首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcineurin purified from bovine brain is shown to possess phosphotyrosyl -protein phosphatase activity towards proteins phosphorylated by the epidermal growth factor receptor/kinase. The phosphatase activity is augmented by Ca2+/calmodulin or divalent cation (Ni2+ greater than Mn2+ greater than Mg2+ greater than Co2+). In the simultaneous presence of all three effectors, the enzymatic activity is synergistically increased. Ca2+/calmodulin activates the Mg2+-supported activity by decreasing the Km value for phosphotyrosyl -casein from 2.2 to 0.6 microM, and increasing the Vmax from 0.4 to 4.6 nmol/min/mg. These results represent the first demonstration that calcineurin can dephosphorylate phosphotyrosyl -proteins and suggest a novel mechanism of activation of this enzyme.  相似文献   

2.
A partially purified bovine cortical bone acid phosphatase, which shared similar characteristics with a class of acid phosphatase known as tartrate-resistant acid phosphatase, was found to dephosphorylate phosphotyrosine and phosphotyrosyl proteins, with little activity toward other phosphoamino acids or phosphoseryl histones. The pH optimum was about 5.5 with p-nitrophenyl phosphate as substrate but was about 6.0 with phosphotyrosine and about 7.0 with phosphotyrosyl histones. The apparent Km values for phosphotyrosyl histones (at pH 7.0) and phosphotyrosine (at pH 5.5) were about 300 nM phosphate group and 0.6 mM, respectively, The p-nitrophenyl phosphatase, phosphotyrosine phosphatase, and phosphotyrosyl protein phosphatase activities appear to be a single protein since these activities could not be separated by Sephacryl S-200, CM-Sepharose, or cellulose phosphate chromatographies, he ratio of these activities remained relatively constant throughout the purification procedure, each of these activities exhibited similar thermal stabilities and similar sensitivities to various effectors, and phosphotyrosine and p-nitrophenyl phosphate appeared to be alternative substrates for the acid phosphatase. Skeletal alkaline phosphatase was also capable of dephosphorylating phosphotyrosyl histones at pH 7.0, but the activity of that enzyme was about 20 times greater at pH 9.0 than at pH 7.0. Furthermore, the affinity of skeletal alkaline phosphatase for phosphotyrosyl proteins was low (estimated to be 0.2-0.4 mM), and its protein phosphatase activity was not specific for phosphotyrosyl proteins, since it also dephosphorylated phosphoseryl histones. In summary, these data suggested that skeletal acid phosphatase, rather than skeletal alkaline phosphatase, may act as phosphotyrosyl protein phosphatase under physiologically relevant conditions.  相似文献   

3.
Calmodulin-dependent protein phosphatase from bovine brain and heart was assayed for phosphotyrosine and phosphoserine phosphatase activity using several substrates: 1) smooth muscle myosin light chain (LC20) phosphorylated on tyrosine or serine residues, 2) angiotensin I phosphorylated on tyrosine, and 3) synthetic phosphotyrosine- or phosphoserine-containing peptides with amino acid sequences patterned after the autophosphorylation site in Type II regulatory subunit of the cAMP-dependent protein kinase. The phosphatase was activated by Ni2+ and Mn2+, and stimulated further by calmodulin. In the presence of Ni2+ and calmodulin, it exhibited similar kinetic constants for the dephosphorylation of phosphotyrosyl LC20 (Km = 0.9 microM, and Vmax = 350 nmol/min/mg) and phosphoseryl LC20 (Km = 2.6 microM, Vmax = 690 nmol/min/mg). Dephosphorylation of phosphotyrosyl LC20 was inhibited by phosphoseryl LC20 with an apparent Ki of 2 microM. Compared to the reactions with phosphotyrosyl LC20 as the substrate, reactions with phosphotyrosine-containing oligopeptides exhibited slightly higher Km and lower Vmax values. The reaction with the phosphoseryl peptide based on the Type II regulatory subunit sequence exhibited a slightly higher Km (23 microM), but a much higher Vmax (4400 nmol/min/mg) than that with its phosphotyrosine-containing counterpart. Micromolar concentrations of Zn2+ inhibited the phosphatase activity; vanadate was less potent, and 25 mM NaF was ineffective. The study provides quantitative data to serve as a basis for comparing the ability of the calmodulin-dependent protein phosphatase to act on phosphotyrosine- and phosphoserine-containing substrates.  相似文献   

