首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Camptothecin derivatives have been widely used for chemotherapy in patients with various cancers, but intrinsic and acquired drug resistance is major drawback to be overcome. In the present study, we demonstrated that simultaneous treatment with camptothecin and valproic acid induced apoptosis of MCF-7 cells, whereas neither agent alone could efficiently induce apoptosis. This induction of apoptosis was associated with loss of the mitochondrial membrane potential and was caspase dependent. Further investigation showed that concurrent treatment modulated the expression of pro-apoptotic and anti-apoptotic genes. Bcl-XL expression was induced in MCF-7 cells treated with camptothecin alone, but not in cells treated simultaneously with camptothecin and valproic acid. Ectopic overexpression of Bcl-XL in MCF-7 cells completely suppressed the induction of apoptosis, even with simultaneous treatment. On the other hand, efficient induction of apoptosis was achieved by treatment with camptothecin and Bcl-XL inactivation (using siRNA or BH3 mimetic). The cytotoxic effect of camptothecin combined with valproic acid was more than additive for MCF-7 cells. Taken together, our results suggest that simultaneous administration of camptothecin and valproic acid might be useful for anticancer therapy.  相似文献   

2.
It is not well-known whether apoptosis signaling affects influenza virus infection and reproduction in human lung epithelial cells. Using A549 cell line, we studied the relationship of some apoptosis-associated molecules with novel pandemic influenza A (H1N1) virus, A/California/04/2009. Infected cells displayed upregulated Fas ligand, activated FADD and caspase-8, and downregulated FLIP in the extrinsic apoptotic pathway. p53 expression increased and Bcl-XL expression decreased in the intrinsic pathway. Expression of pre-apoptotic molecules (FasL, FADD, and p53) increased virus replication, while inhibition of activity of FADD, caspase-8 and caspase-3, and expression of anti-apoptotic proteins (FLIP and Bcl-XL) decreased virus replication. p38, ERK and JNK from MAPK pathways were activated in infected cells, and inhibition with their inhibitors diminished virus replication. In the p38 superfamily, p38α expression increased viral RNA production, while expression of p38β and p38γ decreased. These data indicated that influenza virus induces apoptotic signaling pathways, which benefit virus replication.  相似文献   

3.
Our laboratory has shown that glucocorticoids can inhibit apoptosis in rat hepatoma cells; however, the mechanisms are incompletely understood. To address this issue we sought to determine if glucocorticoid inhibition is effective when death is induced by stimuli that more selectively activate either the intrinsic (UV-C) or extrinsic (FasL) apoptotic pathways. Using flow cytometric analysis, we show that pretreatment of HTC cells with dexamethasone (Dex) inhibits UV-C- but not FasL-induced apoptosis. This inhibition requires Dex pretreatment and can be abrogated by the glucocorticoid antagonist RU486 indicating glucocorticoid receptor-mediated action. Dex increases anti-apoptotic Bcl-x(L) at both mRNA and protein levels. The Bcl-x(L) protein level remains elevated even after apoptosis induction with either UV-C or FasL although only UV-C-induced cell death is inhibited. Repression of Bcl-x(L) protein with siRNA abrogates the anti-apoptotic effect of glucocorticoids. Together these data provide direct evidence that Bcl-x(L) mediates glucocorticoid inhibition of UV-C induced apoptosis.  相似文献   

4.
FKBP38 is a member of the family of FK506-binding proteins that acts as an inhibitor of the mammalian target of rapamycin (mTOR). The inhibitory action of FKBP38 is antagonized by Rheb, an oncogenic small GTPase, which interacts with FKBP38 and prevents its association with mTOR. In addition to the role in mTOR regulation, FKBP38 is also involved in binding and recruiting Bcl-2 and Bcl-XL, two anti-apoptotic proteins, to mitochondria. In this study, we investigated the possibility that Rheb controls apoptosis by regulating the interaction of FKBP38 with Bcl-2 and Bcl-XL. We demonstrate in vitro that the interaction of FKBP38 with Bcl-2 is regulated by Rheb in a GTP-dependent manner. In cultured cells, the interaction is controlled by Rheb in response to changes in amino acid and growth factor conditions. Importantly, we found that the Rheb-dependent release of Bcl-XL from FKBP38 facilitates the association of this anti-apoptotic protein with the pro-apoptotic protein Bak. Consequently, when Rheb activity increases, cells become more resistant to apoptotic inducers. Our findings reveal a novel mechanism through which growth factors and amino acids control apoptosis.  相似文献   

