首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecologists have long sought mechanistic explanations for the patterns of plant distribution and endemism associated with serpentine soils. We conducted the first empirical test of the serpentine pathogen refuge hypothesis, which posits that the low levels of calcium found in serpentine soils provide associated plants with a refuge from attack by pathogens. We measured the range of soil calcium concentrations experienced by 16 wild population of California dwarf flax (Hesperolinon californicum) and experimentally recreated part of this range in the greenhouse by soaking serpentine soils in calcium chloride solutions of varying molarity. When flax plants grown in these soils were inoculated with spores of the rust fungus Melampsora lini we found a significant negative relationship between infection rates and soil calcium concentrations. This result refutes the pathogen refuge hypothesis and suggests that serpentine plants, by virtue of their association with low calcium soils, may be highly vulnerable to attack by pathogens. This interaction between plant nutrition and disease may in part explain demographic patterns associated with serpentine plant populations and suggests scenarios for the evolution of life history traits and the distribution of genetic resistance to infection in serpentine plant communities.  相似文献   

2.
Two parapatric ecotypes of Silene nutans, exhibiting distinct allozyme patterns, morphology and autecology were investigated for differences in exudation of low molecular weight organic acids from germinating seeds, and for differences in seed phosphorus content. The calcicolous ecotype is restricted to calcareous soils, and the silicicolous one predominantly occurs on acid soils, and sometimes, although less frequently, on neutral to alkaline soils. No clear difference was found between ecotypes. However, within the silicicolous ecotype seed samples showed marked differences in exudation pattern and seed phosphorus content depending on origin along the soil acidity gradient. Seeds of low-pH origin exuded more dicarboxylic acids (malic + succinic acid, oxalic acid) and had a lower phosphorus content than seeds of high pH origin. The exudation of dicarboxylic acids from seeds of low pH origin is probably an adaptation to adverse conditions (aluminium toxicity) on acid soils. The pattern is similar to that found among different cultivars of wheat. It is contrasted to the pattern found on comparison of a suite of calcifugous and calcicolous species, where exudation of di- and tricarboxylic acids is associated with solubilisation of recalcitrantly bound phosphorus and iron in calcareous soils.  相似文献   

3.
Selection for metal-tolerant ecotypes of ectomycorrhizal (ECM) fungi has been reported in instances of metal contamination of soils as a result of human activities. However, no study has yet provided evidence that natural metalliferous soils, such as serpentine soils, can drive the evolution of metal tolerance in ECM fungi. We examined in vitro Ni tolerance in isolates of Cenococcum geophilum from serpentine and non-serpentine soils to assess whether isolates from serpentine soils exhibited patterns consistent with adaptation to elevated levels of Ni, a typical feature of serpentine. A second objective was to investigate the relationship between Ni tolerance and specific growth rates (μ) among isolates to increase our understanding of possible tolerance/growth trade-offs. Isolates from both soil types were screened for Ni tolerance by measuring biomass production in liquid media with increasing Ni concentrations, so that the effective concentration of Ni inhibiting fungal growth by 50% (EC50) could be determined. Isolates of C. geophilum from serpentine soils exhibited significantly higher tolerance to Ni than non-serpentine isolates. The mean Ni EC50 value for serpentine isolates (23.4 μg ml−1) was approximately seven times higher than the estimated value for non-serpentine isolates (3.38 μg ml−1). Although there was still a considerable variation in Ni sensitivity among the isolates, none of the serpentine isolates had EC50 values for Ni within the range found for non-serpentine isolates. We found a negative correlation between EC50 and μ values among isolates (r = −0.555). This trend, albeit only marginally significant (P = 0.06), indicates a potential trade-off between tolerance and growth, in agreement with selection against Ni tolerance in “normal” habitats. Overall, these results suggest that Ni tolerance arose among serpentine isolates of C. geophilum as an adaptive response to Ni exposure in serpentine soils. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The symbiosis between grasses and endophytic fungi is a common phenomenon and can affect herbivore performance through acquired, chemical plant defence by fungal alkaloids. In laboratory experiments, two species of common grass aphids, Rhopalosiphum padi and Metopolophium dirhodum were tested, in a population experiment (on four plant cultivars) and individually (on one plant cultivar) for the effects of the endophyte, Neotyphodium lolii, that forms symbiotic associations with perennial ryegrass Lolium perenne. In the population experiment that lasted for four aphid generations both aphid species showed decreased population sizes when feeding on each of the four endophyte-infected cultivars. Individuals of R. padi tested individually showed reduced adult life span and fecundity when feeding on infected plants. Individuals of M. dirhodum showed no response in any of the traits measured. This suggests that R. padi individuals are more sensitive to endophyte infection than M. dirhodum individuals. However, all infected grass cultivars reduced population sizes of both aphid species over four generations. Therefore, fungal endophytes can reduce populations of aphid herbivores independent of plant cultivars.  相似文献   