4.
M J King  G J Sale 《FEBS letters》1988,237(1-2):137-140
Synthetic peptide 1142-1153 of the insulin receptor was phosphorylated on tyrosine by the insulin receptor and found to be a potent substrate for dephosphorylation by rat liver particulate and soluble phosphotyrosyl protein phosphatases. Apparent Km values were approximately 5 microM. Vm values (nmol phosphate removed/min per mg protein) were 0.62 (particulate) and 0.2 (soluble). This corresponds to 80% of total activity being membrane-associated, indicating that membrane-bound phosphatases are important receptor phosphatases. The phosphatase activities were distinct from acid and alkaline phosphatase. In conclusion peptide 1142-1153 provides a useful tool for the further study and characterization of phosphotyrosyl protein phosphatases.  相似文献   

5.
An autophosphorylation site in the activated insulin receptor tyrosine kinase domain has three tyrosines phosphorylated when fully activated. To begin to examine recognition of triphosphotyrosyl sites by protein tyrosine phosphatases in possible control of signal transduction a triphosphotyrosyl dodecapeptide TRDIpYETDpYpYRK corresponding to residues 1,142-1,153 of the insulin receptor was prepared and incubated with the 40-kDa catalytic domain of the human PTPase LAR. To assess regioselectivity of recognition, the three diphosphotyrosyl regioisomers, and the three monophosphotyrosyl regioisomers were prepared and assayed. All seven peptides were PTPase substrates. To identify any preferences in dephosphorylation at pY5, pY9, or pY10, 1H-NMR analyses were conducted during enzyme incubations and distinguishing fingerprint regions determined for each of the seven phosphotyrosyl peptides. LAR PTPase shows strong preference for dephosphorylation first at pY5 (at tri-, di-, and monophosphotyrosyl levels). Initially this regioselectivity gives the Y5(pY9)(pY10) diphospho regioisomer, followed by equal dephosphorylation at pY9 or pY10 to give the corresponding monophosphoryl species on the way to fully dephosphorylated product. The NMR methodology is applicable to other peptides with multiple sites of phosphorylation that undergo attack by any phosphatase.  相似文献   

6.
A cytosolic phosphoprotein phosphatase of Mr = 95,000 purified from bovine cardiac muscle, which contains a catalytic subunit of Mr = 35,000, is known to be associated with a Mg2+-activated p-nitrophenyl phosphatase activity. We have found that the enzyme preparation is also active toward phosphotyrosyl-IgG and -casein phosphorylated by pp60v-src, the transforming gene product of Rous sarcoma virus. The properties of this phosphotyrosyl protein phosphatase activity closely resemble those of the p-nitrophenyl phosphatase activity but sharply differ from those of the phosphorylase phosphatase activity. Comparative studies of the activities of the Mr = 95,000 phosphatase, bovine kidney alkaline phosphatase, and ATP X Mg-dependent phosphatase toward phosphoseryl, phosphothreonyl, and phosphotyrosyl proteins and p-nitrophenyl phosphate under various conditions have been carried out. The results indicate that the Mr = 95,000 enzyme exhibits higher activity toward phosphoseryl and phosphothreonyl proteins than toward phosphotyrosyl proteins, while the kidney alkaline phosphatase preferentially dephosphorylates phosphotyrosyl proteins. ATP X Mg-dependent phosphatase is inactive toward phosphotyrosyl proteins.  相似文献   

