首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysophosphatidic acid (LPA) is a potent agonist that exerts various cellular functions on many cell types through binding to its cognate G protein-coupled receptors (GPCRs). Although LPA induces NF-κB activation by acting on its GPCR receptor, the molecular mechanism of LPA receptor-mediated NF-κB activation remains to be well defined. In the present study, by using MEKK3-, TAK1-, and IKKβ-deficient murine embryonic fibroblasts (MEFs), we found that MEKK3 but not TAK1 deficiency impairs LPA and protein kinase C (PKC)-induced IκB kinase (IKK)-NF-κB activation, and IKKβ is required for PKC-induced NF-κB activation. In addition, we demonstrate that LPA and PKC-induced IL-6 and MIP-2 production are abolished in the absence of MEKK3 but not TAK1. Together, our results provide the genetic evidence that MEKK3 but not TAK1 is required for LPA receptor-mediated IKK-NF-κB activation.  相似文献   

2.
3.
Anisomycin is known to inhibit eukaryotic protein synthesis and has been established as an antibiotic and anticancer drug. However, the molecular targets of anisomycin and its mechanism of action have not been explained in macrophages. Here, we demonstrated the anti-inflammatory effects of anisomycin both in vivo and in vitro. We found that anisomycin decreased the mortality rate of macrophages in cecal ligation and puncture (CLP)- and lipopolysaccharide (LPS)-induced acute sepsis. It also declined the gene expression of proinflammatory mediators such as inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin-1β as well as the nitric oxide and proinflammatory cytokines production in macrophages subjected to LPS-induced acute sepsis. Furthermore, anisomycin attenuated nuclear factor (NF)-κB activation in LPS-induced macrophages, which correlated with the inhibition of phosphorylation of NF-κB-inducing kinase and IκB kinase, phosphorylation and IκBα proteolytic degradation, and NF-κB p65 subunit nuclear translocation. These results suggest that anisomycin prevented acute inflammation by inhibiting NF-κB-related inflammatory gene expression and could be a potential therapeutic candidate for sepsis.  相似文献   

4.
A common cellular response to genotoxic agents and inflammatory cytokines is the activation of NF-κB. Here, we addressed the question of whether small GTPases of the Rho family are involved in the stimulation of NF-κB signaling by genotoxic agents or TNFα in HeLa cells. Inhibition of isoprenylation of Rho proteins by use of the HMG-CoA reductase inhibitor lovastatin attenuated UV-, doxorubicin-, and TNFα-induced degradation of IκBα as well as drug-stimulated DNA binding activity of NF-κB. Furthermore, NF-κB-regulated gene expression stimulated by either UV irradiation or treatment with TNFα was abrogated by lovastatin pretreatment. This indicates that isoprenylated regulatory proteins participate in the regulation of NF-κB by DNA-damaging agents as well as by TNFα. Specific blockage of Rho signaling by Clostridium difficile toxin B attenuated UV- and doxorubicin-induced activation of NF-κB, but did not affect stimulation of NF-κB by TNFα. Obviously, signaling to NF-κB by genotoxic and nongenotoxic stimuli occurs via different molecular mechanisms, either involving Rho GTPases or not. Based on the data, we suggest Rho GTPases to be essentially required for genotoxic stress-induced signaling to NF-κB.  相似文献   

