首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In situ stimulation of methanotrophic bacteria has been considered as a methodology for aquifer remediation. Chlorinated aliphatic hydrocarbons such as trichloroethylene are fortuitously oxidized by the methane monooxygenase produced by methanotrophic bacteria. Experimental results are presented that indicate that both colloidal suspensions containing methanotrophic cells and the soluble extracellular polymers produced by methanotrophic cells have the potential to enhance the transport and removal of other environmental contaminants such as polynuclear aromatic hydrocarbons and transition metals in aquifer material. Three well-characterized methanotrophic bacteria were used in the experiments: Methylomonas albus BG8 (a type I methanotroph), Methylosinus trichosporium OB3b (a type II methanotroph), and Methylocystis parvus OBBP (a type II methanotroph). Isotherms were obtained for sorption of two radiolabeled pollutants, [14C] phenanthrene and 109Cd, onto an aquifer sand in the presence and absence of washed cells and their extracellular polymer. Column transport experiments were performed with the washed methanotrophic cells and phenanthrene. The distribution coefficients for Cd with extracellular polymers were of the same order as that obtained with the aquifer sand, indicating that polymers from the methanotrophic bacteria could act to increase the transport of Cd in a porous medium. Polymer from BG8 significantly reduced the apparent distribution coefficient for Cd with an aquifer sand. [14C] phenanthrene also sorbed to extracellular polymer and to washed, suspended methanotrophic cells. The exopolymer of BG8 and OBBP significantly reduced the apparent distribution coefficient (Kd) for phenanthrene with aquifer sand. The distribution coefficients for phenanthrene with the methanotrophic cells were an order of magnitude greater than those previously reported for other heterotrophic bacteria. Cells of the methanotrophs also significantly reduced the apparent Kd for phenanthrene with an aquifer sand. The three strains of methanotrophs tested displayed mobility in a column of packed sand, and strain OBBP reduced the retardation coefficient of phenanthrene with an aquifer sand by 27%. These data indicate that both extracellular polymer and mobile cells of methanotrophic bacteria display a capacity to facilitate the mobility of pollutant metals and polynuclear aromatic hydrocarbons in aquifer material.  相似文献   

2.
A simple initial screening procedure for selecting strains of white-rot fungi with potential for use in bioremediation of contaminated sites is described. Besides the ability to degrade low molecular weight PAHs, isolates were screened for their growth rate on straw-based agar media, their potential to tolerate high concentrations of phenanthrene and their ability to out-grow the cellulolytic fungus Trichoderma harzianum on straw agar plates. Results from simple in vitro tests were correlated with the ability of the different strains to degrade PAHs in sand microcosms. It was found that fungal growth rate on straw-based agar media in the presence of phenanthrene correlated well with the ability of the different fungi to degrade PAHs in sand microcosms. Whereas growth rate on straw-based agar plates per se was indicative of the ability of white-rot fungi to establish in the presence of a competing fungus, it was a poor indicator of the fungus’ ability to degrade PAHs.  相似文献   

3.
Microbial biodegradation of polyaromatic hydrocarbons   总被引:3,自引:0,他引:3  
Polycyclic aromatic hydrocarbons (PAHs) are widespread in various ecosystems and are pollutants of great concern due to their potential toxicity, mutagenicity and carcinogenicity. Because of their hydrophobic nature, most PAHs bind to particulates in soil and sediments, rendering them less available for biological uptake. Microbial degradation represents the major mechanism responsible for the ecological recovery of PAH-contaminated sites. The goal of this review is to provide an outline of the current knowledge of microbial PAH catabolism. In the past decade, the genetic regulation of the pathway involved in naphthalene degradation by different gram-negative and gram-positive bacteria was studied in great detail. Based on both genomic and proteomic data, a deeper understanding of some high-molecular-weight PAH degradation pathways in bacteria was provided. The ability of nonligninolytic and ligninolytic fungi to transform or metabolize PAH pollutants has received considerable attention, and the biochemical principles underlying the degradation of PAHs were examined. In addition, this review summarizes the information known about the biochemical processes that determine the fate of the individual components of PAH mixtures in polluted ecosystems. A deeper understanding of the microorganism-mediated mechanisms of catalysis of PAHs will facilitate the development of new methods to enhance the bioremediation of PAH-contaminated sites.  相似文献   