7.
Insulin stimulates autophosphorylation of the insulin receptor on multiple tyrosines in three domains: tyrosines 1316 and 1322 in the C-terminal tail, 1146, 1150 and 1151 in the tyrosine-1150 domain, and possibly 953, 960 or 972 in the juxtamembrane domain. In the present work the sequence of dephosphorylation of the various autophosphorylation sites by particulate and cytosolic preparations of phosphotyrosyl-protein phosphatase from rat liver was studied with autophosphorylated human placental insulin receptor as substrate. Both phosphatase preparations elicited a broadly similar pattern of dephosphorylation. The tyrosine-1150 domain in triphosphorylated form was found to be exquisitely sensitive to dephosphorylation, and was dephosphorylated 3-10-fold faster than the di- and monophosphorylated forms of the tyrosine-1150 domain or phosphorylation sites in other domains. The major route for dephosphorylation of the triphosphorylated tyrosine-1150 domain involved dephosphorylation of one of the phosphotyrosyl pair, 1150/1151, followed by phosphotyrosyl 1146 to generate a species monophosphorylated mainly (greater than 80%) at tyrosine 1150 or 1151. Insulin receptors monophosphorylated in the tyrosine-1150 domain disappeared slowly, and overall the other domains were completely dephosphorylated faster than the tyrosine-1150 domain. Dephosphorylation of the diphosphorylated C-terminal domain yielded insulin receptor in which the domain was singly phosphorylated at tyrosine 1322. Triphosphorylation of the insulin receptor in the tyrosine-1150 domain appears important in activating the receptor tyrosine kinase to phosphorylate other proteins. The extreme sensitivity of the triphosphorylated form of the tyrosine-1150 domain to dephosphorylation may thus be important in terminating or regulating insulin-receptor tyrosine kinase action and insulin signalling.  相似文献   

8.
An acid phosphatase activity that displayed phosphotyrosyl-protein phosphatase has been purified from bovine cortical bone matrix to apparent homogeneity. The overall yield of the enzyme activity was greater than 25%, and overall purification was approximately 2000-fold with a specific activity of 8.15 mumol of p-nitrophenyl phosphate hydrolyzed per min/mg of protein at pH 5.5 and 37 degrees C. The purified enzyme was judged to be purified based on its appearance as a single protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (silver staining technique). The enzyme could be classified as a band 5-type tartrate-resistant acid phosphatase isoenzyme. The apparent molecular weight of this enzyme activity was determined to be 34,600 by gel filtration and 32,500 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of reducing agent, indicating that the active enzyme is a single polypeptide chain. Kinetic evaluations revealed that the acid phosphatase activity appeared to catalyze its reaction by a pseudo Uni Bi hydrolytic two-step transfer reaction mechanism and was competitively inhibited by transition state analogs of Pi. The enzyme activity was also sensitive to reducing agents and several divalent metal ions. Substrate specificity evaluation showed that this purified bovine skeletal acid phosphatase was capable of hydrolyzing nucleotide tri- and diphosphates, phosphotyrosine, and phosphotyrosyl histones, but not nucleotide monophosphates, phosphoserine, phosphothreonine, phosphoseryl histones, or low molecular weight phosphoryl esters. Further examination of the phosphotyrosyl-protein phosphatase activity indicated that the optimal pH at a fixed substrate concentration (50 nM phosphohistones) for this activity was 7.0. Kinetic analysis of the phosphotyrosyl-protein phosphatase activity indicated that the purified enzyme had an apparent Vmax of approximately 60 nmol of [32P]phosphate hydrolyzed from [32P]phosphotyrosyl histones per min/mg of protein at pH 7.0 and an apparent Km for phosphotyrosyl proteins of approximately 450 nM phosphate group. In summary, the results of these studies represent the first purification of a skeletal acid phosphatase to apparent homogeneity. Our observation that this purified bovine bone matrix acid phosphatase was able to dephosphorylate phosphotyrosyl proteins at neutral pH is consistent with our suggestion that this enzyme may function as a phosphotyrosyl-protein phosphatase in vivo.  相似文献   

