共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Bani-Yaghoub M Kendall SE Moore DP Bellum S Cowling RA Nikopoulos GN Kubu CJ Vary C Verdi JM 《Development (Cambridge, England)》2004,131(17):4287-4298
Reports of non-neural differentiation of neural stem cells (NSCs) have been challenged by alternative explanations for expanded differentiation potentials. In an attempt to demonstrate the plasticity of NSC, neurospheres were generated from single retrovirally labeled embryonic cortical precursors. In a defined serum-free insulin-containing media, 40% of the neurospheres contained both myogenic and neurogenic differentiated progeny. The number of NSCs displaying multilineage differentiation potential declines through gestation but does exist in the adult animal. In this system, insulin appears to function as a survival and dose-dependent myogenic differentiation signal for multilineage NSCs (MLNSC). MLNSC-derived cardiomyocytes contract synchronously, respond to sympathetic and parasympathetic stimulation, and regenerate injured heart tissues. These studies provide support for the hypothesis that MLNSCs exist throughout the lifetime of the animal, and potentially provide a population of stem cells for cell-based regenerative medicine strategies inside and outside of the nervous system. 相似文献
3.
Signaling by the ureteric bud epithelium is essential for survival, proliferation and differentiation of the metanephric mesenchyme during kidney development. Most studies that have addressed ureteric signaling have focused on the proximal, branching, ureteric epithelium. We demonstrate that sonic hedgehog is expressed in the ureteric epithelium of the distal, non-branching medullary collecting ducts and continues into the epithelium of the ureter -- the urinary outflow tract that connects the kidney with the bladder. Upregulation of patched 1, the sonic hedgehog receptor and a downstream target gene of the signaling pathway in the mesenchyme surrounding the distal collecting ducts and the ureter suggests that sonic hedgehog acts as a paracrine signal. In vivo and in vitro analyses demonstrate that sonic hedgehog promotes mesenchymal cell proliferation, regulates the timing of differentiation of smooth muscle progenitor cells, and sets the pattern of mesenchymal differentiation through its dose-dependent inhibition of smooth muscle formation. In addition, we also show that bone morphogenetic protein 4 is a downstream target gene of sonic hedgehog signaling in kidney stroma and ureteral mesenchyme, but does not mediate the effects of sonic hedgehog in the control of mesenchymal proliferation. 相似文献
4.
Prykhozhij SV 《PloS one》2010,5(10):e13549
Background
Sonic hedgehog (Shh) signaling regulates cell proliferation during vertebrate development via induction of cell-cycle regulator gene expression or activation of other signalling pathways, prevents cell death by an as yet unclear mechanism and is required for differentiation of retinal cell types. Thus, an unsolved question is how the same signalling molecule can regulate such distinct cell processes as proliferation, cell survival and differentiation.Methodology/Principal Findings
Analysis of the zebrafish shh −/− mutant revealed that in this context p53 mediates elevated apoptosis during nervous system and retina development and interferes with retinal proliferation and differentiation. While in shh −/− mutants there is activation of p53 target genes and p53-mediated apoptosis, an increase in Hedgehog (Hh) signalling by over-expression of dominant-negative Protein Kinase A strongly decreased p53 target gene expression and apoptosis levels in shh −/− mutants. Using a novel p53 reporter transgene, I confirm that p53 is active in tissues that require Shh for cell survival. Proliferation assays revealed that loss of p53 can rescue normal cell-cycle exit and the mitotic indices in the shh −/− mutant retina at 24, 36 and 48 hpf. Moreover, generation of amacrine cells and photoreceptors was strongly enhanced in the double p53 −/− shh −/− mutant retina suggesting the effect of p53 on retinal differentiation.Conclusions
Loss of Shh signalling leads to the p53-dependent apoptosis in the developing nervous system and retina. Moreover, Shh-mediated control of p53 activity is required for proliferation and cell cycle exit of retinal cells as well as differentiation of amacrine cells and photoreceptors. 相似文献5.
6.
Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina 总被引:4,自引:0,他引:4
Godinho L Mumm JS Williams PR Schroeter EH Koerber A Park SW Leach SD Wong RO 《Development (Cambridge, England)》2005,132(22):5069-5079
Cellular mechanisms underlying the precision by which neurons target their synaptic partners have largely been determined based on the study of projection neurons. By contrast, little is known about how interneurons establish their local connections in vivo. Here, we investigated how developing amacrine interneurons selectively innervate the appropriate region of the synaptic neuropil in the inner retina, the inner plexiform layer (IPL). Increases (ON) and decreases (OFF) in light intensity are processed by circuits that are structurally confined to separate ON and OFF synaptic sublaminae within the IPL. Using transgenic zebrafish in which the majority of amacrine cells express fluorescent protein, we determined that the earliest amacrine-derived neuritic plexus formed between two cell populations whose somata, at maturity, resided on opposite sides of this plexus. When we followed the behavior of individual amacrine cells over time, we discovered that they exhibited distinct patterns of structural dynamics at different stages of development. During cellular migration, amacrine cells exhibited an exuberant outgrowth of neurites that was undirected. Upon reaching the forming IPL, neurites extending towards the ganglion cell layer were relatively more stable. Importantly, when an arbor first formed, it preferentially ramified in either the inner or outer IPL corresponding to the future ON and OFF sublaminae, and maintained this stratification pattern. The specificity by which ON and OFF amacrine interneurons innervate their respective sublaminae in the IPL contrasts with that observed for projection neurons in the retina and elsewhere in the central nervous system. 相似文献
7.