5.
The Bcl-X gene has both pro-survival, Bcl-XL, and pro-apoptotic, Bcl-XS, gene products, which are produced by alternative splicing. The function of these proteins has previously been characterised in cell lines, often by transfecting expression constructs, and primary cell systems capable of dynamically regulating Bcl-XL and Bcl-XS have not been described. Such a system is potentially important to allow testing of agents that promote apoptosis by increasing the amount of Bcl-XS at the expense of Bcl-XL. In this report we characterise Bcl-X gene products in primary human leukaemic B-cells in culture conditions associated with survival and apoptosis. We found that Bcl-XS was induced in spontaneous and drug-induced apoptosis and that apoptosis induced in cells cultured on mouse fibroblasts expressing CD40 ligand with IL-4 (CD154/IL-4), a condition mimicking the tissue microenvironment, additionally produced expression of cleavage products of Bcl-XL. Both Bcl-XS and Bcl-XL were produced in a caspase dependent manner. We tested emetine, an agent previously reported to increase Bcl-XS but found that it did not have this effect in primary human B-cells. Therefore, there are two mechanisms—cleavage of Bcl-XL and production of Bcl-XS—by which Bcl-X gene products could enhance apoptosis in CLL but neither appeared to have a primary role in inducing leukaemic cell death.  相似文献   

6.
An increasing number of reports indicate that single-celled organisms are able to die following what seems to be an ordered program of cell death with strong similarities to apoptosis from higher eukaryotes. DNA degradation and several other apoptotic-like processes have also been described in the parasitic protozoa Leishmania. However, the existence of an apoptotic death in this parasite is still a matter of controversy. Our results indicate that most of the processes of macromolecular degradation and organelle dysfunction observed in mammalian cells during apoptosis can also be reproduced in promastigotes of the genus Leishmania when incubated at temperatures above 38°C. These processes can be partially reversed by the expression of the anti-apoptotic mammalian gene Bcl-XL, which suggests that this family of apoptosis-regulating proteins was present very early in the evolution of eukaryotic cells.  相似文献   

7.
Extracellular adenosine disrupted mitochondrial membrane potentials in HuH-7 cells, a Fas-deficient human hepatoma cell line, and the effect was inhibited by the adenosine transporter inhibitor dipyridamole or by overexpressing Bcl-XL. Adenosine downregulated the expression of mRNAs and proteins for Bcl-XL and inhibitor of apoptosis protein 2 (IAP2) to directly inhibit caspase-3, -7, and -9, but it otherwise upregulated the expression of mRNA and protein for DIABLO, an inhibitor of IAPs. Those adenosine effects were attenuated by dipyridamole. Caspase-3 and -8 were implicated in adenosine-induced HuH-7 cell death, and adenosine actually activated caspase-3 without caspase-9 activation. The caspase-3 activation was inhibited by overexpressing Bcl-XL or IAP2. Taken together, the results of the present study indicate that intracellularly transported adenosine activates caspase-3 by neutralizing caspase-3 inhibition due to IAP as a result of decreased IAP2 expression and reduced IAP activity in response to increased DIABLO expression and perhaps DIABLO release from damaged mitochondria, in addition to caspase-8 activation. This represents further insight into adenosine-induced HuH-7 cell apoptotic pathway.  相似文献   

8.
Mitochondrial apoptosis regulates survival and development of hematopoietic cells. Prominent roles of some Bcl-2-family members in this regulation have been established, for instance for pro-apoptotic Bim and anti-apoptotic Mcl-1. Additional, mostly smaller roles are known for other Bcl-2-members but it has been extremely difficult to obtain a comprehensive picture of the regulation of mitochondrial apoptosis in hematopoietic cells by Bcl-2-family proteins. We here use a system of mouse ‘conditionally immortalized’ lymphoid-primed hematopoietic progenitor (LMPP) cells that can be differentiated in vitro to pro-B cells, to analyze the importance of these proteins in cell survival. We established cells deficient in Bim, Noxa, Bim/Noxa, Bim/Puma, Bim/Bmf, Bax, Bak or Bax/Bak and use specific inhibitors of Bcl-2, Bcl-XL and Mcl-1 to assess their importance. In progenitor (LMPP) cells, we found an important role of Noxa, alone and together with Bim. Cell death induced by inhibition of Bcl-2 and Bcl-XL entirely depended on Bim and could be implemented by Bax and by Bak. Inhibition of Mcl-1 caused apoptosis that was independent of Bim but strongly depended on Noxa and was completely prevented by the absence of Bax; small amounts of anti-apoptotic proteins were co-immunoprecipitated with Bim. During differentiation to pro-B cells, substantial changes in the expression of Bcl-2-family proteins were seen, and Bcl-2, Bcl-XL and Mcl-1 were all partially in complexes with Bim. In differentiated cells, Noxa appeared to have lost all importance while the loss of Bim and Puma provided protection. The results strongly suggest that the main role of Bim in these hematopoietic cells is the neutralization of Mcl-1, identify a number of likely molecular events during the maintenance of survival and the induction of apoptosis in mouse hematopoietic progenitor cells, and provide data on the regulation of expression and importance of these proteins during differentiation along the B cell lineage.Subject terms: Apoptosis, Immune cell death  相似文献   