9.
Human prostatic acid phosphatase (PAcP) has been found to have phosphotyrosyl-protein phosphatase activity (H. C. Li, J. Chernoff, L. B. Chen, and A. Kirschonbaun, Eur. J. Biochem. 138:45-51, 1984; M.-F. Lin and G. M. Clinton, Biochem. J. 235:351-357, 1986) and has been suggested to negatively regulate phosphotyrosine levels, at least in part, by inhibition of tyrosine protein kinase activity (M.-F. Lin and G. M. Clinton, Adv. Protein Phosphatases 4:199-228, 1987; M.-F. Lin, C. L. Lee, and G. M. Clinton, Mol. Cell. Biol. 6:4753-4757, 1986). We investigated the molecular interaction of PAcP with a specific tyrosine kinase, the epidermal growth factor (EGF) receptor, from prostate carcinoma cells. Of several proteins phosphorylated in membrane vesicles from prostate carcinoma cells, PAcP selectively dephosphorylated the EGF receptor. The prostate EGF receptor was more efficiently dephosphorylated by PAcP than by another phosphotyrosyl phosphatase, potato acid phosphatase. Further characterization of the interaction of PAcP with the EGF receptor revealed that the optimal rate of dephosphorylation occurred at neutral rather than at acid pH. Thus, the enzyme that we formerly referred to as PAcP we now call prostatic phosphotyrosyl-protein phosphatase. Hydrolysis of phosphate from tyrosine residues in the immunoprecipitated EGF receptor catalyzed by purified prostatic phosphotyrosyl-protein phosphatase caused a 40 to 50% decrease in the receptor tyrosine kinase activity with angiotensin as the substrate. In contrast, autophosphorylation of the receptor was associated with an increase in tyrosine kinase activity.  相似文献   

10.
Ligand stimulation of PDGF beta-receptors leads to autophosphorylation of the regulatory tyrosine 857 and of tyrosine residues that in their phosphorylated form serve as docking sites for Src homology 2 domain-containing proteins. Regulation of the PDGF beta-receptor by protein-tyrosine phosphatases is poorly understood. We have investigated PDGF beta-receptor dephosphorylation by receptor-like protein-tyrosine phosphatase DEP-1 using a cell line with inducible DEP-1 expression and by characterizing in vitro dephosphorylation of the PDGF beta-receptor and of receptor-derived phosphopeptides by DEP-1. After DEP-1 induction PDGF beta-receptor.DEP-1 complexes and reduced receptor tyrosine phosphorylation were observed. Phosphopeptide analysis of the PDGF beta-receptors from DEP-1-expressing cells and of the receptors dephosphorylated in vitro by DEP-1 demonstrated that dephosphorylation of autophosphorylation sites of the receptor differed and revealed that the regulatory Tyr(P)(857) was not a preferred site for DEP-1 dephosphorylation. When dephosphorylation of synthetic receptor-derived peptides was analyzed, the selectivity was reproduced, indicating that amino acid sequence surrounding the phosphorylation sites is the major determinant of selectivity. This notion is supported by the observation that the poorly dephosphorylated Tyr(P)(562) and Tyr(P)(857), in contrast to other analyzed phosphorylation sites, are surrounded by basic amino acid residues at positions -4 and +3 relative to the tyrosine residue. Our study demonstrates that DEP-1 dephosphorylation of the PDGF beta-receptor is site-selective and may lead to modulation, rather than general attenuation, of signaling.  相似文献   

11.
1. Pig heart pyruvate dehydrogenase phosphate complex in which all three sites of phosphorylation were completely phosphorylated was re-activated at a slower rate by phosphatase than complex predominantly phosphorylated in site 1. The ratio of initial rates of re-activation was approx. 1:5 with a comparatively crude preparation of phosphatase and with phosphatase purified by gel filtration and ion-exchange chromatography. 2. The ratio of apparent first-order rate constants during dephosphorylation of fully phosphorylated complex averaged 1/3.8/1.3 for site 1/site 2/site 3. Only site-1 dephosphorylation was linearly correlated with re-activation of the complex throughout dephosphorylation. Dephosphorylation of site 3 was linearly correlated with re-activation after an initial burst of dephosphorylation. 3. Because dephosphorylation of site 1 was always associated with dephosphorylation of site 2, it is concluded that dephosphorylation cannot be purely random. 4. The ratio of apparent first-order rate constants for dephosphorylation of site 1 (partially/fully phosphorylated complexes) averaged 1.72. This ratio is smaller than the ratio of approx. 5 for the initial rates of re-activation. Possible mechanisms involved in the diminished rate of re-activation of fully phosphorylated complex are discussed.  相似文献   