4.
The diversity of bacteria isolated from creosote- contaminated soils in the United States, Norway, and Germany was determined by comparing their ability to degrade polycyclic aromatic hydrocarbons (PAHs), their phospholipid ester-linked fatty acid (GC-FAME) profiles, sole carbon source utilization patterns (Biolog assays (Use of trade names or specific products does not imply endorsement by the U.S. EPA.), and 16S rRNA sequences. Bacteria were initially obtained by enrichment with phenanthrene and fluoranthene. Many were capable of degrading a broad range of the PAHs found in creosote. Phenanthrene- or fluoranthene- degraders were abundant in most of the soils tested. Several of the fluoranthene-degrading isolates clustered with Sphingomonas (formerly Pseudomonas) paucimobilis strain EPA505 in the GC-FAME and Biolog analyses and three of the isolates examined by 16S rRNA sequence comparisons showed a close relationship with Sphingomonas. In addition, the Sphingomonas strains showed the most extensive degradation of 4- & 5-ring PAHs in creosote. Burkholderia cepacia strains isolated on phenanthrene from PAH-contaminated soils had limited ability to attack higher molecular weight PAHs either individually or in creosote. Thus, PAH degradation capabilities appeared to be associated with members of certain taxa, independent of the origin of the soils from which the bacteria were isolated.  相似文献   

5.
Four sub-tropical white rot fungi, Trametes versicolor, Trametes pocas, Trametes cingulata and isolate DSPM95 were studied alongside the well studied white rot fungus, Phanerochaete chrysosporium, for their ability to remove polycyclic aromatic hydrocarbons (PAHs) from culture media. Both static shallow cultures and extracellular fluids were studied using media contaminated with a defined mixture of the PAHs; fluorene, phenanthrene, anthracene, pyrene and benzo(a)anthracene. With all isolates, the total loss of the parent compound in 31 days was high for fluorene, at +60%, phenanthrene at +40% and anthracene at +42%. Biotransformation of pyrene and benzo(a)anthracene by all the isolates was low, with the highest reduction of pyrene of 15.2% and benzo(a)anthracene of 15.8% being achieved with P. chrysosporium. Disappearance of the more condensed PAHs, pyrene and benzo(a)anthracene, increased in shallow static cultures with the addition of glucose and glucose oxidase as a source of additional H2O2. The addition of Mn2+ and ABTS (2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) to culture supernatants was associated with higher levels of biotransformation. Comparison of the isolates T. versicolor, T. pocas, T. cingulata and isolate DSPM95 with P. chrysosporium showed that these strains were competitive in the reduction of the PAHs, reducing the PAHs by more or less the same magnitude. Also these sub-tropical isolates did not accumulate a lot of HPLC detectable metabolites as much as P. chrysosporium.  相似文献   

6.
Yeast abundance in the sediments of 13 coastal sites in Massachusetts was quantified, and the potential of yeast isolates to biotransform polycyclic aromatic hydrocarbons (PAHs) was determined. Plate counts of yeasts varied between 10(2) to 10(7) CFU g (dry weight) of sediment-1. The most abundant genera isolated and identified included Candida, Cryptococcus, Rhodotorula, Torulopsis, and Trichosporon. More than 50% of the isolates from heavily contaminated sites transformed phenanthrene, as determined by spray-plate screening. The plate counts of phenanthrene-transforming yeasts correlated significantly to the sediment concentrations of phenanthrene. Transformation of [9-14C]phenanthrene and [12-14C]benz[a]anthracene by individual isolates varied greatly, ranging from 0.15 to 8.15 mumol of PAH g-1 in 120-h incubations. Of the isolated yeasts, Trichosporon penicillatum exhibited the greatest capacity for phenanthrene transformation. The ability to transform PAHs appears to be widespread among yeasts in coastal sediments.  相似文献   

