首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Turbot, Scophthalmus maximus, is a commercially important demersal flatfish species distributed throughout the Black Sea. Several studies performed locally with a limited number of specimens using both mitochondrial DNA (mtDNA) and microsatellite markers evidenced notable genetic variation among populations. However, comprehensive population genetic studies are required to help management of the species in the Black Sea. In the present study eight microsatellite loci were used to resolve the population structure of 414 turbot samples collected from 12 sites across the Black Sea. Moreover, two mtDNA genes, COI and Cyt-b, were used for taxonomic identification. Microsatellite markers of Smax-04 and B12-I GT14 were excluded from analysis due to scoring issues. Data analysis was performed with the remaining six loci. Loci were highly polymorphic (average of 17.8 alleles per locus), indicating high genetic variability. Locus 3/20CA17, with high null allele frequency (>30%), significantly deviated from HW equilibrium. Pairwise comparison of the FST index showed significant differences between most of the surveyed sampling sites (P < 0.01). Cluster analysis evidenced the presence of three genetic groups among sampling sites. Significant genetic differentiation between Northern (Sea of Azov and Crimea) and Southern (Turkish Black Sea Coast) Black Sea sampling sites were detected. The Mantel test supported an isolation by distance model of population structure. These findings are vital for long-term sustainable management of the species and development of conservation programs. Moreover, generated mtDNA sequences would be useful for the establishment of a database for S. maximus.  相似文献   

2.
The study of hybrid zones is central to our understanding of the genetic basis of reproductive isolation and speciation, yet very little is known about the extent and significance of hybrid zones in marine fishes. We examined the population structure of cod in the transition area between the North Sea and the Baltic Sea employing nine microsatellite loci. Genetic differentiation between the North Sea sample and the rest increased along a transect to the Baltic proper, with a large increase in level of differentiation occurring in the Western Baltic area. Our objective was to determine whether this pattern was caused purely by varying degrees of mechanical mixing of North Sea and Baltic Sea cod or by interbreeding and formation of a hybrid swarm. Simulation studies revealed that traditional Hardy-Weinberg analysis did not have sufficient power for detection of a Wahlund effect. However, using a model-based clustering method for individual admixture analysis, we were able to demonstrate the existence of intermediate genotypes in all samples from the transition area. Accordingly, our data were explained best by a model of a hybrid swarm flanked by pure nonadmixed populations in the North Sea and the Baltic Sea proper. Significant correlation of gene identities across loci (gametic phase disequilibrium) was found only in a sample from the Western Baltic, suggesting this area as the centre of the apparent hybrid zone. A hybrid zone for cod in the ecotone between the high-saline North Sea and the low-saline Baltic Sea is discussed in relation to its possible origin and maintenance, and in relation to a classical study of haemoglobin variation in cod from the Baltic Sea/Danish Belt Sea, suggesting mixing of two divergent populations without interbreeding.  相似文献   

3.
The genetic variability of eight fish-farm and three natural populations of turbot was studied by electrophoretic analysis of 35 enzymatic loci. The results showed low genetic variability in natural populations of turbot ( H T = 0·029 ± 0·013) in comparison with other flatfish species. Great genetic similarity was revealed among the natural populations studied, which indicates high rates of gene flow in this species. The hatchery stocks showed less genetic variation than the wild populations analysed, which suggests genetic drift phenomena involved in the foundation and management of broodstocks. In addition, the heterozygosity differences detected among the hatchery stocks analysed are correlated with inverted levels of fluctuating asymmetry, which supports the existence of inbreeding depression phenomena in turbot culture.  相似文献   

4.
In this study, we identified and characterized 160 microsatellite loci from an expressed sequence tag (EST) database generated from immune-related organs of turbot (Scophthalmus maximus). A final set of 83 new polymorphic microsatellites were validated after the analysis of 40 individuals of Atlantic origin including both wild and farmed individuals. The allele number and the expected heterozygosity ranged from 2 to 18 and from 0.021 to 0.951, respectively. Evidences of null alleles at moderate-high frequencies were detected at six loci using population data. None of the analysed loci showed deviations from Mendelian segregation after the analysis of five full-sib families including approximately 92 individuals/family. The markers are used to consolidate the turbot genetic map, and because they are mostly EST-derived, they will be very useful for comparative genomic studies within flatfishes and with model fish species. Using an in silico approach, we detected significant homologies of microsatellite sequences with the EST databases of the flatfish species with highest genomic resources (Senegalese sole, Atlantic halibut, bastard halibut) in 31% of these turbot markers. The conservation of these microsatellites within Pleuronectiformes will pave the way for anchoring genetic maps of different species and identifying genomic regions related to productive traits.  相似文献   

