首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinal ganglion cell genesis requires lakritz, a Zebrafish atonal Homolog.   总被引:8,自引:0,他引:8  
  相似文献   

2.
The hedgehog (hh) genes encode secreted signaling proteins that have important developmental functions in vertebrates and invertebrates. In Drosophila, expression of hh coordinates retinal development by propagating a wave of photoreceptor differentiation across the eye primordium. Here we report that two vertebrate hh genes, sonic hedgehog (shh) and tiggy-winkle hedgehog (twhh), may perform similar functions in the developing zebrafish. Both shh and twhh are expressed in the embryonic zebrafish retinal pigmented epithelium (RPE), initially in a discrete ventral patch which then expands outward in advance of an expanding wave of photoreceptor recruitment in the subjacent neural retina. A gene encoding a receptor for the hedgehog protein, ptc-2, is expressed by retinal neuroepithelial cells. Injection of a cocktail of antisense (alphashh/alphatwhh) oligonucleotides reduces expression of both hh genes in the RPE and slows or arrests the progression of rod and cone photoreceptor differentiation. Zebrafish strains known to have mutations in Hh signaling pathway genes similarly exhibit retardation of photoreceptor differentiation. We propose that hedgehog genes may play a role in propagating photoreceptor differentiation across the developing eye of the zebrafish.  相似文献   

3.
Neurogenesis in the compound eyes of Drosophila and the camera eyes of vertebrates spreads in a wave-like fashion. In both phyla, waves of hedgehog expression are known to drive the wave of neuronal differentiation. The mechanism controlling the propagation of hedgehog expression during retinogenesis of the vertebrate eye is poorly understood. The Iroquois homeobox genes play important roles in Drosophila eye development; they are required for the up-regulation of hedgehog expression during propagation of the morphogenetic furrow. Here, we show that the zebrafish Iroquois homolog irx1a is expressed during retinogenesis and knockdown of irx1a results in a retinal phenotype strikingly similar to those of sonic hedgehog (shh) mutants. Analysis of shh-GFP transgene expression in irx1a knockdown retinas revealed that irx1a is required for the propagation of shh expression through the retina. Transplantation experiments illustrated that the effects of irx1a on shh expression are both cell-autonomous and non-cell-autonomous. Our results reveal a role for Iroquois genes in controlling hedgehog expression during vertebrate retinogenesis.  相似文献   

4.
We have investigated the relationship between the birthdate and the onset of differentiation of neurons in the embryonic zebrafish neural retina. Birthdates were established by a single injection of bromodeoxyuridine into embryos of closely spaced ages. Differentiation was revealed in the same embryos with a neuron-specific antibody, zn12. The first bromodeoxyuridine-negative (postmitotic) cells occupied the ganglion cell layer of ventronasal retina, where they formed a small cluster of 10 cells or less that included the first zn12-positive cells (neurons). New cells were recruited to both populations (bromodeoxyuridine-negative and zn12-positive) along the same front, similar to the unfolding of a fan, to produce a circular central patch of hundreds of cells in the ganglion cell layer about 9 h later. Thus the formation of this central patch, previously considered as the start of retinal neurogenesis, was actually a secondary event, with a developmental history of its own. The first neurons outside the ganglion cell layer also appeared in ventronasal retina, indicating that the ventronasal region was the site of initiation of all retinal neurogenesis. Within a column (a small cluster of neuroepithelial cells), postmitotic cells appeared first in the ganglion cell layer, then the inner nuclear layer, and then the outer nuclear layer, so cell birthday and cell fate were correlated within a column. The terminal mitoses occurred in three bursts separated by two 10-h intervals during which proliferation continued without terminal mitoses.  相似文献   

5.
GDNF family receptor alpha (GFRalpha) receptors are involved in the regulation of different aspects of embryonic development such as proliferation, migration, differentiation and survival. To determine the possible role of GFRalpha4 in retinal development, we analysed its expression in the developing chicken retina. We found that GFRalpha4 is temporally co-expressed with c-ret. Both, the temporal and spatial expression of GFRalpha4 is developmentally regulated during retinogenesis and is first detected in cells of the ganglion cell layer at E6. As development of the retina proceeds, the expression of GFRalpha4 extends to cells of the inner half of the inner nuclear layer and to cells of the outermost cell row of the inner nuclear layer. Later on, GFRalpha4 expression is also found in additional cells of the outer half of the inner nuclear layer and in a subpopulation of photoreceptors. A central-to-peripheral gradient of retinal differentiation is evident, as the onset of GFRalpha4 expression is first detectable in the central retina, while it is delayed by two days in its periphery.  相似文献   