5.
The traditional view of the species as the fundamental unit of evolution has been challenged by observations that in heterogeneous environments, gene flow may be too restricted to overcome the effects of local selection. Whether a species evolves as a cohesive unit depends critically on the dynamic balance between homogenizing gene flow among populations and potentially disruptive local adaptation. To examine this evolutionary balance between "global" gene flow and local selection, we studied northern Californian populations of Helianthus exilis, the serpentine sunflower, within a mosaic of contrasting serpentine and nonserpentine areas that differ considerably in soil chemistry and water availability. Local adaptation to riparian and serpentine habitats was studied in Helianthus exilis along with an analysis of gene flow patterns among populations within these habitats. Local adaptation was assessed in H. exilis during 2002 and 2003 using reciprocal transplant experiments at multiple locations within serpentine and riparian habitats. Effects of competition and germination date on the expression of local adaptation were also examined within the reciprocal transplant experiments. Local adaptation was detected in both years at the local site level and at the level of habitat. The analysis of the transplanted populations indicated that the patterns of selection differed considerably between riparian and serpentine sites. Differential survivorship occurred in serpentine habitats, whereas selection on reproductive output predominated in riparian habitats. Local adaptation was expressed only in the absence of competition. Local adaptation in terms of survivorship was most strongly expressed in treatments with delayed seed germination. Microsatellite markers were used to quantify population genetic parameters and examine the patterns of gene flow among sampled populations. Analysis of molecular markers revealed a system of population patches that freely exchange genes with each other. Strong selection seems to maintain ecotypic variation within this endemic sunflower species, while extensive gene flow among populations prevents local speciation between serpentine and riparian ecotypes.  相似文献   

6.
Serpentine soils, which contain relatively high concentrations of nickel and some other metals, are the preferred substrate for some plants, especially those that accumulate Ni in their tissues. In temperate regions more Ni-hyperaccumulator plants are found in Alyssum than in any other genus. In this study, serpentine soils of two areas (Marivan and Dizaj) in the west/northwest of Iran and also perennial Alyssum plants growing on these soils were analyzed for Ni and some other metals. The highest concentrations of total metals in the soils of these areas for Ni, Cr, Co and Mn were 1,350, 265, 94 and 1,150 μg g−1, respectively, while concentrations of Fe, Mg and Ca reached 3.55%, 16.8% and 0.585% respectively. The concentration of exchangeable Ni in these soils is up to 4.5 μg g−1. In this study two Alyssum species, A. inflatum and A. longistylum, have been collected from Marivan and Dizaj, respectively. Analysis of leaf dry matter shows that they can contain up to 3,700 and 8,100 μg Ni g−1, respectively. This is the first time that such high Ni concentrations have been found in these species. The concentrations of other metals determined in these species were in the normal range for serpentine plants, except for Ca, which was higher, up to 5.3% and 3.5%, respectively  相似文献   