7.
Phyllosphere bacteria on ornamental plants were characterized based on their diversity and activity towards the removal of polycyclic aromatic hydrocarbons (PAHs), the major air pollutants in urban area. The amounts of PAH-degrading bacteria were about 1–10% of the total heterotrophic phyllosphere populations and consisted of diverse bacterial species such as Acinetobacter, Pseudomonas, Pseudoxanthomonas, Mycobacterium, and uncultured bacteria. Bacterial community structures analyzed by polymerase chain reaction–denaturing gradient gel electrophoresis from each plant species showed distinct band patterns. The uniqueness of these phyllosphere bacterial communities was partly due to the variation in leaf morphology and chemical properties of ornamental plants. The PAH degradation activity of these bacteria was monitored in gas-tight systems containing sterilized or unsterilized leaves. The results indicated that phyllosphere bacteria on unsterilized leaves were able to enhance the activity of leaves for phenanthrene removal. When compared between plant species, phenanthrene removal efficiency corresponded to the size of phenanthrene-degrading bacteria. In addition, phyllosphere bacteria on Wrightia religiosa were able to reduce other PAHs such as acenaphthylene, acenaphthene, and fluorine in 60-ml glass vials and in a 14-l glass chamber. Thus, phyllosphere bacteria on ornamental plants may play an important role in natural attenuation of airborne PAHs in urban areas.  相似文献   

8.
多环芳烃降解菌的筛选、鉴定及降解特性   总被引:7,自引:0,他引:7  
【目的】多环芳烃(PAHs)是一类普遍存在于环境中且具有高毒性的持久性有机污染物,高效降解菌的筛选对利用生物修复技术有效去除环境中的多环芳烃具有重要意义。研究拟从供试菌株中筛选多环芳烃高效降解菌,并分析其降解特性,为多环芳烃污染环境的微生物修复提供资源保障和科学依据。【方法】采用平板法从25株供试菌株中筛选出以菲和芘为唯一碳源和能源的高效降解菌,经16S rRNA基因序列进行初步鉴定,通过单因素实验法分析其在液体培养基中的降解特性。【结果】筛选出的3株多环芳烃高效降解菌SL-1、02173和02830经16S rRNA基因序列分析,02173和02830分别与假单胞菌属中的Pseudomonas alcaliphila和Pseudomonas corrugate同源性最近,SL-1为本课题组发表新类群Rhizobium petrolearium的模式菌株;降解实验表明,菌株SL-1 3 d内对单一多环芳烃菲(100 mg/L)和芘(50 mg/L)的降解率分别达到100%和48%,5 d后能够降解74%的芘;而其3 d内对混合PAHs中菲和芘的降解率分别为75.89%和81.98%。菌株02173和02830 3 d内对混合多环芳烃中萘(200 mg/L)、芴(50 mg/L)、菲(100 mg/L)和芘(50 mg/L)的降解率均分别超过97%。【结论】筛选出的3株PAHs降解菌SL-1、02173和02830不仅可以高效降解低分子量PAHs,还对高分子量PAHs具有很好的降解潜力。研究表明,由于共代谢作用低分子量多环芳烃可促进高分子量多环芳烃的降解,而此时低分子量多环芳烃的降解将受到抑制。  相似文献   