8.
Amacrine cells, displaced amacrine cells and interplexiform cells in the retina of the rat 总被引:4,自引:0,他引:4
V H Perry M Walker 《Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain)》1980,208(1173):415-431
The amacrine cells in the retina of the rat are described in Golgi-stained whole-mounted retinae. Nine morphologically distinct types of cell were found: one type of diffuse cell, five types of unistratified cell, two types of bistratified cell, and one type of stratified diffuse cell. Measurements show that the largest unistratified cells have a dendritic field 2 mm across. One type of interplexiform cell is also described. Wide-field diffuse amacrine cells and unistratified amacrine cells were found with their somata located in either the inner nuclear layer or the ganglion cell layer. It is clear that there may be an amacrine cell system in the ganglion cell layer of the rat retina. 相似文献
9.
Zavros Y Orr MA Xiao C Malinowska DH 《American journal of physiology. Gastrointestinal and liver physiology》2008,295(1):G99-G111
Sonic hedgehog (Shh) is found within gastric parietal cells and processed from a 45-kDa to a 19-kDa bioactive protein by an acid- and protease-dependent mechanism. To investigate whether Shh is associated with the parietal cell membrane compartment that becomes exposed to both acid and proteolytic enzymes during acid secretion, the cellular location of Shh within resting and stimulated gastric parietal cells was examined. Immunofluorescence microscopy of rabbit stomach sections showed that Shh colocalized predominantly with parietal and pit, not chief/zymogen or neck, cell markers. In resting and histamine-stimulated rabbit gastric glands Shh was expressed only in parietal cells close to H+-K+-ATPase-containing tubulovesicular and secretory membranes with some colocalizing with gamma-actin at the basolateral membrane. Gastric gland microsomal membranes were prepared by differential and sucrose gradient centrifugation and immunoisolation with an anti-H+-K+-ATPase-alpha subunit antibody. The 45- and 19-kDa Shh proteins were detected by immunoblot in immunopurified H+-K+-ATPase-containing membranes from resting and stimulated gastric glands, respectively. Incubating glands with a high KCl concentration removed Shh from the membranes. Histamine stimulated 19-kDa Shh secretion from gastric glands into the medium. In human gastric cancer 23132/87 cells cultured on permeable membranes, histamine increased 19-kDa Shh secretion into both apical and basolateral media. These findings show that Shh is a peripheral protein associated with resting and stimulated H+-K+-ATPase-expressing membranes. In addition, Shh appears to be expressed at or close to the basolateral membrane of parietal cells. 相似文献
10.
Mammalian glycerol uptake/transporter 1 (Gup1), a homolog of Saccharomyces cerevisiae Gup1, is predicted to be a member of the membrane-bound O-acyltransferase family and is highly homologous to mammalian hedgehog acyltransferase, known as Skn, the homolog of the Drosophila skinny hedgehog gene product. Although mammalian Gup1 has a sequence conserved among the membrane-bound O-acyltransferase family, the histidine residue in the motif that is indispensable to the acyltransferase activity of the family has been replaced with leucine. In this study, we cloned Gup1 cDNA from adult mouse lung and examined whether Gup1 is involved in the regulation of N-terminal palmitoylation of Sonic hedgehog (Shh). Subcellular localization of mouse Gup1 was indistinguishable from that of mouse Skn detected using the fluorescence of enhanced green fluorescent protein that was fused to each C terminus of these proteins. Gup1 and Skn were co-localized with an endoplasmic reticulum marker, 78 kDa glucose-regulated protein, suggesting that these two molecules interact with overlapped targets, including Shh. In fact, full-length Shh coprecipitated with FLAG-tagged Gup1 by immunoprecipitation using anti-FLAG IgG. Ectopic expression of Gup1 with full-length Shh in cells lacking endogenous Skn showed no hedgehog acyltransferase activity as determined using the monoclonal antibody 5E1, which was found to recognize the palmitoylated N-terminal signaling domain of Shh under denaturing conditions. On the other hand, Gup1 interfered with the palmitoylation of Shh catalyzed by endogenous Skn in COS7 and NSC34. These results suggest that Gup1 is a negative regulator of N-terminal palmitoylation of Shh and may contribute to the variety of biological actions of Shh. 相似文献
11.
