首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
Summary The crossover sites for Cin-mediated inversion consist of imperfect 12 bp inverted repeats with non-palindomic dinucleotides at the center of symmetry. Inversion is believed to occur in vivo between the homologous central 2 bp crossover sequences at the inversely repeated crossover sites through introduction of 2 bp staggered cuts and subsequent reciprocal strand exchanges. The site-specific Cin recombinase acts not only on the normal crossover sites but also, less efficiently, on quasi crossover sites which have some homology with the normal sites. We identified 15 new quasi sites including 4 sites within the cin structural gene. Homology at the 2 bp crossover sequences between recombining sites favors selection as quasi crossover sites. The Cin enzyme can occasionally mediate inversion between nonidentical crossover sequences and such recombinations often result in localized mutations including base pair substitutions and deletions within the 2 bp crossover sequences. These mutations are explained as the consequences of heteroduplex molecules formed between the staggered dinucleotides and either tubsequent resolution by DNA replication or subsequent mismatch repair. Occasional utilization of quasi crossover sites and localized mutagenesis at the crossover sequences in enzyme-mediated inversion processes would be one of the mechanisms contributing to genetic diversity.  相似文献   

2.
The Cin recombinase is known to mediate DNA inversion between two wild-type cix sites flanking genetic determinants for the host range of bacteriophage P1. Cin can also act with low frequency at secondary (or quasi) sites (designated cixQ) that have lower homology to either wild-type site. An inversion tester sequence able to reveal novel operon fusions was integrated into the Escherichia coli chromosome, and the Cin recombinase was provided in trans. Among a total of 13 Cin-mediated inversions studied, three different cixQ sites had been used. In two rearranged chromosomes, the breakpoints of the inversions were mapped to cixQ sites in supB and ompA, representing inversions of 109 and 210 kb, respectively. In the third case, a 2.1-kb inversion was identified at a cixQ site within the integrated sequences. This derivative itself was a substrate for a second inversion of 1.5 kb between the remaining wild-type cix and still another cixQ site, thus resembling a reversion. In analogy to that which is known from DNA inversion on plasmids, homology of secondary cix sites to wild-type recombination sites is not a strict requirement for inversion to occur on the chromosome. The chromosomal rearrangements which resulted from these Cin-mediated inversions were quite stable and suffered no growth disadvantage compared with the noninverted parental strain. The mechanistic implications and evolutionary relevance of these findings are discussed.  相似文献   

3.
Abstract Bacteriophage P1 encodes the site-specific recombinase Cin which promotes inversion of the C segment, thus controlling the P1 host range. Cin can also mediate inefficient inversion between the normal crossover site cixL and a quasi-crossover site cixQ 1 in inverted orientation. Inversion between cixL and cixQ 1 occurs more frequently in a short period of time after transformation with a plasmid carrying the cin gene, cixL and cixQ 1 than in an established transformant of the plasmid. This is also the case for Cin-mediated deletion on a plasmid containing the cin gene and directly repeated cix sites.  相似文献   

4.
Wang JP  Widom J 《Nucleic acids research》2005,33(21):6743-6755
DNA sequences that are present in nucleosomes have a preferential approximately 10 bp periodicity of certain dinucleotide signals, but the overall sequence similarity of the nucleosomal DNA is weak, and traditional multiple sequence alignment tools fail to yield meaningful alignments. We develop a mixture model that characterizes the known dinucleotide periodicity probabilistically to improve the alignment of nucleosomal DNAs. We assume that a periodic dinucleotide signal of any type emits according to a probability distribution around a series of 'hot spots' that are equally spaced along nucleosomal DNA with 10 bp period, but with a 1 bp phase shift across the middle of the nucleosome. We model the three statistically most significant dinucleotide signals, AA/TT, GC and TA, simultaneously, while allowing phase shifts between the signals. The alignment is obtained by maximizing the likelihood of both Watson and Crick strands simultaneously. The resulting alignment of 177 chicken nucleosomal DNA sequences revealed that all 10 distinct dinucleotides are periodic, however, with only two distinct phases and varying intensity. By Fourier analysis, we show that our new alignment has enhanced periodicity and sequence identity compared with center alignment. The significance of the nucleosomal DNA sequence alignment is evaluated by comparing it with that obtained using the same model on non-nucleosomal sequences.  相似文献   