6.
In mammalian development, apoptosis spreads over the retina in consecutive waves and induces a remarkable amount of cell loss. No evidence for such consecutive waves has been revealed in the fish retina so far. As the zebrafish is of growing importance as a model for retinal development and for degenerative retinal diseases, we examined the onset and time course of apoptosis in the developing zebrafish retina and in adult fish. We found that apoptosis peaked in the ganglion cell layer (GCL) and inner nuclear layer (INL) in early developmental stages (3-4 days post-fertilization; dpf) followed by a second, but clearly smaller wave at 6-7dpf. Apoptosis in the outer nuclear layer (ONL) started at 5dpf and peaked at 7dpf. This late-onset high peak of apoptosis of photoreceptors is different from that of all other species examined to date. With 1.09% of cells in the GCL and 1.10% in the ONL being apoptotic, the rate of apoptosis in the developing zebrafish retina was conspicuously lower than that observed in other vertebrates (up to 50% in GCL). During development (2-21dpf), apoptotic waves were most obvious in the central retina, whereas in the periphery near the marginal zone (MZ), apoptosis was much lower; in adult animals, practically no apoptosis was present in the central retina but it still occurred near the MZ. Our data show that the onset and time course of apoptosis in the GCL and INL of the zebrafish is comparable with other vertebrates; however, the amount of apoptosis is clearly reduced. Thus, apoptosis in the zebrafish retina may serve more as a mechanism for the fine tuning of the retinal neuronal network after mitotic waves during development or in remaining mitotic areas than as a mechanism for eliminating large numbers of excess cells.  相似文献   

7.
Endocardial cells form the inner endothelial layer of the heart tube, surrounded by the myocardium. Signaling pathways that regulate endocardial cell specification and differentiation are largely unknown and the origin of endocardial progenitors is still being debated. To study pathways that regulate endocardial differentiation in a zebrafish model system, we isolated zebrafish NFATc1 homolog which is expressed in endocardial but not vascular endothelial cells. We further demonstrate that Hedgehog (Hh) but not VegfA or Notch signaling is required for early endocardial morphogenesis. Pharmacological inhibition of Hh signaling with cyclopamine treatment resulted in nearly complete loss of the endocardial marker expression. Simultaneous knockdown of the two zebrafish sonic hedgehog homologs, shh and twhh or Hh co-receptor smoothened (smo) resulted in similar defects in endocardial morphogenesis. Inhibition of Hh signaling resulted in the loss of fibronectin (fn1) expression in the presumptive endocardial progenitors as early as the 10-somite stage which suggests that Hh signaling is required for the earliest stages of endocardial specification. We further show that the endoderm plays a critical role in migration but not specification or differentiation of the endocardial progenitors while notochord-derived Hh is a likely source for the specification and differentiation signal. Mosaic analysis using cell transplantation shows that Smo function is required cell-autonomously within endocardial progenitor cells. Our results argue that Hh provides a critical signal to induce the specification and differentiation of endocardial progenitors.  相似文献   

8.
9.
The embryonic chick has the ability to regenerate its retina after it has been completely removed. Here, we provide a detailed characterization of retina regeneration in the embryonic chick at the cellular level. Retina regeneration can occur in two distinct manners. The first is via transdifferentiation, which is induced by members of the Fibroblast growth factor (Fgf) family. The second type of retinal regeneration occurs from the anterior margin of the eye, near the ciliary body (CB) and ciliary marginal zone (CMZ). We show that regeneration from the CB/CMZ is the result of proliferating stem/progenitor cells. This type of regeneration is also stimulated by Fgf2, but we show that it can be activated by Sonic hedgehog (Shh) overexpression when no ectopic Fgf2 is present. Shh-stimulated activation of CB/CMZ regeneration is inhibited by the Fgf receptor (Fgfr) antagonist, PD173074. This indicates that Shh-induced regeneration acts through the Fgf signaling pathway. In addition, we show that the hedgehog (Hh) pathway plays a role in maintenance of the retina pigmented epithelium (RPE), as ectopic Shh expression inhibits transdifferentiation and Hh inhibition increases the transdifferentiation domain. Ectopic Shh expression in the regenerating retina also results in a decrease in the number of ganglion cells present and an increase in apoptosis mostly in the presumptive ganglion cell layer (GCL). However, Hh inhibition increases the number of ganglion cells but does not have an effect on cell death. Taken together, our results suggest that the hedgehog pathway is an important modulator of retina regeneration.  相似文献   