5.
Populations of the common mussel ( Mytilus edulis ) from the North Sea area (Skakerrak-Kattegat) and those from the Baltic Sea are almost diagnostically differentiated at five out of 22 studied allozyme loci; at a further seven loci, alleles predominant or common in one area are nearly absent in the other. Genetic distance was estimated at 0.28; this is similar to the distances of these populations to the Mediterranean mussel M. galloprovincialis. The three mussel types obviously represent equal evolutionary divergence from one another, and should also be taxonomically equally separated; a semispecies rank within a more comprehensive M. edulis complex or superspecies is suggested. The age of the Baltic mussel type ( 'M. trossulus' ), as an independent evolutionary lineage, is probably far greater than that of the post-glacial Baltic Sea.
Allele frequencies change gradually and in parallel when entering from the Kattegat through the Sound into the Baltic. Only a slight Wahlund effect at the strongly diverged Gpi and Pgm loci was found in intermediate populations, indicating that extensive hybridization of the two taxa takes place in the area. However, strong interlocus genotypic associations suggest that selection against hybrids is intense in later generations; the c. 100 km wide hybrid zone is narrow relative to the dispersal distance. The genotypic structure of the Lap locus does not conform with those of the other loci studied in the hybrid zone; it cannot be viewed merely as a neutral marker of the process of hybridization.  相似文献   

6.
We found low, albeit significant, genetic differentiation among turbot (Psetta maxima) in the Baltic Sea but in contrast to earlier findings we found no evidence of isolation by distance. In fact temporal variation among years in one locality exceeded spatial variation among localities. This is an unexpected result since adult turbot are sedentary and eggs are demersal at the salinities occurring in the Baltic. Our findings are most likely explained by the fact that we sampled fish that were born after/during a large influx of water to the Baltic Sea, which may have had the consequence that previously locally and relatively sedentary populations became admixed. These results suggest that populations that colonize relatively variable habitats, like the Baltic, face problems. Any adaptations to local conditions that may build up during stable periods may quickly become eroded when conditions change and/or when populations become admixed. Our results indicate that the ability of turbot to survive and reproduce at the low salinity in the Baltic is more likely due to phenotypic plasticity than a strict genetic adaptation to low salinity.  相似文献   

7.
Environmental gradients have emerged as important barriers to structuring populations and species distributions. We set out to test whether the strong salinity gradient from the marine North Sea to the brackish Baltic Sea in northern Europe represents an ecological and genetic break, and to identify life history traits that correlate with the strength of this break. We accumulated mitochondrial cytochrome oxidase subunit 1 sequence data, and data on the distribution, salinity tolerance, and life history for 28 species belonging to the Cnidaria, Crustacea, Echinodermata, Mollusca, Polychaeta, and Gastrotricha. We included seven non‐native species covering a broad range of times since introduction, in order to gain insight into the pace of adaptation and differentiation. We calculated measures of genetic diversity and differentiation across the environmental gradient, coalescent times, and migration rates between North and Baltic Sea populations, and analyzed correlations between genetic and life history data. The majority of investigated species is either genetically differentiated and/or adapted to the lower salinity conditions of the Baltic Sea. Species exhibiting population structure have a range of patterns of genetic diversity in comparison with the North Sea, from lower in the Baltic Sea to higher in the Baltic Sea, or equally diverse in North and Baltic Sea. Two of the non‐native species showed signs of genetic differentiation, their times since introduction to the Baltic Sea being about 80 and >700 years, respectively. Our results indicate that the transition from North Sea to Baltic Sea represents a genetic and ecological break: The diversity of genetic patterns points toward independent trajectories in the Baltic compared with the North Sea, and ecological differences with regard to salinity tolerance are common. The North Sea–Baltic Sea region provides a unique setting to study evolutionary adaptation during colonization processes at different stages by jointly considering native and non‐native species.  相似文献   

8.
Optimum temperature and salinity conditions for viable hatch were studied for turbot (Scophthalmus maximus L.) from the North Sea. Temperatures ranging from 6 to 22°C and salinities from 5 to 35‰ were used. Optimum conditions were observed to be between 12 and 18°C at salinities between 20 and 35‰. This contrasted with corresponding data for turbot from the southern Baltic proper, according to which survival sharply decreased in temperatures below 14°C and was high in salinities of 10 to 15‰. Thus, it is concluded that Baltic and Atlantic turbot should be considered as different races.  相似文献   