5.
Specific cleavages within the shufflon-specific recombination site of plasmid R64 were detected by primer extension when a DNA fragment carrying the recombination site was incubated with the shufflon-specific Rci recombinase. Rci-dependent cleavages occurred in the form of a 5' protruding 7 bp staggered cut, suggesting that DNA cleavage and rejoining in the shufflon system take place at these positions. As a result, shufflon crossover sites were designated as sfx sequences consisting of a central 7 bp spacer sequence, and left and right 12 bp arms. R64 sfx sequences are unique among various site-specific recombination sites, since only the spacer sequence and the right arm sequence are conserved among various R64 sfxs, whereas the left arm sequence is not conserved and is not related to the right arm sequence. From nuclease protection analyses, Rci protein was shown to bind to entire R64 and artificial sfx sequences, suggesting that one Rci molecule binds to the conserved sfx right arm in a sequence-specific manner and the second to the sfx left arm in a non-specific manner. The sfx left arm sequences as well as the right arm sequences were shown to determine affinity to Rci and subsequently inversion frequency. Asymmetry of the sfx sequence may be the reason why Rci protein acts only on the inverted sfx sequences.  相似文献   

6.
Switching the polarity of a bacteriophage integration system   总被引:6,自引:0,他引:6  
During lysogenic growth many temperate bacteriophage genomes are integrated into the host's chromosome and efficient integration and excision are therefore an essential part of the phage life cycle. The Streptomyces phage phiC31 encodes an integrase related to the resolvase/invertases and is evolutionarily and mechanistically distinct from the integrase of phage lambda. We show that during phiC31 integration the polarity of the recombination sites, attB and attP, is dependent on the sequences of the two base pairs (bp) where crossover occurs. A loss or switch in polarity of the recombination sites can occur by mutation of this dinucleotide, leading to incorrectly joined products. The properties of the mutant sites implies that phiC31 integrase interacts symmetrically with the substrates, which during synapsis can align apparently freely in either of two alternative forms that lead to correct or incorrect joining of products. Analysis of the topologies of the reaction products provided evidence that integrase can synapse and activate strand exchange even when recombinant products cannot form due to mismatches at the crossover site. The topologies of the recombination products are complex and indicative of multiple pathways to product formation. The efficiency of integration of a phiC31 derivative, KC859, into an attB site with switched polarity was assayed in vivo and shown to be no different from integration into a wild-type attB. Thus neither the host nor KC859 express a factor that influences the alignment of the recombination sites at synapsis.  相似文献   

7.
'Illegitimate' recombination events in polyoma-transformed rat cells   总被引:2,自引:0,他引:2  
R Yarom  A Lapidot  A Neer  N Baran  H Manor 《Gene》1987,59(1):87-98
In the LPT line of polyoma (Py)-transformed rat cells, amplification of the integrated viral DNA and of cell nucleotide sequences flanking the viral integration site, can be induced either spontaneously or by treatment with carcinogens. We show here that the amplified DNA includes interspersed viral and cellular sequences generated by 'illegitimate' recombination events. Genomic libraries have been prepared in phage lambda vectors from LPT cells treated with the inducing agent mitomycin C and from untreated LPT cells. Four phages, including viral-cell DNA recombinants, have been isolated from these libraries. Sequencing through the recombination sites revealed the following characteristics: (i) The crossover points map at four different positions in the viral DNA and at four different positions in the flanking cell DNA. (ii) There are very short homologous sequences of 1, 2, or 4 bp, at the recombination sites. (iii) Aside from the exchanges between the viral and the cellular DNA, no further rearrangements occurred around the new viral-cellular DNA junctions. (iv) Next to the recombination sites, there are blocks of homopurine-homopyrimidine sequences, which may assume a structure that differs from the Watson-Crick double helix. (v) Clustered homologous sequence blocks of up to 10 bp are present less than 200 bp away from the recombination sites. These homologies are not in register. Based on these results, we propose a model that may account for these recombination events and, more generally, for recombination events that occur during gene amplification in mammalian cells.  相似文献   