12.
The findings of our work were 2-fold: (1) calcineurin (from bovine brain) can catalyze the complete dephosphorylation of the phosphotyrosine and phosphoserine residues in the human placental receptor for epidermal growth factor urogastrone (EGF-URO), and (2) the major calmodulin-binding protein of human placental membranes is a calcineurin-related protein. In terms of its metal ion dependence (Ni2+ greater than Mn2+ greater than Co2+), its calmodulin dependence, and its sensitivity to inhibitors (Zn2+, fluoride, orthovanadate), the phosphotyrosyl protein phosphatase activity of calcineurin, using the EGF-URO receptor as substrate, paralleled the enzyme activity measured with p-nitrophenyl phosphate (PNPP) as a substrate. These characteristics distinguish calcineurin from other classes of protein phosphotyrosyl phosphatases. Calcineurin purified from placental membranes was similar to, if not identical with, bovine brain calcineurin in terms of enzymatic specific activity toward PNPP, subunit electrophoretic mobilities, and immunological cross-reactivity. The enzymatic properties and comparative abundance of calcineurin in the placenta membranes suggest that this enzyme may play an important role in regulating the phosphorylation state of those receptors (e.g., for EGF-URO or insulin) also known to be present in the membranes.  相似文献   

13.
We describe a procedure of preparing [32P]phosphotyrosyl histones with minimal contamination by 32P-labeled lipids; the latter was usually found to be mixed with the phosphoproteins when the cell membrane-enriched fraction of A-431 cells was used as a source of tyrosine kinase. The phosphatase activities previously found to be associated with the plasma membranes of a human astrocytoma were resolved using purified [32P]phosphotyrosyl histones and [32P]phosphatidylinositol phosphate. In comparison with the phosphotyrosyl protein phosphatase, the phosphatidylinositol phosphate phosphatase activity is more active over a broad range of pH values, and its activity is inhibited by fluoride, zinc chloride, and lower concentrations of vanadate.  相似文献   

14.
The polyisoprenyl phosphate dephosphorylating activity of rat liver has been investigated with regard to substrate specificity, subcellular distribution, and transmembrane orientation. Total liver microsomes were employed as a source of enzymatic activity against a variety of 32P-labeled substrates. Susceptibility to dephosphorylation followed the order solanesyl phosphate greater than alpha-cis-polyprenyl 19-phosphate = alpha-trans-polyprenyl 19-phosphate = dihydrosolanesyl phosphate greater than (S)-dolichyl 19-phosphate = (R)-dolichyl 19-phosphate = (R,S)-dolichyl 11-phosphate. There appeared to be no major effect of chain length from 11 to 20 isoprenes. Data obtained from inhibition studies using solanesyl [32P]phosphate as substrate were consistent with the substrate specificity studies and suggested that a single activity is responsible. With dolichyl [32P]phosphate as substrate, the phosphatase specific activity of the subcellular fractions prepared from rat liver was found to follow the sequence Golgi = smooth endoplasmic reticulum greater than plasma membrane greater than lysosomes = rough endoplasmic reticulum greater than nuclei greater than mitochondria. Transmembrane topography studies, using enzyme latency as a criterion, were consistent with an orientation of the active site facing the cytoplasm.  相似文献   

15.
The phosphotyrosyl [Tyr(P)]-immunoglobulin G (IgG) phosphatase activity in the extracts of bovine heart, bovine brain, human kidney, and rabbit liver can be separated by DEAE-cellulose at neutral pH into two fractions. The unbound fraction exhibits a higher activity at acidic than neutral pH while the reverse is true for the bound fraction. Of all tissues examined, the Tyr(P)-IgG phosphatase activity in the unbound fraction measured at pH 5.0 is higher than that in the bound fraction measured at pH 7.2. The acid Tyr(P)-IgG phosphatase activity has been extensively purified from bovine heart. It copurified with an acid phosphatase activity (p-nitrophenyl phosphate (PNPP) as a substrate) throughout the purification procedure. These two activities coelute from various ion-exchange and gel filtration chromatographies and comigrate on polyacrylamide gel electrophoresis, indicating that they reside on the same protein molecule. The phosphatase has a Mr = 15,000 by gel filtration and exhibits an optimum between pH 5.0 and 6.0 when either Tyr(P)-IgG-casein or PNPP is the substrate. It is highly specific for Tyr(P)-protein with little activities toward phosphoseryl [Ser(P)]- or phosphothreonyl [Thr(P)]-protein. The enzyme activities toward Tyr(P)-casein and PNPP are strongly inhibited by microM molybdate and vanadate but insensitive to inhibition by L(+)-tartrate, NaF, or Zn2+. The molecular and catalytic properties of the acid Tyr(P)-protein phosphatase purified from bovine heart are very similar to those of the low-molecular-weight acid phosphatases of Mr = 14,000 previously identified and purified from the cytosolic fraction of human liver, placenta, and other animal tissues.  相似文献   