9.
Boothroyd  Ian K.G.  Etheredge  M. Kay  Green  John D. 《Hydrobiologia》2002,469(1-3):23-32
Solar ultraviolet radiation both degrades and alters the quality of natural organic matter as well as organic pollutants in surface waters. Still, it is only recently that this indirect influence of photochemical processes on aquatic organisms (e.g. bacteria) has received attention. We experimentally studied the photochemical degradation of three PAHs; anthracene, phenanthrene and naphthalene, in water. Anthracene and phenanthrene were rapidly photodegraded (half-lives of 1 and 20.4 hours, respectively), while the photochemical half-life of naphthalene exceeded 100 hours. Hence photodegradation is most likely a less important removal mechanism for the latter compound. The influence of humic substance additions (0–25 mg C l–1) on degradation rates was also assessed, and while photodegradation of anthracene was not affected by these additions, phenanthrene photodegradation slowed down considerably at the higher humic substance concentrations. These differential responses of anthracene and phenanthrene can at least partially be explained by differences in the spectral absorbance of the two compounds. In contrast, ionic strength did not have any appreciable effect on the estimated photodegradation rates of either compound. The influence of PAHs on growth of aquatic bacteria was assessed in dilution cultures with and without exposure to PAHs and simulated solar UV radiation. Separately, neither PAHs nor simulated solar UV radiation had any effect on bacterial growth. However, when combined, a marked inhibition of bacterial growth could be observed in water obtained from a clearwater lake. This could be due to the formation of toxic photodegradation products such as quinones (detected in our incubations) or other reactive species that affect bacteria negatively. Hence, in addition to influencing the fate and persistence of PAHs in aquatic systems, solar radiation and natural organic matter and regulate the toxicity of these compounds to indigenous micro-organisms.  相似文献   

10.
The bacteria involved in the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in deep sea subsurface environments are largely unknown. In order to reveal their biodiversity, sediments from 2.2 m under the bottom surface at a water depth of 3542 m were sampled on the Middle Atlantic Ridge with a gravity column sampler. The sediments were promptly enriched with either crude oil or a mixture of PAHs (naphthalene, phenanthrene and pyrene) as the sole carbon source, and further enriched with the PAH mixture mentioned above in the lab. The resulting consortia were named C2CO and C2PPN respectively. Their bacterial composition was analysed with plate cultivation, PCR-DGGE and 16S rDNA library analysis. On plates, isolates belonging to Pseudoalteromonas , Halomonas , Marinobacter , Thalassospira and Tistrella dominated the culturable populations. With PCR-DGGE, five major bands closely related to Cycloclasticus , Alteromonas , Thalassospira , Alcanivorax and Rhodospirillaceae were detected in consortium C2CO, while only one major band of Cycloclasticus was detected in consortium C2PPN. In addition, the dynamics of community structure in response to aromatic substrate alterations were examined. As a result, three ribotypes of Cycloclasticus were detected by 16S rDNA library analysis, one which played a key role in phenanthrene degradation; two Alteromonas bacteria dominated the naphthalene reselected consortium. Although bacteria of the two genera grew as the main members of the communities, none of them were isolated, probably owing to their poor cultivability. These results confirm that bacteria of Cycloclasticus are important obligate PAH degraders in marine environments, and coexist with other degrading bacteria that inhabit the deep subsurface sediment of the Atlantic. This supports the view that PAH accumulation and bioattenuation occur in remote areas consistently and continuously.  相似文献   