10.
In the developing zebrafish retina, neurogenesis is initiated in cells adjacent to the optic stalk and progresses to the entire neural retina. It has been reported that hedgehog (Hh) signalling mediates the progression of the differentiation of retinal ganglion cells (RGCs) in zebrafish. However, the progression of neurogenesis seems to be only mildly delayed by genetic or chemical blockade of the Hh signalling pathway. Here, we show that cAMP-dependent protein kinase (PKA) effectively inhibits the progression of retinal neurogenesis in zebrafish. Almost all retinal cells continue to proliferate when PKA is activated, suggesting that PKA inhibits the cell-cycle exit of retinoblasts. A cyclin-dependent kinase (cdk) inhibitor p27 inhibits the PKA-induced proliferation, suggesting that PKA functions upstream of cyclins and cdk inhibitors. Activation of the Wnt signalling pathway induces the hyperproliferation of retinal cells in zebrafish. The blockade of Wnt signalling inhibits the PKA-induced proliferation, but the activation of Wnt signalling promotes proliferation even in the absence of PKA activity. These observations suggest that PKA inhibits exit from the Wnt-mediated cell cycle rather than stimulates Wnt-mediated cell-cycle progression. PKA is an inhibitor of Hh signalling, and Hh signalling molecule morphants show severe defects in cell-cycle exit of retinoblasts. Together, these data suggest that Hh acts as a short-range signal to induce the cell-cycle exit of retinoblasts. The pulse inhibition of Hh signalling revealed that Hh signalling regulates at least two distinct steps of RGC differentiation: the cell-cycle exit of retinoblasts and RGC maturation. This dual requirement of Hh signalling in RGC differentiation implies that the regulation of a neurogenic wave is more complex in the zebrafish retina than in the Drosophila eye.  相似文献   

11.
The amacrine cells in the retina of the rat are described in Golgi-stained whole-mounted retinae. Nine morphologically distinct types of cell were found: one type of diffuse cell, five types of unistratified cell, two types of bistratified cell, and one type of stratified diffuse cell. Measurements show that the largest unistratified cells have a dendritic field 2 mm across. One type of interplexiform cell is also described. Wide-field diffuse amacrine cells and unistratified amacrine cells were found with their somata located in either the inner nuclear layer or the ganglion cell layer. It is clear that there may be an amacrine cell system in the ganglion cell layer of the rat retina.  相似文献   

12.
pp60c-src is developmentally regulated in the neural retina   总被引:60,自引:0,他引:60  
L K Sorge  B T Levy  P F Maness 《Cell》1984,36(2):249-257
We have localized normal cellular pp60c-src in the developing chick neural retina by immunocytochemical staining using antisera raised against bacterially expressed pp60v-src, the src gene product of Rous sarcoma virus. pp60c-src was expressed in developing retinal neurons at the onset of differentiation. Expression of pp60c-src persisted in mature neuronal cells that were postmitotic, fully differentiated, and functional. pp60c-src immunoreactivity was localized within processes and cell bodies of ganglion neurons, processes of rods and cones, and in some but not all neurons of the inner nuclear layer. Protein kinase assays and Western transfer analyses identified the immunoreactive protein as pp60c-src, and confirmed that its expression occurs at the time the first neuronal cells in the retina differentiate. We conclude from these studies that pp60c-src is the product of a developmentally regulated gene that is more important in neuronal differentiation or function than cell proliferation.  相似文献   

13.
选择不同胎龄的人胎18例,用免疫细胞化学ABC法和TUNEL法观察人胎视网膜超氧化物歧化酶(SOD)免疫阳性细胞的发育和细胞凋亡。结果显示;(1)E15w节细胞层开始出现SOD免疫阳性细胞,E20w和E28wSOD免疫阳性细胞排列较整齐,分布于视网膜的外核层,内核层,节细胞层;E40wSOD免疫阳性细胞主要集中于视网膜的外核层,内核层,节细胞层,其数量增多,特别是内核层SOD免疫阳性细胞增多明显。(2)TUNEL法标记的视网膜凋亡细胞胞核具有指环状典型的凋亡特征,E12w人胎视网膜未见凋亡细胞,E15w,E17w凋亡细胞较多,大小不一,分布于视网膜的全层;E20w凋亡细胞主要集中在内核层,数量减少,E28w凋亡细胞仅见于内核层,胞核呈指环样外观,着色较深,但数量较E20w进一步减少;E40w视网膜全层未见凋亡细胞。结果提示,E28w视网膜SOD抗氧化酶系,光感受的基本结构初步发育成熟,其抗氧化保护作用可能主要来源于内核层的SOD免疫阳性细胞。  相似文献   