5.
Microbial transformation of isosteviol oxime (ent-16-E-hydroxyiminobeyeran-19-oic acid) (2) with Aspergillus niger BCRC 32720 and Absidia pseudocylindrospora ATCC 24169 yielded several compounds. In addition to bioconverting the d-ring to lactone and lactam moieties, 4α-carboxy-13α-hydroxy-13,16-seco-ent-19-norbeyeran-16-oic acid 13,16-lactone (7) and 4α-carboxy-13α-amino-13,16-seco-ent-19-norbeyeran-16-oic acid 13,16-lactam (10), one known compound, ent-1β,7α-dihydroxy-16-oxo-beyeran-19-oic acid (6), and five new compounds, ent-7α-hydroxy-16-E-hydroxyiminobeyeran-19-oic acid (3), ent-1β,7α-dihydroxy-16-E-hydroxyiminobeyeran-19-oic acid (4), ent-1β-hydroxy-16-E-hydroxyiminobeyeran-19-oic acid (5), ent-8β-cyanomethyl-13-methyl-12-podocarpen-19-oic acid (8), and ent-8β-cyanomethyl-13-methyl-13-podocarpen-19-oic acid (9), were isolated from the microbial transformation of 2. Elucidation of the structures of these isolated compounds was primarily based on 1D and 2D NMR, and HRESIMS data, and 35 were further confirmed by X-ray crystallographic analyses. Additionally, the inhibitory effects of all of these compounds were evaluated on NF-κB and AP-1 activation in LPS-stimulated RAW 264.7 macrophages. Among the compounds tested, 5 and 10 significantly inhibited NF-κB activation, with 5 showing equal potency to dexamethasone; 3 and 69 significantly inhibited AP-1 activation, particularly 8, which showed more inhibitory activity than dexamethasone.  相似文献   

6.
7.
Interferon regulatory factors (IRFs) play roles in various biological processes including cytokine signaling, cell growth regulation and hematopoietic development. Although it has been reported that several IRFs are involved in bone metabolism, the role of IRF2 in bone cells has not been elucidated. Here, we investigated the involvement of IRF2 in RANKL-induced osteoclast differentiation. IRF2 overexpression in osteoclast pre-cursor cells enhanced osteoclast differentiation by regulating the expression of NFATc1, a master regulator of osteoclasto-genesis. Conversely, IRF2 knockdown inhibited osteoclast differentiation and decreased the NFATc1 expression. Moreover, IRF2 increased the translocation of NF-κB subunit p65 to the nucleus in response to RANKL and subsequently induced the expression of NFATc1. IRF2 plays an important role in RANKL-induced osteoclast differentiation by regulating NF-κB/NFATc1 signaling pathway. Taken together, we demonstrated the molecular mechanism of IRF2 in osteoclast differentiation, and provide a molecular basis for potential therapeutic targets for the treatment of bone diseases characterized by excessive bone resorption.  相似文献   

8.
It was recently demonstrated that the pineal neurohormone melatonin is a hydroxyl radical scavenger and antioxidant, and that it plays an important role in the immune system. In studies reported herein, we have investigated the relationship of the melatonin level and the NF-κ B DNA binding activity in the spleen of Sprague—Dawley rats. These in vivo results indicate that NF- κB DNA binding activity in the spleen is lower at night, when endogenous melatonin levels are elevated, than during the day, when endogenous melatonin levels are lower. Furthermore, exogenously administered melatonin (10mg/kg) was shown to cause a significant decrease in NF-κB DNA binding activity in the spleen at 60min after intraperitoneal injection (as compared with vehicle-treated rats). These new findings suggest that the normal night time rise which can be expected for melatonin may be associated with increased NF-κB DNA binding activity in the spleen. The melatonin, therefore, could potentially act to modulate spleen function and/or the immune system by regulating the NF-κB DNA binding activity in the spleen.  相似文献   

9.
10.
11.
12.
13.
14.
Objectives:Deubiquitinase Ubiquitin Specific Protease 1 (USP1) is essential for bone formation, but how USP1 regulates bone formation in response to oxidative stress remains unclear. In this study, we aim to investigate the biological function of USP1 in osteoblastic MC3T3-E1 cells.Methods:Hydrogen peroxide (H2O2) as an oxidative reagent was used to trigger osteoblastic MC3T3-E1 cellular damage. Flow cytometry was used to evaluate ROS production, apoptosis, and pyroptosis. Real-time PCR and western bolt assay were used to detect the mRNA and protein levels of USP1. Moreover, coimmunoprecipitation was used to validate the relationship between USP1 and TRAF6.Results:We demonstrated that USP1 was significantly decreased in MC3T3-E1 cells after H2O2 treatment. Overexpressing USP1 restored H2O2-decreased alkaline phosphatase activity and reactive oxygen species production. USP1 overexpression inhibited cytokine release and NLP3 inflammasome activation, which was mediated by NF-κB. Overexpressing USP1 prevented NF-κB translocation. USP1 formed a complex with TRAF6, inhibiting TRAF6 ubiquitination.Conclusion:USP1 exhibits protective role in MC3T3-E1 cells by suppressing NF-κB-NLRP3 mediated pyroptosis in response to H2O2. The involvement of USP1 and TRAF6 in NLRP3 inflammasome signaling suggests a future therapeutic potential to improve clinical symptoms in osteoporosis.  相似文献   