16.
Insulin-receptor phosphotyrosyl-protein phosphatases.   总被引:1,自引:0,他引:1       下载免费PDF全文
Calmodulin-dependent protein phosphatase has been proposed to be an important phosphotyrosyl-protein phosphatase. The ability of the enzyme to attack autophosphorylated insulin receptor was examined and compared with the known ability of the enzyme to act on autophosphorylated epidermal-growth-factor (EGF) receptor. Purified calmodulin-dependent protein phosphatase was shown to catalyse the complete dephosphorylation of phosphotyrosyl-(insulin receptor). When compared at similar concentrations, 32P-labelled EGF receptor was dephosphorylated at greater than 3 times the rate of 32P-labelled insulin receptor; both dephosphorylations exhibited similar dependence on metal ions and calmodulin. Native phosphotyrosyl-protein phosphatases in cell extracts were also characterized. With rat liver, heart or brain, most (75%) of the native phosphatase activity against both 32P-labelled insulin and EGF receptors was recovered in the particulate fraction of the cell, with only 25% in the soluble fraction. This subcellular distribution contrasts with results of previous studies using artificial substrates, which found most of the phosphotyrosyl-protein phosphatase activity in the soluble fraction of the cell. Properties of particulate and soluble phosphatase activity against 32P-labelled insulin and EGF receptors are reported. The contribution of calmodulin-dependent protein phosphatase activity to phosphotyrosyl-protein phosphatase activity in cell fractions was determined by utilizing the unique metal-ion dependence of calmodulin-dependent protein phosphatase. Whereas Ni2+ (1 mM) markedly activated the calmodulin-dependent protein phosphatase, it was found to inhibit potently both particulate and soluble phosphotyrosyl-protein phosphatase activity. In fractions from rat liver, brain and heart, total phosphotyrosyl-protein phosphatase activity against both 32P-labelled receptors was inhibited by 99.5 +/- 6% (mean +/- S.E.M., 30 observations) by Ni2+. Results of Ni2+ inhibition studies were confirmed by other methods. It is concluded that in cell extracts phosphotyrosyl-protein phosphatases other than calmodulin-dependent protein phosphatase are the major phosphotyrosyl-(insulin receptor) and -(EGF receptor) phosphatases.  相似文献   

17.
In unfractioned reticulocyte lysate, interaction of eukaryotic initiation factor 2 (eIF-2) with other components regulates the accessibility of phosphatases and kinases to phosphorylation sites on its alpha and beta subunits. Upon addition of eIF-2 phosphorylated on both alpha and beta subunits (eIF-2(alpha 32P, beta 32P) to lysate, the alpha subunit is rapidly dephosphorylated, but the beta subunit is not. In contrast, both sites are rapidly dephosphorylated by the purified phosphatase. The basis of this altered specificity appears to be the association of eIF-2 with other translational components rather than an alteration of the phosphatase. Formation of an eIF-2(alpha 32P,beta 32P) Met-tRNAi X GTP ternary complex prevents dephosphorylation of the beta subunit, but has no effect on the rate of alpha dephosphorylation. eIF-2B, a 280,000-dalton polypeptide complex required for GTP:GDP exchange, also protects the beta subunit phosphorylation site from the purified phosphatase. However, the dephosphorylation of eIF-2(alpha 32P) is inhibited by 75% while complexed with eIF-2B. The altered phosphatase specificity upon association of eIF-2 with eIF-2B also affects the access of protein kinases to these phosphorylation sites. In the eIF-2B X eIF-2 complex, the alpha subunit is phosphorylated at 30% the rate of free eIF-2. Under identical conditions, phosphorylation of eIF-2 beta can not be detected. These results illustrate the importance of substrate conformation and/or functional association with other components in determining the overall phosphorylation state allowed by alterations of kinase and phosphatase activities.  相似文献   