11.
The distribution of microorganisms in deep subsurface profiles was determined at three sites at the Savannah River Plant, Aiken, South Carolina. Acridine orange direct counts (AODC) of bacteria were highest in surface soil samples and declined to the 106 to 107 per gram range in the subsurface, but then did not decline further with depth. In the subsurface, AODC values varied from layer to layer, the highest being found in samples from sandy aquifer formations and the lowest in clayey interbed layers. Sandy aquifer sediments also contained the highest numbers of viable bacteria as determined by aerobic spread plate counts (CFU) on a dilute heterotrophic medium. In some of these samples bacterial CFU values approached 100% of the AODC values. Viable protozoa (amoebae and flagellates, but no ciliates) were found in samples with high bacterial CFU values. A variety of green algae, phytoflagellates, diatoms, and a few cyanobacteria were found at low population densities in samples from two of the three boreholes. Low numbers of fungi were evenly distributed throughout the profiles at all three sites. Microbial population density estimates correlated positively with sand content and pore‐water pH, and negatively with clay content and pore‐water metal concentration. A large diversity of prokaryotic and eukaryotic microorganisms was found in samples with high population densities. A survey of bacterial strains isolated from subsurface samples revealed associations of gram‐positive bacteria with high clay sediments and gram‐negative bacteria with sandy sediments. The ability to deposit lipophilic storage material (presumably poly‐ß‐hydroxybutyrate) was found in a high proportion of isolates from sandy sediments, but only rarely in isolates from high clay sediments.  相似文献   

12.
Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonas spp., whereas the membrane method exclusively led to the selection of Mycobacterium spp. Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobacterium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge.  相似文献   

13.
Aims:  To investigate the processes controlling the transport of Mycobacterium avium subsp. paratuberculosis ( Map ) through aquifer materials.
Methods and Results:  We measured two important surface characteristics known to affect bacterial attachment to sediment surfaces: surface charge and hydrophobicity. We then measured the transport of Map through laboratory columns packed with aquifer sand with varying ionic strength solutions and sediment surface charge. We found that Map has a strong negative charge and is highly hydrophobic and that the transport of Map through positively charged Fe-coated sands was reduced compared with transport through negatively charged clean quartz sand, although Map transport for all treatments was low compared with the transport behaviour reported in the literature for other bacteria.
Conclusions:  Our results suggest that the potential for groundwater contamination by Map is low; however, the organism may remain bound to the soil near the surface where it can be ingested by grazing animals or be released during run off events.
Significance and Impact of the Study:  This is the first study looking at the surface characteristics and transport behaviour of Map through aquifer materials and therefore provides important information for understanding the movement of Map in the environment.  相似文献   

14.
Biosurfactants are tensio-active agents that have often been proposed as a means to enhance the aqueous solubility of hydrophobic organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs). Biosurfactant-producing bacteria such as those belonging to the genus Pseudomonas might therefore enhance PAH availability to PAH-degrading bacteria. We tested the effects of two types of biosurfactants produced by Pseudomonas sp., cyclic lipopeptides and rhamnolipids, on phenanthrene bioavailability. Bioavailability was judged from growth rates on phenanthrene and from specific induction of a phenanthrene-responsive GFP-reporter in Burkholderia sartisoli strain RP037. Co-culturing of strain RP037 with the lipopeptide-producing bacterium Pseudomonas putida strain PCL1445 enhanced GFP expression compared to a single culture, but this effect was not significantly different when strain RP037 was co-cultivated with a non-lipopeptide-producing mutant of P. putida. The addition of partially purified supernatant extracts from the P. putida lipopeptide producer equally did not unequivocally enhance phenanthrene bioavailability to strain RP037 compared to controls. In contrast, a 0.1% rhamnolipid solution strongly augmented RP037 growth rates on phenanthrene and led to a significantly larger proportion of cells in culture with high GFP expression. Our data therefore suggest that biosurfactant effects may be strongly dependent on the strain and type of biosurfactant.  相似文献   