8.
Conjugative transposons (CTns) are major contributors to the spread of antibiotic resistance genes among Bacteroides species. CTnBST, a newly discovered Bacteroides conjugative transposon, carries an erythromycin resistance gene, ermB, and previously has been estimated to be about 100 kbp in size. We report here the locations and sequencing of both of its ends. We have also located and sequenced the gene that catalyzes the integration of CTnBST, intBST. The integrase gene encodes a 377-amino-acid protein that has the C-terminal R-K-H-R-H-Y motif that is characteristic of members of the tyrosine recombinase family of integrases. DNA sequence comparisons of the ends of CTnBST, the joined ends of the circular intermediate, and the preferred site into which the circular form of CTnBST had integrated revealed that the preferred integration site (attB1) contained an 18-bp sequence of identity to the crossover region, attBST, on CTnBST. Although this site was used in about one-half of the integration events, sequence analysis of these integration events revealed that both CTnBST and a miniature form of CTnBST (miniBST) integrated into a variety of other sites in the chromosome. All of the sites had two conserved regions, AATCTG and AAAT. These two regions flanked a 2-bp sequence, bp 10 and bp 11 of the 18-bp sequence, that varied in some of the different sites and sometimes in the attBST sequences. Our results suggest that CTnBST integrates site selectively and that the crossover appears to occur within a 12-bp region that contains the two regions of conserved sequences.  相似文献   

9.
The Tc1 transposon of Caenorhabditis elegans always integrates into the sequence TA, but some TA sites are preferred to others. We investigated a TA target site from the gpa-2 gene of C.elegans that was previously found to be preferred (hot) for Tc1 integration in vivo . This site with its immediate flanks was cloned into a plasmid, and remained hot in vitro , showing that sequences immediately adjacent to the TA dinucleotide determine this target choice. Further deletion mapping and mutagenesis showed that a 4 bp sequence on one side of the TA is sufficient to make a site hot; this sequence nicely fits the previously identified Tc1 consensus sequence for integration. In addition, we found a second type of hot site: this site is only preferred for integration when the target DNA is supercoiled, not when it is relaxed. Excision frequencies were relatively independent of the flanking sequences. The distribution of Tc1 insertions into a plasmid was similar when we used nuclear extracts or purified Tc1 transposase in vitro , showing that the Tc1 transposase is the protein responsible for the target choice.  相似文献   

10.
11.
The controlling sequence for site-specific chromosome breakage in Tetrahymena   总被引:21,自引:0,他引:21  
M C Yao  C H Yao  B Monks 《Cell》1990,63(4):763-772
Site-specific chromosome breakage occurs in many ciliated protozoa during nuclear differentiation. We have determined the cis-acting sequence that controls this process in Tetrahymena thermophila. The Tetrahymena ribosomal RNA gene is bounded by two breakage sites. Injection of this gene into developing macronuclei leads to breakage at these sites. Deletion analysis has localized the sequences essential for breakage to a 28 bp region that includes a 15 bp sequence (Cbs) known to be present in other breakage sites. Insertions of Cbs allow breakage to occur at new sites, which is accompanied by elimination of surrounding DNAs and formation of telomeric sequences, as it is at natural sites. Thus, Cbs is the necessary and sufficient sequence signal for chromosome breakage in Tetrahymena.  相似文献   

12.
Kinesin-5 motor proteins are evolutionarily conserved and perform essential roles in mitotic spindle assembly and spindle elongation during anaphase. Previous studies demonstrated a specialized homotetrameric structure with two pairs of catalytic domains, one at each end of a dumbbell-shaped molecule. This suggests that they perform their spindle roles by cross-linking and sliding antiparallel spindle microtubules. However, the exact kinesin-5 sequence elements that are important for formation of the tetrameric complexes have not yet been identified. In addition, it has not been demonstrated that the homotetrameric form of these proteins is essential for their biological functions. Thus, we investigated a series of Saccharomyces cerevisiae Cin8p truncations and internal deletions, in order to identify structural elements in the Cin8p sequence that are required for Cin8p functionality, spindle localization, and multimerization. We found that all variants of Cin8p that are functional in vivo form tetrameric complexes. The first coiled-coil domain in the stalk of Cin8p, a feature that is shared by all kinesin-5 homologues, is required for its dimerization, and sequences in the last part of the stalk, specifically those likely involved in coiled-coil formation, are required for Cin8p tetramerization. We also found that dimeric forms of Cin8p that are nonfunctional in vivo can nonetheless bind to microtubules. These findings suggest that binding of microtubules is not sufficient for the functionality of Cin8p and that microtubule cross-linking by the tetrameric complex is essential for Cin8p mitotic functions.  相似文献   