9.
Numerically small but statistically significant genetic differentiation has been found in many marine fish species despite very large census population sizes and absence of obvious barriers to migrating individuals. Analyses of morphological traits have previously identified local spawning groups of herring (Clupea harengus L.) in the environmentally heterogeneous Baltic Sea, whereas allozyme markers have not revealed differentiation. We analysed variation at nine microsatellite loci in 24 samples of spring-spawning herring collected at 11 spawning locations throughout the Baltic Sea. Significant temporal differentiation was observed at two locations, which we ascribe to sympatrically spawning but genetically divergent 'spawning waves'. Significant differentiation was also present on a geographical scale, though pairwise F(ST) values were generally low, not exceeding 0.027. Partial Mantel tests showed no isolation by geographical distance, but significant associations were observed between genetic differentiation and environmental parameters (salinity and surface temperature) (0.001 < P < or = 0.099), though these outcomes were driven mainly by populations in the southwestern Baltic Sea, which also exhibits the steepest environmental gradients. Application of a novel method for detecting barriers to gene flow by combining geographical coordinates and genetic differentiation allowed us to identify two zones of lowered gene flow. These zones were concordant with the separation of the Baltic Sea into major basins, with environmental gradients and with differences in migration behaviour. We suggest that similar use of landscape genetics approaches may increase the understanding of the biological significance of genetic differentiation in other marine fishes.  相似文献   

10.
A number of evolutionary mechanisms have been suggested for generating low but significant genetic structuring among marine fish populations. We used nine microsatellite loci and recently developed methods in landscape genetics and coalescence-based estimation of historical gene flow and effective population sizes to assess temporal and spatial dynamics of the population structure in European flounder (Platichthys flesus L.). We collected 1062 flounders from 13 localities in the northeast Atlantic and Baltic Seas and found temporally stable and highly significant genetic differentiation among samples covering a large part of the species' range (global F(ST) = 0.024, P < 0.0001). In addition to historical processes, a number of contemporary acting evolutionary mechanisms were associated with genetic structuring. Physical forces, such as oceanographic and bathymetric barriers, were most likely related with the extreme isolation of the island population at the Faroe Islands. A sharp genetic break was associated with a change in life history from pelagic to benthic spawners in the Baltic Sea. Partial Mantel tests showed that geographical distance per se was not related with genetic structuring among Atlantic and western Baltic Sea samples. Alternative factors, such as dispersal potential and/or environmental gradients, could be important for generating genetic divergence in this region. The results show that the magnitude and scale of structuring generated by a specific mechanism depend critically on its interplay with other evolutionary mechanisms, highlighting the importance of investigating species with wide geographical and ecological distributions to increase our understanding of evolution in the marine environment.  相似文献   

11.
The founder event in a recently recolonized salmon population in the Baltic Sea (Gulf of Finland) was investigated. To identify the origin of the founders, four wild populations and two hatchery stocks were analysed using six microsatellite loci. The results of assignment tests and factorial correspondence analysis suggest that the initial recolonizers of the river Selja originated from the geographically nearest (7 km) wild population (river Kunda) but as the result of stocking activities, interbreeding between recolonizers and hatchery individuals has occurred in subsequent years. Although the hatchery releases are outnumbering the wild salmon recruitment in the Baltic Sea at present, our results suggest that the native populations may still have an important role in colonization processes of the former salmon rivers.  相似文献   

12.
Field surveys (dating back to 1950) and aerial photograph series (dating back to 1966) were evaluated to determine sites of intertidal blue mussel (Mytilus edulis) beds at the Wadden Sea coast of Lower Saxony. Maps were prepared indicating sites of blue mussel beds during the last decades. A table gives additional information on the presence (or absence) of blue mussel beds at each site at the time of large-scale surveys. Altogether 187 sites of M. edulis beds were recorded in the investigation area. In spring 1996, there were still only 19 sites where mussel beds still occurred, although at 51 sites residual mussel-bed structures were present, e.g. shell bases of former beds or protruding patches (which had been occupied by M. edulis before the beds vanished) and open spaces. At that time, the majority of the sites contained neither mussel beds nor mussel-bed structures. The analysis of recent data confirmed that mussel larvae have preferred to settle in sites of present mussel beds and sites with bases of former mussel beds. There was no preferential selection of one of these categories (settled beds vs. shell bases). On the other hand, the presence of mussel beds or mussel bed structures is not obligatory for settlement, because sites without those structures were also re-settled by the spatfall in 1996, even though on a smaller scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号