9.
Midazolam is a widely used anesthetic of the benzodiazepine class that has shown cytotoxicity and apoptosisinducing activity in neuronal cells and lymphocytes. This study aims to evaluate the effect of midazolam on growth of K562 human leukemia cells and HT29 colon cancer cells. The in vivo effect of midazolam was investigated in BALB/c-nu mice bearing K562 and HT29 cells human tumor xenografts. The results show that midazolam decreased the viability of K562 and HT29 cells by inducing apoptosis and S phase cell-cycle arrest in a concentration-dependent manner. Midazolam activated caspase-9, capspase-3 and PARP indicating induction of the mitochondrial intrinsic pathway of apoptosis. Midazolam lowered mitochondrial membrane potential and increased apoptotic DNA fragmentation. Midazolam showed reactive oxygen species (ROS) scavenging activity through inhibition of NADPH oxidase 2 (Nox2) enzyme activity in K562 cells. Midazolam caused inhibition of pERK1/2 signaling which led to inhibition of the anti-apoptotic proteins Bcl-XL and XIAP and phosphorylation activation of the pro-apoptotic protein Bid. Midazolam inhibited growth of HT29 tumors in xenograft mice. Collectively our results demonstrate that midazolam caused growth inhibition of cancer cells via activation of the mitochondrial intrinsic pathway of apoptosis and inhibited HT29 tumor growth in xenograft mice. The mechanism underlying these effects of midazolam might be suppression of ROS production leading to modulation of apoptosis and growth regulatory proteins. These findings present possible clinical implications of midazolam as an anesthetic to relieve pain during in vivo anticancer drug delivery and to enhance anticancer efficacy through its ROS-scavenging and pro-apoptotic properties.  相似文献   

10.
Although the ability of bioactive lipid sphingosine-1-phosphate (S1P) to positively regulate anti-apoptotic/pro-survival responses by binding to S1P1 is well known, the molecular mechanisms remain unclear. Here we demonstrate that expression of S1P1 renders CCL39 lung fibroblasts resistant to apoptosis following growth factor withdrawal. Resistance to apoptosis was associated with attenuated accumulation of pro-apoptotic BH3-only protein Bim. However, although blockade of extracellular signal-regulated kinase (ERK) activation could reverse S1P1-mediated suppression of Bim accumulation, inhibition of caspase-3 cleavage was unaffected. Instead S1P1-mediated inhibition of caspase-3 cleavage was reversed by inhibition of phosphatidylinositol-3-kinase (PI3K) and protein kinase C (PKC), which had no effect on S1P1 regulation of Bim. However, S1P1 suppression of caspase-3 was associated with increased expression of anti-apoptotic protein Mcl-1, the expression of which was also reduced by inhibition of PI3K and PKC. A role for the induction of Mcl-1 in regulating endogenous S1P receptor-dependent pro-survival responses in human umbilical vein endothelial cells was confirmed using S1P receptor agonist FTY720-phosphate (FTY720P). FTY720P induced a transient accumulation of Mcl-1 that was associated with a delayed onset of caspase-3 cleavage following growth factor withdrawal, whereas Mcl-1 knockdown was sufficient to enhance caspase-3 cleavage even in the presence of FTY720P. Consistent with a pro-survival role of S1P1 in disease, analysis of tissue microarrays from ER+ breast cancer patients revealed a significant correlation between S1P1 expression and tumour cell survival. In these tumours, S1P1 expression and cancer cell survival were correlated with increased activation of ERK, but not the PI3K/PKB pathway. In summary, pro-survival/anti-apoptotic signalling from S1P1 is intimately linked to its ability to promote the accumulation of pro-survival protein Mcl-1 and downregulation of pro-apoptotic BH3-only protein Bim via distinct signalling pathways. However, the functional importance of each pathway is dependent on the specific cellular context.  相似文献   