18.
The glucocorticoid receptor (GR) is phosphorylated at three major sites on its N terminus (S203, S211, and S226), and phosphorylation modulates GR-regulatory functions in vivo. We examined the phosphorylation site interdependence, the contribution of the receptor C-terminal ligand-binding domain, and the participation of protein phosphatases in GR N-terminal phosphorylation and gene expression. We found that GR phosphorylation at S203 was greater when S226 was not phosphorylated and vice versa, indicative of intersite dependency. We also observed that a GR derivative lacking the ligand-binding domain, which no longer binds the heat shock protein 90 (Hsp90) complex, exhibits increased GR phosphorylation at all three sites as compared with the full-length receptor. A GR mutation (F602S) that produces a receptor less dependent on Hsp90 for function as well as treatment with the Hsp90 inhibitor geldanamycin also increased basal GR phosphorylation at a subset of sites. Pharmacological inhibition of serine/threonine protein phosphatases increased GR basal phosphorylation. Likewise, a reduction in protein phosphatase 5 protein levels enhanced GR phosphorylation at a subset of sites and selectively reduced the induction of endogenous GR target genes. Together, our findings suggest that GR undergoes a phosphorylation/dephosphorylation cycle that maintains steady-state receptor phosphorylation at a low basal level in the absence of ligand. Our findings also suggest that the ligand-dependent increase in GR phosphorylation results, in part, from the dissociation of a ligand-binding domain-linked protein phosphatase(s), and that changes in the intracellular concentration of protein phosphatase 5 differentially affect GR target gene expression.  相似文献   

19.
Most classical phosphotyrosyl phosphatases (PTPs), including the Src homology phosphotyrosyl phosphatase 2 (SHP2) possess a Thr or a Ser residue immediately C-terminal to the invariant Arg in the active site consensus motif (H/V-C-X5-R-S/T), also known as the "signature motif". SHP2 has a Thr (Thr466) at this position, but its importance in catalysis has not been investigated. By employing site-directed mutagenesis, phosphatase assays and substrate-trapping studies, we demonstrate that Thr466 is critical for the catalytic activity of SHP2. Its mutation to Ala abolishes phosphatase activity, but provides a new substrate-trapping mutant. We further show that the nucleophilic Cys459 is not involved in substrate trapping by Thr466Ala-SHP2 (T/A-SHP2). Mutation of Thr466 does not cause significant structural changes in the active site as revealed by the trapping of the epidermal growth factor receptor (EGFR), the physiological substrate of SHP2, and by orthovanadate competition experiments. Based on these results and previous other works, we propose that the role of Thr466 in the catalytic process of SHP2 could be stabilizing the sulfhydryl group of Cys459 in its reduced state, a state that enables nucleophilic attack on the phosphate moiety of the substrate. The T/A-SHP2 harbors a single mutation and specifically interacts with the EGFR. Since the nucleophilic Cys459 and the proton donor Asp425 are intact in the T/A-SAHP2, it offers an excellent starting material for solving the structure of SHP2 in complex with its physiological substrate.  相似文献   

20.
1. Human platelets contain a calmodulin-dependent phosphatase (calcineurin) that has many properties similar to those of bovine brain calmodulin-dependent phosphatase. 2. The activity of calcineurin phosphatase accounts for a small fraction of the total phosphatase activity in human platelets. 3. Labeling of human platelets with 32P yielded many phosphoproteins. 4. Incubation of a lysate of the 32P-labeled platelets with bovine brain calmodulin-dependent phosphatase led to preferential dephosphorylation of a 28 kDa protein (P28), a minor component of platelet proteins. 5. P28 is one of several proteins that were rapidly labeled upon stimulation of platelets with thrombin. 6. Even though the enzyme is known to catalyze the dephosphorylation of many substrates in vitro, its apparent preference for P28 suggests that its activity is highly selective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号