14.
15.
Marc  Robert E.  Cameron  David 《Brain Cell Biology》2001,30(7):593-654
The rasborine cyprinid Danio rerio (the zebrafish) has become a popular model of retinal function and development. Its value depends, in part, on validation of homologies with retinal cell populations of cyprinine cyprinids. This atlas provides raw and interpreted molecular phenotype data derived from computationally classified sets of small molecule signals from different cell types in the zebrafish retina: L-alanine, L-aspartate, L-glutamine, L-glutamate, glutathione, glycine, taurine and γ-aminobutyrate. This basis set yields an 8-dimensional signature for every retinal cell and formally establishes molecular signature homologies with retinal neurons, glia, epithelia and endothelia of other cyprinids. Zebrafish photoreceptor classes have been characterized previously: we now show their metabolic profiles to be identical to those of the corresponding photoreceptors in goldfish. The inner nuclear layer is partitioned into precise horizontal, bipolar and amacrine cell layers. The horizontal cell layer contains at least three and perhaps all four known classes of cyprinine horizontal cells. Homologues of cyprinid glutamatergic ON-center and OFF-center mixed rod-cone bipolar cells are present and it appears likely that all five classes are present in zebrafish. The cone bipolar cells defy simple analysis but comprise the largest fraction of bipolar cells, as in all cyprinids. Signature analysis reveals six molecular phenotypes in the bipolar cell cohort: most are superclasses. The amacrine cell layer is composed of ≈64% GABA+ and 35% glycine+ amacrine cells, with the remainder being sparse dopaminergic interplexiform cells and other rare unidentified neurons. These different amacrine cell types are completely distinct in the dark adapted retina, but light adapted retinas display weak leakage of GABA signals into many glycinergic amacrine cells, suggesting widespread heterocellular coupling. The composition of the zebrafish ganglion cell layer is metabolically indistinguishable from that in other cyprinids, and the signatures of glial and non-neuronal cells display strong homologies with those in mammals. As in most vertebrates, zebrafish Müller cells possess a high glutamine, low glutamate signature and contain the dominant pool of glutathione in the neural retina. The retinal pigmented epithelium shows a general mammalian signature but also has exceptional glutathione content (5–10 mM), perhaps required by the unusually high oxygen tensions of teleost retinas. The optic nerve and the marginal zone of the retina reveal characteristic metabolic specializations. The marginal zone is strongly laminated and its nascent neurons display their characteristic signatures before taking their place in the retina proper.  相似文献   

16.
In this study we have localized glutamate (GLU) in fetal (14–25 weeks gestation, Wg) human retinas by immunohistochemistry. At 14 Wg, GLU-immunoreactivity (IR) was localized only in the central part of retina, showing a prominently labelled nerve fiber layero A few ganglion cells and displaced amacrine cells were very weakly labelled. At 17 Wg, GLU was localized conspicuously in many ganglion cells, displaced amacrine cells, some amacrine cells and the prospective photoreceptor cell bodies in the neuroepithelial layero With progressive development at 20 and 25 Wg, the IR for GLU was found additionally in the Müller cell endfeet, some bipolar cells as well as in the horizontal cells that were aligned in a row along the outer border of the inner nuclear layer of the central retinao The photoreceptor cell bodies in the outer nuclear layer were also prominently immunopositive for GLU. The developmental distribution of GLU in the human retina tends to indicate that it plays an important role in the differentiation and maturation of retinal neurons.  相似文献   

17.
18.
Neuroglobin (Ngb) is a recently discovered vertebrate heme protein that is expressed in the brain and can reversibly bind oxygen. Mammalian Ngb is involved in neuroprotection under conditions of oxidative stress, such as ischemia and reperfusion. We previously found that zebrafish Ngb can penetrate the mammalian cell membrane. In the present study, we investigated the functional characteristics of fish Ngb by using the zebrafish cell line ZF4 and zebrafish retina. We found that zebrafish Ngb translocates into ZF4 cells, but cannot protect ZF4 cells against cell death induced by hydrogen peroxide. Furthermore, we demonstrated that a chimeric ZHHH Ngb protein, in which module M1 of human Ngb is replaced by that of zebrafish, is a cell-membrane-penetrating protein that can protect ZF4 cells against hydrogen peroxide exposure. Moreover, we investigated the localization of Ngb mRNA and protein in zebrafish retina and found that Ngb mRNA is expressed in amacrine cells in the inner nuclear layer and is significantly increased in amacrine cells 3 days after optic nerve injury. Immunohistochemical studies clarified that Ngb protein levels were increased in both amacrine cells and presynaptic regions in the inner plexiform layer after nerve injury. Taken together, we hypothesize that fish Ngb, whose expression is upregulated in amacrine cells after optic nerve injury, might be released from amacrine cells, translocate into neighboring ganglion cells, and function in the early stage of optic nerve regeneration. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号