Sonic hedgehog regulates early human thymocyte differentiation by counteracting the IL-7-induced development of CD34+ precursor cells 总被引:2,自引:0,他引:2
Gutiérrez-Frías C Sacedón R Hernández-López C Cejalvo T Crompton T Zapata AG Varas A Vicente A 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(8):5046-5053
The Hedgehog (Hh) family of signaling molecules normally functions in the development of numerous tissues by regulating cellular differentiation and proliferation. Recent results have demonstrated that the different components of the Hh signaling pathway are expressed in the human thymus. In this study, we investigate the potential role of Sonic hedgehog (Shh) in human intrathymic T cell maturation. Results show that the expression of the two components of the Hh receptor, Patched and Smoothened, is mostly restricted to CD34+ precursor cells that are committing to the T cell lineage. Shh significantly increased the viability of CD34+ T cell precursors modulating bcl-2 and bax protein expression, and also inhibited their proliferation. The treatment of chimeric human-mouse fetal thymus organ cultures with Shh resulted in an arrested thymocyte differentiation and an accumulation of CD34+ progenitor cells. This effect was mainly attributed to the ability of Shh to counteract the IL-7-induced proliferation and differentiation of CD34+ cells. Shh down-regulated in the precursor cell population the expression of IL-7R as well as stromal-derived factor-1 chemokine receptor, CXCR4, and inhibited IL-7-dependent STAT5 phosphorylation. Therefore, Shh may function as a maintenance factor for intrathymic CD34+ precursor cells. 相似文献
12.
C Versaux-Botteri A Simon A Vigny J Nguyen-Legros 《Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie》1987,305(9):381-386
Two different immunohistochemical double labelling techniques have allowed the demonstration of a GABA-immunoreactivity in the dopamine amacrine cells of the rat retina. The functional implications of such a colocalization are of importance because antagonist effects of these two neurotransmitters on retinal horizontal cells have been demonstrated. 相似文献
13.
14.
Signaling by Sonic hedgehog (Shh) controls important developmental processes, including dorsoventral neural tube patterning, neural stem cell proliferation, and neuronal and glial cell survival. Shh signaling involves lipid modifications to Shh itself, as well as changes in protein subcellular localization. Recent advances have revealed the importance of palmitoylation and acylation of Shh on its potency and migration capacity. Subsequent trafficking and organelle sorting in the Shh signaling pathway have been observed; these observations offer a new dimension to our understanding of downstream signal transduction events. 相似文献
15.
16.
D I Vaney 《Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain)》1985,224(1237):475-488
When cat retina is incubated in vitro with the fluorescent dye, 4',6-diamidino-2-phenyl-indole (DAPI), a uniform population of neurons is brightly labelled at the inner border of the inner nuclear layer. The dendritic morphology of the DAPI-labelled cells was defined by iontophoretic injection of Lucifer yellow under direct microscopic control: all the filled cells had the narrow-field bistratified morphology that is distinctive of the AII amacrine cells previously described from Golgi-stained retinae. Although the AII amacrines are principal interneurons in the rod-signal pathway, their density distribution does not follow the topography of the rod receptors, but peaks in the central area like the cone receptors and the ganglion cells. There are some 512 000 AII amacrines in the cat retina and their density ranges from 500 cells per square millimetre at the superior margin to 5300 cells per square millimetre in the centre (retinal area is 450 mm2). The isodensity contours are kite-shaped, particularly at intermediate densities, with a horizontal elongation towards nasal retina. The cell body size and the dendritic dimensions of AII amacrines increase with decreasing cell density. The lobular dendrites in sublamina a of the inner plexiform layer span a restricted field of 16-45 microns diameter, while the arboreal dendrites in sublamina b form a varicose tree of 18-95 microns diameter. The dendritic field coverage of the lobular appendages is close to 1.0 (+/- 0.2) at all eccentricities whereas the coverage of the arboreal dendrites doubles within the first 1.5 mm and then remains constant at 3.8 (+/- 0.7) throughout the periphery. 相似文献
17.
Robert Siminoff 《Biological cybernetics》1985,53(2):125-135
The model of the cone-L-HC circuit of the catfish retina (Siminoff 1985a) is extended to Luminosity bipolar cells (BC) and non-linear phasic amacrine cells (AC), but now applicable to the generalized vertebrate cone retina that involves only one cone type. Two types of BC's are simulated by linear transformation of 2 antagonistic inputs of differing time courses; the faster center field hyperpolarization from the cone and the slower surround field depolarization from the L-HC. The phasic AC was made non-linear by various methods: full- or half-wave rectification using either both or only one of the BC's as the inputs with rectification first and then summation or summation first and then rectification. A method is described using Laplace transforms in conjunction with the convolution theorem to obtain the impulse responses of BC's and AC's, in spite of the non-linearities of the AC even when used as feedback to the BC's. Since the input to the BC consists of 2 antagonistic inputs, feedback from the AC reeinforces one input and attenuates the other. 相似文献
18.
19.