7.
The performance of one clone of the pea aphid,Acyrthosiphon pisum (Harris), was assessed on 37 different cultivars and species ofPisum L. In addition, random samples of 36 pea aphid clones collected on alfalfa and clover were tested on a selection of fivePisum sativum L. cultivars. Aphid performance was evaluated in terms of the mean relative growth rate (MRGR) during the first five days of life or other life history variables. The MRGR of the first-mentioned pea aphid clone differed little between cultivars. No significant differences in MRGR were found between wild and cultivatedPisum species or between modern and oldP. sativum cultivars. There was considerable variation in host adaptation among the 36 pea aphid clones within each sampled field. The pea aphid clones showed no consistent pattern in performance on four of the five pea cultivars i.e. there was a significant pea aphid genotype —pea genotype interaction. On one of the cultivars all clones performed well. Pea aphid clones collected from red clover generally performed relatively poorly on pea cultivars, in contrast to the pea aphid clones collected on alfalfa. There was no difference in performance between the two pea aphid colour forms tested. Possible reasons for the high variation and the observed adaptation patterns are discussed. The fact that all clones were collected in two adjacent fields indicates thatA. pisum shows high local intraspecific variability in terms of host adaptation.  相似文献   

8.
Nuclear ribosomal DNA (ITS and ETS) sequences from 39 native Californian (USA) Allium species and congeners were combined with 154 ITS sequences available on GenBank to develop a global Allium phylogeny with the simultaneous goals of investigating the evolutionary history (monophyly) of Allium in the Californian center of diversity and exploring patterns of adaptation to serpentine soils. Phylogenies constructed with ITS alone or ITS in combination with ETS provided sufficient resolution for investigating evolutionary relationships among species. The ITS region alone was sufficient to resolve the deeper relationships in North American species. Addition of a second marker (ETS) further supports the phylogenetic placements of the North American species and adds resolution within subgenus Amerallium, a clade containing many Californian endemics. Within the global phylogeny, the native North American species were found to be monophyletic, with the exception of Allium tricoccum and Allium schoenoprasum. All native Californian species included in the analysis fell into a monophyletic subgenus Amerallium section Lophioprason, although endemic Californian species were not monophyletic due to the inclusion of species with ranges extending beyond the California Floristic Province. The molecular phylogeny strongly supports previous morphology-based taxonomic groupings. Based on our results, serpentine adaptation appears to have occurred multiple times within section Lophioprason, while the ancestor of the Californian center of diversity may not have been serpentine-adapted.  相似文献   

9.
The spatial scale of genetic diversity among patches of a host plant could affect the likelihood of pathogen adaptation to the host. If host patches are genetically distinct, pathogen adaptation to local host genotypes may occur. To study this issue, we focused on the ecological and genetic interactions between two rust fungi, Puccinia seymouriana and P. sparganioides, and the clonal prairie grass, Spartina pectinata. In a field transplant experiment, disease levels differed among plants from different patches, suggesting variation in resistance. Over a 4.5-km scale, disease levels were not higher on plants transplanted back into their source patch as opposed to other locations, providing no evidence for local adaptation in the pathogen. However, on the spatial scales examined (ranging from 0.2 km to 120 km), there was no relationship between the physical distance separating host patches and their similarity in isozyme banding patterns, implying that plants from more distant patches are not necessarily more genetically distinct than plants from nearby patches. Plants derived from the most distant location had, on average, the lowest mean number of pustules at the end of the summer, suggesting the need for reciprocal transplant studies to be performed on a larger spatial scale.  相似文献   