15.
Dehydroxymethylepoxyquinomicin (DHMEQ, 1) is a novel nuclear factor-κB (NF-κB) inhibitor that inhibits DNA binding of NF-κB components including p65. To inspect its biological activity of 1, we synthesized parasitenone (3), possessing the common epoxycyclohexenone moiety of 1. Assessment of the inhibitory activity against NF-κB indicated that the epoxycyclohexenone moiety is the most essential element for the NF-κB inhibitory activity and the salicylic acid moiety may contribute the binding efficiency and specificity.  相似文献   

16.
Theobromine is mainly found in plant foods, such as tea; the primary source of theobromine is the seeds of the Theobroma cacao tree. Theobromine is an alkaloid belonging to the methylxanthine class of drugs, and it is similar to theophylline and caffeine. Theobromine is known for its efficacy and role in health and disorder prevention. We evaluated the effects of theobromine on macrophage function, including the phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB). Theobromine significantly stimulated the production of nitric oxide (NO) and prostaglandin E2 through immune responses, which relate to the increased expression of inducible nitric oxide synthase and cyclooxygenase-2. Additionally, theobromine increased the production of inflammatory cytokines, including tumor necrosis factor-α and interleukin-6 in macrophages. Additionally, theobromine induced the translocation and activity of NF-κB in a concentration-dependent manner. Consistent with these results, the phosphorylation level of MAPKs was increased in theobromine-stimulated macrophages. Collectively, these data revealed that theobromine acts as an immune response stimulator via the NF-κB and MAPKs signaling pathways. Thus, theobromine might have protective effects against inflammatory disorders.  相似文献   

17.
18.
19.
20.
Cytokine-induced beta cell dysfunction is a hallmark of type 2 diabetes (T2D). Chronic exposure of beta cells to inflammatory cytokines affects gene expression and impairs insulin secretion. Thus, identification of anti-inflammatory factors that preserve beta cell function represents an opportunity to prevent or treat T2D. Butyrate is a gut microbial metabolite with anti-inflammatory properties for which we recently showed a role in preventing interleukin-1β (IL-1β)-induced beta cell dysfunction, but how prevention is accomplished is unclear. Here, we investigated the mechanisms by which butyrate exerts anti-inflammatory activity in beta cells. We exposed mouse islets and INS-1E cells to a low dose of IL-1β and/or butyrate and measured expression of inflammatory genes and nitric oxide (NO) production. Additionally, we explored the molecular mechanisms underlying butyrate activity by dissecting the activation of the nuclear factor-κB (NF-κB) pathway. We found that butyrate suppressed IL-1β-induced expression of inflammatory genes, such as Nos2, Cxcl1, and Ptgs2, and reduced NO production. Butyrate did not inhibit IκBα degradation nor NF-κB p65 nuclear translocation. Furthermore, butyrate did not affect binding of NF-κB p65 to target sequences in synthetic DNA but inhibited NF-κB p65 binding and RNA polymerase II recruitment to inflammatory gene promoters in the context of native DNA. We found this was concurrent with increased acetylation of NF-κB p65 and histone H4, suggesting butyrate affects NF-κB activity via inhibition of histone deacetylases. Together, our results show butyrate inhibits IL-1β-induced inflammatory gene expression and NO production through suppression of NF-κB activation and thereby possibly preserves beta cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号