15.
The goal of these studies was to determine how sorption by humic acids affected the bioavailability of polynuclear aromatic hydrocarbons (PAHs) to PAH-degrading microbes. Micellar solutions of humic acid were used as sorbents, and phenanthrene was used as a model PAH. Enrichments from PAH-contaminated soils established with nonsorbed phenanthrene yielded a total of 25 different isolates representing a diversity of bacterial phylotypes. In contrast, only three strains of Burkholderia spp. and one strain each of Delftia sp. and Sphingomonas sp. were isolated from enrichments with humic acid-sorbed phenanthrene (HASP). Using [14C]phenanthrene as a radiotracer, we verified that only HASP isolates were capable of mineralizing HASP, a phenotype hence termed “competence.” Competence was an all-or-nothing phenotype: noncompetent strains showed no detectable phenanthrene mineralization in HASP cultures, but levels of phenanthrene mineralization effected by competent strains in HASP and NSP cultures were not significantly different. Levels and rates of phenanthrene mineralization exceeded those predicted to be supported solely by the metabolism of phenanthrene in the aqueous phase of HASP cultures. Thus, competent strains were able to directly access phenanthrene sorbed by the humic acids and did not rely on desorption for substrate uptake. To the best of our knowledge, this is the first report of (i) a selective interaction between aerobic bacteria and humic acid molecules and (ii) differential bioavailability to bacteria of PAHs sorbed to a natural biogeopolymer.  相似文献   

16.
微生物降解多环芳烃的研究进展   总被引:8,自引:0,他引:8  
多环芳烃(PAHs)是具有严重危害的环境污染物质。介绍PAHs的降解菌,降解机理和PAHs的生物修复方面的研究进展。土壤中PAHs的生物修复被认为是解决污染的有效方法,目前,菲的生物降解途径已经比较清楚,但对结构更为复杂的多环芳烃研究较少。文章还对消除环境中多环芳烃的相关生物技术提出展望。  相似文献   

17.
吴涓  刘俊  陈婕 《微生物学报》2020,60(12):2734-2746
[目的] 针对菲、蒽、荧蒽多环芳烃(PAHs)污染物,利用乳白耙齿菌F17,研究单一和复合PAHs污染物的生物降解规律。[方法] 采用气相色谱-质谱法(GC-MS)分析降解过程中PAHs的浓度,并采用准一级反应动力学模型对降解结果进行拟合。[结果] 对于单一PAHs,第15天时菲、蒽、荧蒽的降解率由高到低依次为菲(97.8%) > 蒽(89.3%) > 荧蒽(81.5%)。菲、蒽和荧蒽的降解过程具有准一级反应动力学特征,菲的生物降解速率最快,其次是蒽,荧蒽的降解速率最慢。与单一PAHs的降解相比,在复合PAHs的降解过程中,乳白耙齿菌F17的生长和锰过氧化物酶的合成均表现出不同的特征。此外,水溶性极可能是复合污染物降解的重要控制因子,三者水溶性为:菲 > 荧蒽 > 蒽。因此,在菲或荧蒽加入条件下,微生物能优先降解这些污染物,抑制了污染物蒽的降解;同时,蒽或菲的存在对荧蒽的降解也有抑制作用;然而外源加入水溶性较差的蒽和荧蒽,则对菲的生物降解无显著影响。[结论] 复合PAHs的生物降解主要表现为相互竞争的特点,通过GC-MS分析了PAHs的生物降解途径。  相似文献   

18.
低分子有机酸对土壤中菲降解及细菌群落结构的影响   总被引:1,自引:0,他引:1  
王姣龙  谌小勇  闫文德 《生态学报》2019,39(19):7179-7188
多环芳烃是一类普遍存在于环境中的持久性有机污染物,其通过食物链进入生态系统,直接危害人类健康和整个生态系统的安全。为探讨低分子有机酸对土壤中菲降解及细菌群落结构的影响,通过室内培养的方式研究了在添加不同种类有机酸处理下第0—180天土壤中菲含量的变化状况,并采用高通量Illumina Miseq技术分析了土壤细菌群落种类和数量的变化特征。结果表明,低分子有机酸对于土壤中菲的降解有明显的促进作用,由一级动力学方程得出乙酸对菲降解的促进作用最明显。从细菌群落结构来看,土壤细菌的数量及其多样性或许不是导致土壤菲降解的主要因素,反而特定的菲降解菌的丰度对菲降解有重要影响。添加低分子有机酸减少了细菌OTU数及细菌菌群多样性,但增加了PAHs降解菌的丰度。随着时间推移细菌总OTU数呈现下降趋势,独有种类数均呈现出先增长后下降的趋势。检测到了6种典型的菲降解菌,分别为:Bacillus、鞘氨醇单胞菌属、Massilia、Azospirillum、Burkholderia-paraburkholderia、红球菌。研究结果可为多环芳烃污染土壤的植物修复提供基础数据和科学参考。  相似文献   