10.
So far very few experiments have accounted for the combined effect of two phenomena co-occurring in stress gradients: local adaptation to stress and the increase in facilitation with increasing stress (predicted by the stress-gradient hypothesis, SGH). Mountain birch (Betula pubescens subsp. czerepanovii) facilitates conspecific seedlings in subarctic high stress sites and is capable of rapid evolutionary adaptation, being therefore a good model species for a study combining local ecotypes and SGH. A within-species experiment was conducted to test SGH in three stress gradients, detect potential local adaptations between low and high stress populations, and assess their effects on seedling-seedling interactions. Although no evidence for local adaptation was detected, high and low stress populations showed some differentiation, possibly explained by decreasing phenotypic plasticity in high stress conditions and/or neutral evolutionary mechanisms. Weak support for SGH was detected. While facilitation was unaffected by seedling origin, low stress populations showed better competitive ability.  相似文献   

11.
Multiple introductions can play a prominent role in explaining the success of biological invasions. One often cited mechanism is that multiple introductions of invasive species prevent genetic bottlenecks by parallel introductions of several distinct genotypes that, in turn, provide heritable variation necessary for local adaptation. Here, we show that the invasion of Aegilops triuncialis into California, USA, involved multiple introductions that may have facilitated invasion into serpentine habitats. Using microsatellite markers, we compared the polymorphism and genetic structure of populations of Ae. triuncialis invading serpentine soils in California to that of accessions from its native range. In a glasshouse study, we also compared phenotypic variation in phenological and fitness traits between invasive and native populations grown on loam soil and under serpentine edaphic conditions. Molecular analysis of invasive populations revealed that Californian populations cluster into three independent introductions (i.e. invasive lineages). Our glasshouse common garden experiment found that all Californian populations exhibited higher fitness under serpentine conditions. However, the three invasive lineages appear to represent independent pathways of adaptation to serpentine soil. Our results suggest that the rapid invasion of serpentine habitats in California may have been facilitated by the existence of colonizing Eurasian genotypes pre‐adapted to serpentine soils.  相似文献   

12.
Branco S 《Molecular ecology》2010,19(24):5566-5576
Serpentine soils impose physiological stresses that limit plant establishment and diversity. The degree to which serpentine soils entail constraints on other organisms is, however, poorly understood. Here, I investigate the effect of serpentine soils on ectomycorrhizal (ECM) fungi by conducting a reciprocal transplant experiment, where serpentine and nonserpentine ECM fungal communities were cultured in both their native and non-native soils. Contrary to expectation, serpentine soils hosted higher fungal richness compared to nonserpentine, and most species were recovered from serpentine soil, suggesting ECM fungi are not overall specialized or strongly affected by serpentine edaphic constraints.  相似文献   

13.
Serpentine aster, Symphyotrichum depauperatum (Fern.) Nesom, is the ‘flagship’ species of the eastern serpentine barrens, inhabiting 20 of the 26 remaining occurrences of significant size of this globally rare community type and long recognized as its only known endemic species. Previous studies have called into question both the validity of the taxon and its status as a true endemic of the serpentine barrens. We used amplified fragment length polymorphism (AFLP) analysis to compare seven serpentine barrens populations, one alleged diabase glade population, and two populations each of the two species with which S. depauperatum is lumped by some authors. Our analysis supports the validity of S. depauperatum as a distinct species, which grows almost entirely on shallow soils overlying serpentinite bedrock in Pennsylvania and Maryland, but it confirms an earlier hypothesis that S. depauperatum also includes small, disjunct populations on diabase glades in North Carolina.  相似文献   

14.
The effects of soil type (an acid peat and 2 acid brown earths) andFrankia source (3 spore-positive crushed nodule inocula and spore-negative crushed nodules containing the singleFrankia ArI5) on nodulation, N content and growth ofAlnus glutinosa andA. rubra were determined in a glasshouse pot experiment of two years duration. Plants on all soils required additional P for growth. Growth of both species was very poor on peat withA. glutinosa superior toA. rubra. The former species was also superior toA. rubra on an acid brown earth with low pH and low P content. Some plant-inoculum combinations were of notable effectivity on particular soils but soil type was the major source of variation in plant weight. Inoculation with crushed nodules containingFrankia ArI5 only gave poor infection of the host plant, suggesting that inoculation with locally-collected crushed nodules can be a preferred alternative to inoculation withFrankia isolates of untested effectivity. Evidence of adaptation ofFrankia to particular soils was obtained. Thus, while the growth of all strains was stimulated by mineral soil extracts, inhibitory effects of peat extracts were more apparent with isolates from nodules from mineral soils than from peat, suggesting that survival ofFrankia on peat may be improved by strain selection.  相似文献   