11.
Keshan disease is an endemic dilated cardiomyopathy (DCM) which is closely related with selenium-deficient diet in China. In the previous study, we reported that the low selenium status plays a pivotal role in the myocardial apoptosis in the DCM rats, however, the underlying mechanism remains unclear. The present study aimed to determine whether the intrinsic, extrinsic pathways and the upstream regulators were involved in the myocardial apoptosis of selenium deficiency-induced DCM rats. Therefore, the rat model of endemic DCM was induced by a selenium-deficient diet for 12 weeks. Accompanied with significant dilation and impaired systolic function of left ventricle, an enhanced myocardial apoptosis was detected by TUNEL assay. Western blot analysis showed remarkably increased protein levels of cleaved caspase-3, caspase-8, caspase-9, and cytosolic cytochrome c released from the mitochondria. In addition, the immunoreactivities of p53 and Bax were significantly up-regulated, while the anti-apoptotic Bcl-2 family members Bcl-2 and Bcl-XL were down-regulated. Furthermore, appropriate selenium supplement for another 4 weeks could partially reverse all the above changes. In conclusion, the intrinsic, extrinsic pathways and the upstream regulators such as p53, Bax, Bcl-2, and Bcl-XL were all involved in selenium deficiency-induced myocardial apoptosis.  相似文献   

12.
The role of α1,3fucosyltransferase-VII (α1,3 FucT-VII) in cell apoptosis was studied in human hepatocellular carcinoma H7721 cells. After the cells were transfected with α1,3 FucT-VII cDNA, the expression of apoptotic protease, procaspase-3, was decreased, while the anti-apoptotic proteins, phospho-PKB and phospho-Bad were increased as compared with mock (vector) transfected cells, indicating that α1,3FucT-VII is a potential anti-apoptotic factor in H7721 cells. After “α1,3FucT-VII” cells were irradiated by UV to induce apoptosis, the anti-apoptotic potential of α1,3FucT-VII became more apparent, as evidenced by the less apoptotic cell % and active cleaved caspase-3, more phospho-p38 MAPK and JNK (two anti-apoptotic signaling molecules in H7721 cells responsible to UV stress) when compared with the “Mock” cells. In contrast, “α1,3FucT-VII” cells facilitated the apoptosis induced by all-trans retinoic acid (ATRA), which was verified by the greater sub-G1 (apoptotic cells) peak in flow cytometry analysis, more expressions of active caspase-3 and pro-apoptotic protein Bax, as well as less expressions of anti-apoptotic proteins, Bcl-2 and Bcl-XL. The up regulation of α1,3FucT-VII mRNA and cell surface SLex (α1,3FucT-VII product) by UV and down regulation of them by ATRA was speculated to be one of the mechanisms that α1,3FucT-VII decreased and increased the susceptibility of apoptosis induced by UV and ATRA respectively. Hao Wang and Qiu-Yan Wang contributed to this article equally.  相似文献   

13.
Previous results of ours have demonstrated that the same clonotype can express both a sensitive and a resistant phenotype to Dex-mediated PCD induction depending on its cell cycle phase. In particular, we demonstrated that human T lymphocytes, arrested in the G0/G1 phase of the cell cycle, are susceptible, while proliferating T cells are resistant to Dex-mediated apoptosis. In this paper, we have further characterized the sensitive and resistant phenotypes and investigated whether a different expression of the apoptotic genes Fas, FasL, Bcl-2, Bcl-x and Bax is involved in the regulation of Dex-mediated apoptosis. The results show that the amount of Bcl-2 expression, that changes during cell cycle phases, determines susceptibility or resistance to apoptosis induced by Dex. In fact, undetectable expression of Bcl-2 in sensitive cells favors Dex-mediated apoptosis while high expression of Bcl-2 in proliferating cells counterbalances apoptosis induction. Moreover, the addition of exogenous IL-2, in the presence of Dex, fails to up-regulate Bcl-2 expression and to revert Dex-mediated apoptotic phenomena.  相似文献   

