pathogen transmission.  相似文献   

17.
Although picornavirus RNA genomes contain a 3'-terminal poly(A) tract that is critical for their replication, the impact of encephalomyocarditis virus (EMCV) infection on the host poly(A)-binding protein (PABP) remains unknown. Here, we establish that EMCV infection stimulates site-specific PABP proteolysis, resulting in accumulation of a 45-kDa N-terminal PABP fragment in virus-infected cells. Expression of a functional EMCV 3C proteinase was necessary and sufficient to stimulate PABP cleavage in uninfected cells, and bacterially expressed 3C cleaved recombinant PABP in vitro in the absence of any virus-encoded or eukaryotic cellular cofactors. N-terminal sequencing of the resulting C-terminal PABP fragment identified a 3C(pro) cleavage site on PABP between amino acids Q437 and G438, severing the C-terminal protein-interacting domain from the N-terminal RNA binding fragment. Single amino acid substitution mutants with changes at Q437 were resistant to 3C(pro) cleavage in vitro and in vivo, validating that this is the sole detectable PABP cleavage site. Finally, while ongoing protein synthesis was not detectably altered in EMCV-infected cells expressing a cleavage-resistant PABP variant, viral RNA synthesis and infectious virus production were both reduced. Together, these results establish that the EMCV 3C proteinase mediates site-specific PABP cleavage and demonstrate that PABP cleavage by 3C regulates EMCV replication.  相似文献   

18.
Recent sequence analysis revealed that the human pathogen echovirus 22 (EV22) is genetically distant from all the other picornaviruses studied to date (T. Hyypiä, C. Horsnell, M. Maaronen, M. Khan, N. Kalkkinen, P. Auvinen, L. Kinnunen, and G. Stanway, Proc. Natl. Acad. Sci. USA 89:8847-8851, 1992). We have further characterized the biological properties of the virus and show here that the virion has properties similar to those of other picornaviruses. However, the protein composition is unique, in that most copies of one of the three major capsid proteins, VP0, do not undergo the further processing to VP2 and VP4 observed during the maturation of the virus in previously studied picornaviruses. Alignment of the capsid protein sequences with those of other picornaviruses revealed, furthermore, that the VP3 polypeptide contains an apparent insertion of approximately 25 amino acids at its amino terminus. An arginine-glycine-aspartic acid (RGD) motif is found in VP1, and by using synthetic peptides, it was shown that this sequence plays a role in cell surface receptor recognition. Finally, EV23 was shown to share remarkable identity with EV22 in certain parts of the genome and also belongs to this previously unrecognized picornavirus group.  相似文献   

19.
The 5' untranslated regions (UTRs) of the RNA genomes of Flaviviridae of the Hepacivirus and Pestivirus genera contain internal ribosomal entry sites (IRESs) that are unrelated to the two principal classes of IRESs of Picornaviridae. The mechanism of translation initiation on hepacivirus/pestivirus (HP) IRESs, which involves factor-independent binding to ribosomal 40S subunits, also differs fundamentally from initiation on these picornavirus IRESs. Ribosomal binding to HP IRESs requires conserved sequences that form a pseudoknot and the adjacent IIId and IIIe domains; analogous elements do not occur in the two principal groups of picornavirus IRESs. Here, comparative sequence analysis was used to identify a subset of picornaviruses from multiple genera that contain 5' UTR sequences with significant similarities to HP IRESs. They are avian encephalomyelitis virus, duck hepatitis virus 1, duck picornavirus, porcine teschovirus, porcine enterovirus 8, Seneca Valley virus, and simian picornavirus. Their 5' UTRs are predicted to form several structures, in some of which the peripheral elements differ from the corresponding HP IRES elements but in which the core pseudoknot, domain IIId, and domain IIIe elements are all closely related. These findings suggest that HP-like IRESs have been exchanged between unrelated virus families by recombination and support the hypothesis that RNA viruses consist of modular coding and noncoding elements that can exchange and evolve independently.  相似文献   

20.

Background  

Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS), efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号