15.
Several insect species seem to persist not only in permanent but also in temporary ponds where they face particularly harsh conditions and frequent extinctions. Under such conditions, gene flow may prevent local adaptation to temporary ponds and may promote phenotypic plasticity, or maintain apparent population persistence. The few empirical studies on insects suggest the latter mechanism, but no studies so far quantified gene flow including both pond types. We investigated the effects of pond type and temporal variation on population genetic differentiation and gene flow in the damselfly Lestes viridis in northern Belgium. We report a survey of two allozyme loci (Gpi, Pgm) with polyacrylamide gel electrophoresis in 14 populations from permanent and temporary ponds, and compared these results with similar data from the same permanent populations one year before. The data suggested that neither pond-drying regime, nor temporal variation have a substantial effect on population genetic structuring and did not provide evidence for stable population differentiation in L. viridis in northern Belgium. Gene flow estimates were high within permanent and temporary ponds, and between pond types. Our data are consistent with a source-sink metapopulation system where temporary ponds act as sinks in dry years, and are quickly recolonized after local population extinction. This may create a pattern of apparent population persistence of this species in permanent and temporary ponds without clear local adaptation.  相似文献   

16.
The view of (insect) populations as assemblages of local subpopulations connected by gene flow is gaining ground. In such structured populations, local adaptation may occur. In phytophagous insects, one way in which local adaptation has been demonstrated is by performing reciprocal transplant experiments where performance of insects on native and novel host plants are compared. Trade-offs are assumed to be responsible for a negative correlation in performance on alternative host plants. Due to mixed results of these experiments, the importance of trade-offs in host plant use of phytophagous insects has been under discussion. Here we propose that another genetic mechanism, the evolution of coadapted gene complexes, might also be associated with local adaptation. In this case, however, transplant experiments might not reveal any local adaptation until hybridization takes place. We review the results we have obtained in our work on the host plant use of the flea beetle Phyllotreta nemorum L. (Coleoptera: Chrysomelidae: Alticinae), and propose a hypothesis involving coadapted genes to explain the distribution of genes that render P. nemorum resistant to defences of one of its host plants, Barbarea vulgaris R. Br. (Cruciferae).  相似文献   

17.
We tested the hypothesis that populations of the parthenogenetic parasitic wasp Encarsia formosa Gahan (Hymenoptera: Aphelinidae) differed in their ability to use two different host species, Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) and Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae). Of the three wasp populations tested, two populations had been reared for many generations on B. tabaci and one population had been reared for many years on T. vaporariorum. Performance was measured by the number of whitefly nymphs that were successfully parasitized by individual wasps, and performance on either host was measured in separate experiments. There was variation between wasp populations in their performance on the host B. tabaci, with one wasp population reared for many years on this host performing considerably better than the other two populations. There were no significant differences between populations in their use of the preferred host, T. vaporariorum. The experiments were conducted in such a way that we could distinguish heritable differences between populations from environmentally-induced conditioning differences due to the immediate host from which an individual wasp enclosed. In either experiment there were no significant effects of conditioning, although there was a trend within each population for wasps conditioned on T. vaporariorum to have higher performance than those conditioned on B. tabaci. Thirdly, we conducted a selection experiment, initiated with wasps from a single population historically reared on T. vaporariorum, to measure the effect of laboratory rearing on different hosts for 17 generations. We did not see any difference in the performance of wasps on B. tabaci after this period of rearing on either of the two hosts. In summary, populations of E. formosa do differ in their relative performance on B. tabaci. The one population that was tested further did not show any response to selection by rearing, but the ability to respond to selection on performance may not be equal for all populations. The possibility that wasp populations have differential performance on particular hosts may affect the use of this species as a biological control agent.  相似文献   