14.
Etoposide is a potent anticancer agent that is used to treat various tumors. We have investigated the dose-dependent effect of etoposide on apoptosis using chronic myeloid leukemia K562 cells treated with low (5 M) or high (100 M) concentrations of the drug. At a low concentration, etoposide induced little apoptosis at 24 h, while about 20% of the cells showed apoptosis morphologically at a high concentration. Processing of caspase-3 was slightly detected from 12 h and became obvious at 24 h with 100 M etoposide. Caspase-3-like protease activity was detected at 24 h with a high concentration. Moreover, these changes were accompanied by cleavage of poly ADP ribose polymerase (PARP). Changes of the mRNA levels of most apoptosis-regulating genes were not prominent at both concentrations, except for the rapid induction of c-IAP-2/HIAP-1 and the down-regulation of Bcl-XL by 100 M etoposide. The downregulation of Bcl-XL protein occurred from 6 h, while Bax protein conversely showed a slight increase from 6 h. Taken together, the present findings show that the dose-dependent apoptotic effect of etoposide is based on a change in the balance between Bcl-XL and Bax, which precedes the activation of caspase-3.  相似文献   

15.

Background

The response of lung microvascular endothelial cells (ECs) to lipopolysaccharide (LPS) is central to the pathogenesis of lung injury. It is dual in nature, with one facet that is pro-inflammatory and another that is cyto-protective. In previous work, overexpression of the anti-apoptotic Bcl-XL rescued ECs from apoptosis triggered by siRNA knockdown of intersectin-1s (ITSN-1s), a pro-survival protein crucial for ECs function. Here we further characterized the cyto-protective EC response to LPS and pro-inflammatory dysfunction.

Methods and Results

Electron microscopy (EM) analyses of LPS-exposed ECs revealed an activated/dysfunctional phenotype, while a biotin assay for caveolae internalization followed by biochemical quantification indicated that LPS causes a 40% inhibition in biotin uptake compared to controls. Quantitative PCR and Western blotting were used to evaluate the mRNA and protein expression, respectively, for several regulatory proteins of intrinsic apoptosis, including ITSN-1s. The decrease in ITSN-1s mRNA and protein expression were countered by Bcl-XL and survivin upregulation, as well as Bim downregulation, events thought to protect ECs from impending apoptosis. Absence of apoptosis was confirmed by TUNEL and lack of cytochrome c (cyt c) efflux from mitochondria. Moreover, LPS exposure caused induction and activation of inducible nitric oxide synthase (iNOS) and a mitochondrial variant (mtNOS), as well as augmented mitochondrial NO production as measured by an oxidation oxyhemoglobin (oxyHb) assay applied on mitochondrial-enriched fractions prepared from LPS-exposed ECs. Interestingly, expression of myc-ITSN-1s rescued caveolae endocytosis and reversed induction of iNOS expression.

Conclusion

Our results suggest that ITSN-1s deficiency is relevant for the pro-inflammatory ECs dysfunction induced by LPS.  相似文献   

16.
High dose glucocorticoid (GC) treatment induces osteoporosis partly via increasing osteoblast apoptosis. However, the mechanism of GC-induced apoptosis has not been fully elucidated. Osteoblast-derived tissue inhibitor of metalloproteinase-1 (TIMP-1) was recently reported to be involved in bone metabolism. Our previous study demonstrated that TIMP-1 suppressed apoptosis of the mouse bone marrow stromal cell line MBA-1 (pre-osteoblast) induced by serum deprivation. Therefore, we tested the effect of the GC dexamethasone (Dex) on TIMP-1 production in murine osteoblastic MC3T3-E1 cells and further determined whether this action is associated with Dex-induced osteoblast apoptosis. Dex decreased TIMP-1 production in MC3T3-E1 cells, and this effect was blocked by the glucocorticoid receptor (GR) antagonists, RU486 and RU40555. Recombinant TIMP-1 protein reduced caspase-3 activation and apoptosis induced by Dex in MC3T3-E1 cells. In addition, the pro-apoptotic effect of the Dex was augmented by suppression of TIMP-1 with siRNA. Furthermore, mutant TIMP-1, which has no inhibitory effects on MMPs, yet protects MC3T3-E1 cells against Dex-induced apoptosis. Our study demonstrates that Dex suppresses TIMP-1 production in osteoblasts through GR, and this effect is associated with its induction of osteoblast apoptosis. The anti-apoptotic action of TIMP-1 is independent of its inhibitory effects on MMPs activities. The decrease in TIMP-1 production caused by Dex may contribute to the mechanisms of Dex-induced bone loss.  相似文献   