19.
Anthracene, phenanthrene, and pyrene are polycyclic aromatic hydrocarbon (PAHs) that display both mutagenic and carcinogenic properties. They are recalcitrant to microbial degradation in soil and water due to their complex molecular structure and low solubility in water. This study presents the characterization of an efficient PAH (anthracene, phenanthrene, and pyrene)-degrading microbial consortium, isolated from a petrochemical sludge landfarming site. Soil samples collected at the landfarming area were used as inoculum in Warburg flasks containing soil spiked with 250 mg kg-1 of anthracene. The soil sample with the highest production of CO2-C in 176 days was used in liquid mineral medium for further enrichment of anthracene degraders. The microbial consortium degraded 48%, 67%, and 22% of the anthracene, phenanthrene, and pyrene in the mineral medium, respectively, after 30 days of incubation. Six bacteria, identified by 16S rRNA sequencing as Mycobacterium fortuitum, Bacillus cereus, Microbacterium sp., Gordonia polyisoprenivorans, two Microbacteriaceae bacteria, and a fungus identified as Fusarium oxysporum were isolated from the enrichment culture. The consortium and its monoculture isolates utilized a variety of hydrocarbons including PAHs (pyrene, anthracene, phenanthrene, and naftalene), monoaromatics hydrocarbons (benzene, ethylbenzene, toluene, and xylene), aliphatic hydrocarbons (1-decene, 1-octene, and hexane), hydrocarbon mixtures (gasoline and diesel oil), intermediary metabolites of PAHs degradation (catechol, gentisic acid, salicylic acid, and dihydroxybenzoic acid) and ethanol for growth. Biosurfactant production by the isolates was assessed by an emulsification index and reduction of the surface tension in the mineral medium. Significant emulsification was observed with the isolates, indicating production of high-molecular-weigh surfactants. The high PAH degradation rates, the wide spectrum of hydrocarbons utilization, and emulsification capacities of the microbial consortium and its member microbes indicate that they can be used for biotreatment and bioaugumentation of soils contaminated with PAHs.  相似文献   

20.
The goal of these studies was to determine how sorption by humic acids affected the bioavailability of polynuclear aromatic hydrocarbons (PAHs) to PAH-degrading microbes. Micellar solutions of humic acid were used as sorbents, and phenanthrene was used as a model PAH. Enrichments from PAH-contaminated soils established with nonsorbed phenanthrene yielded a total of 25 different isolates representing a diversity of bacterial phylotypes. In contrast, only three strains of Burkholderia spp. and one strain each of Delftia sp. and Sphingomonas sp. were isolated from enrichments with humic acid-sorbed phenanthrene (HASP). Using [14C]phenanthrene as a radiotracer, we verified that only HASP isolates were capable of mineralizing HASP, a phenotype hence termed "competence." Competence was an all-or-nothing phenotype: noncompetent strains showed no detectable phenanthrene mineralization in HASP cultures, but levels of phenanthrene mineralization effected by competent strains in HASP and NSP cultures were not significantly different. Levels and rates of phenanthrene mineralization exceeded those predicted to be supported solely by the metabolism of phenanthrene in the aqueous phase of HASP cultures. Thus, competent strains were able to directly access phenanthrene sorbed by the humic acids and did not rely on desorption for substrate uptake. To the best of our knowledge, this is the first report of (i) a selective interaction between aerobic bacteria and humic acid molecules and (ii) differential bioavailability to bacteria of PAHs sorbed to a natural biogeopolymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号