18.
Competition alters plant species response to nickel and zinc   总被引:1,自引:0,他引:1  
Phytoextraction can be a cost-efficient method for the remediation of contaminated soils. Using species mixtures instead of monocultures might improve this procedure. In a species mixture, an effect of heavy metals on the species' performance can be modified by the presence of a co-occuring species. We hypothesised that (a) a co-occuring species can change the effect of heavy metals on a target species, and (b) heavy metal application may modifiy the competitive behaviour between the plants. We investigated these mechanisms in a greenhouse experiment using three species to serve as a model system (Carex flava, Centaurea angustifolia and Salix caprea). The species were established in pots of monocultures and mixtures, which were exposed to increasing concentrations of Ni and Zn, ranging from 0 to 2,500 mg/kg. Increased heavy metal application reduced the species' relative growth rate (RGR); the RGR reduction being generally correlated with Ni and Zn concentrations in plant tissue. S. caprea was an exception in that it showed considerable Zn uptake but only moderate growth reduction. In two out of six cases, competitors significantly modified the influence of heavy metals on a target species. The interaction can be explained by an increased uptake of Zn by one species (in this case S. caprea) that reduced the negative heavy metal effect on a target species (C. flava). In two further cases, increasing heavy metal application also altered competitive effects between the species. The mechanisms demonstrated in this experiment could be of relevance for the phytoextraction of heavy metals. The total uptake of metals might be maximised in specific mixtures, making phytoextraction more efficient.  相似文献   

19.
B. A. Wood 《Human Evolution》2000,15(1-2):39-49
The genusHomo was established by Carolus Linnaeus in 1758. During the course of the past 150 years, the addition of fossil species to the genusHomo has resulted in a genus that, according to the taxonomic interpretation, could span as much time as 2.5 Myr, and include as many as ten species. This paper reviews the fossil evidence for each of the species involved, and sets out the case for their inclusion inHomo. It suggests that while the case for the inclusion of some species in the genus (e.g.Homo erectus) is well-supported, in the case of two of the species,Homo habilis andHomo rudolfensis, the case for their inclusion is much weaker. Neither the cladistic evidence, nor evidence about adaptation suggest a particularly close relationship with laterHomo.  相似文献   

20.
An experimental assessment of the defence hypothesis of nickel (Ni) hyperaccumulation in Alyssum was lacking. Also, to date no study had investigated the effects of hyperaccumulator litter on a detritivore species. We performed several experiments with model arthropods representatives of two trophic levels: Tribolium castaneum (herbivore) and Porcellio dilatatus (detritivore). In no-choice trials using artificial food disks with different Ni concentrations, T. castaneum fed significantly less as Ni concentration increased and totally rejected disks with the highest Ni concentration. In choice tests, insects preferred disks without Ni. In the no-choice experiment, mortality was low and did not differ significantly among treatments. Hence, this suggested a deterrent effect of high Ni diet. Experiments with P. dilatatus showed that isopods fed A. pintodasilvae litter showed significantly greater mortality (83%) than isopods fed litter from the non-hyperaccumulator species Iberis procumbens (8%), Micromeria juliana (no mortality) or Alnus glutinosa (no mortality). Also, isopods consumed significantly greater amounts of litter from the non-hyperaccumulator plant species. The behaviour of isopods fed A. pintodasilvae litter suggested an antifeedant effect of Ni, possibly due to post-ingestive toxic effects. Our results support the view that Ni defends the Portuguese serpentine hyperaccumulator A. pintodasilvae against herbivores, indicating that Ni can account both for feeding deterrence and toxic effects. The effects of hyperaccumulator litter on the detritivore P. dilatatus suggest that the activity of these important organisms may be significantly impaired with potential consequences on the decomposition processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号