17.
Mitochondrial control of cell death induced by hyperosmotic stress   总被引:3,自引:2,他引:1  
HeLa and HCT116 cells respond differentially to sorbitol, an osmolyte able to induce hypertonic stress. In these models, sorbitol promoted the phenotypic manifestations of early apoptosis followed by complete loss of viability in a time-, dose-, and cell type-specific fashion, by eliciting distinct yet partially overlapping molecular pathways. In HCT116 but not in HeLa cells, sorbitol caused the mitochondrial release of the caspase-independent death effector AIF, whereas in both cell lines cytochrome c was retained in mitochondria. Despite cytochrome c retention, HeLa cells exhibited the progressive activation of caspase-3, presumably due to the prior activation of caspase-8. Accordingly, caspase inhibition prevented sorbitol-induced killing in HeLa, but only partially in HCT116 cells. Both the knock-out of Bax in HCT116 cells and the knock-down of Bax in A549 cells by RNA interference reduced the AIF release and/or the mitochondrial alterations. While the knock-down of Bcl-2/Bcl-XL sensitized to sorbitol-induced killing, overexpression of a Bcl-2 variant that specifically localizes to mitochondria (but not of the wild-type nor of a endoplasmic reticulum-targeted form) strongly inhibited sorbitol effects. Thus, hyperosmotic stress kills cells by triggering different molecular pathways, which converge at mitochondria where pro- and anti-apoptotic members of the Bcl-2 family exert their control. A. Criollo and L. Galluzzi contributed equally to this work.  相似文献   

18.
《Autophagy》2013,9(4):374-376
Beclin 1 has recently been identified as novel BH3-only protein, meaning that it carries one Bcl-2-homology-3 (BH3) domain. As other BH3-only proteins, Beclin 1 interacts with anti-apoptotic multidomain proteins of the Bcl-2 family (in particular Bcl-2 and its homologue Bcl-XL) by virtue of its BH3 domain, an amphipathic α-helix that binds to the hydrophobic cleft of Bcl-2/Bcl-XL. The BH3 domains of other BH3-only proteins such as Bad, as well as BH3-mimetic compounds such as ABT737, competitively disrupt the inhibitory interaction between Beclin 1 and Bcl-2/Bcl-XL. This causes autophagy of mitochondria (mitophagy) but not of the endoplasmic reticulum (ER-phagy). Only ER-targeted (not mitochondrion-targeted) Bcl-2/Bcl-XL can inhibit autophagy induced by Beclin 1, and only Beclin 1-Bcl-2/Bcl-XL complexes present in the ER (but not those present on heavy membrane fractions enriched in mitochondria) are disrupted by ABT737. These findings suggest that the Beclin 1-Bcl-2/Bcl-XL complexes that normally inhibit autophagy are specifically located in the ER and point to an organelle-specific regulation of autophagy. Furthermore, these data suggest a spatial organization of autophagy and apoptosis control in which BH3-only proteins exert two independent functions. On the one hand, they can induce apoptosis, by (directly or indirectly) activating the mitochondrion-permeabilizing function of pro-apoptotic multidomain proteins from the Bcl-2 family. On the other hand, they can activate autophagy by liberating Beclin 1 from its inhibition by Bcl-2/Bcl-XL at the level of the endoplasmic reticulum.

Addendum to:

Functional and Physical Interaction Between Bcl-XL and a BH3-Like Domain in Beclin-1

M.C. Maiuri, G. Le Toumelin, A. Criollo, J.-C. Rain, F. Gautier, P. Juin, E. Tasdemir, G. Pierron, K. Troulinaki, N. Tavernarakis, J.A. Hickman, O. Geneste and G. Kroemer

EMBO J 2007; In press  相似文献   

19.
20.
Apoptosis induced by fucoxanthin in HL-60 cells was associated with a loss of mitochondrial membrane potential at an early stage, but not with an increase in reactive oxygen species. Fucoxanthin treatment caused cleavages of procaspase-3 and poly (ADP-ribose) polymerase without any effect on the protein level of Bcl-2, Bcl-XL, or Bax. Apoptosis induction by fucoxanthin may be mediated via mitochondrial membrane permeabilization and caspase-3 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号