13.
Here we summarize the DNA bend sites in a 66-kb region of the human beta-globin locus. A total of 98 sites were mapped by circular permutation assay along the locus with an average interval of 679.2 +/- 229.6 bp between them. The distribution of the bend sites indicated that although the most frequent distance was about 650-700 bp, there appeared to be preferences at 300-400, 500-550, 800-850, 1,000-1,050, and 1,150-1,200 bp, indicating that these distances are multimers of a 170-bp basic unit. DNA bend sites in the globin-encoding regions indicated that most of their locations relative to the cap sites were conserved during evolution. Insertion of Alu and L1 sequences that occurred at various times and changed the distances of the sites was corrected for the epsilon-, psi beta-, and delta-globin genes. The only exception of the conservation was observed at the duplication junctions of the two gamma-globin genes, which occurred 25-35 MYA. Among the 75 A/A/A (A2N8A2N8A2) sequences found in the 51 bend sites, 59 sequences from 47 sites showed bending profiles by oligonucleotide-based assay. All of these sites were included in the sites predicted by computer analysis based on the distribution of AA and TT dinucleotides. These lines of evidence suggest that these DNA bend sites are one of the basic structural components universally present in genomic DNA.  相似文献   

14.
An Escherichia coli chromosomally coded factor termed FIS (Factor for Inversion Stimulation) stimulates the Cin protein-mediated, site-specific DNA inversion system of bacteriophage P1 more than 500-fold. We have purified FIS and the recombinase Cin, and studied the inversion reaction in vitro. DNA footprinting studies with DNase I showed that Cin specifically binds to the recombination site, called cix. FIS does not bind to cix sites but does bind to a recombinational enhancer sequence that is required in cis for efficient recombination. FIS also binds specifically to sequences outside the enhancer, as well as to sequences unrelated to Cin inversion. On the basis of these data, we discuss the possibility of additional functions for FIS in E. coli.  相似文献   

15.
An estimated 80% of genomic DNA in eukaryotes is packaged as nucleosomes, which, together with the remaining interstitial linker regions, generate higher order chromatin structures [1]. Nucleosome sequences isolated from diverse organisms exhibit ∼10 bp periodic variations in AA, TT and GC dinucleotide frequencies. These sequence elements generate intrinsically curved DNA and help establish the histone-DNA interface. We investigated an important unanswered question concerning the interplay between chromatin organization and genome evolution: do the DNA sequence preferences inherent to the highly conserved histone core exert detectable natural selection on genomic divergence and polymorphism? To address this hypothesis, we isolated nucleosomal DNA sequences from Drosophila melanogaster embryos and examined the underlying genomic variation within and between species. We found that divergence along the D. melanogaster lineage is periodic across nucleosome regions with base changes following preferred nucleotides, providing new evidence for systematic evolutionary forces in the generation and maintenance of nucleosome-associated dinucleotide periodicities. Further, Single Nucleotide Polymorphism (SNP) frequency spectra show striking periodicities across nucleosomal regions, paralleling divergence patterns. Preferred alleles occur at higher frequencies in natural populations, consistent with a central role for natural selection. These patterns are stronger for nucleosomes in introns than in intergenic regions, suggesting selection is stronger in transcribed regions where nucleosomes undergo more displacement, remodeling and functional modification. In addition, we observe a large-scale (∼180 bp) periodic enrichment of AA/TT dinucleotides associated with nucleosome occupancy, while GC dinucleotide frequency peaks in linker regions. Divergence and polymorphism data also support a role for natural selection in the generation and maintenance of these super-nucleosomal patterns. Our results demonstrate that nucleosome-associated sequence periodicities are under selective pressure, implying that structural interactions between nucleosomes and DNA sequence shape sequence evolution, particularly in introns.  相似文献   

16.
In Escherichia coli, (GpC)n sequences cloned into plasmid DNA molecules are deletion-prone with the occurrence of both short (<2 bp) and long (>2 bp) deletion events. These repetitive tracts can be stabilized by interrupting the strict monotony of the repetition with a variant dinucleotide sequence. The stabilization of short deletion events that is mediated by the variant sequence is completely lost in E. coli mismatch repair-deficient strains. In contrast, this repair pathway has no influence on the frequency of occurrence of long deletion events, even in sequences containing the variant repeat. These results lead us to propose two distinct models to account for short and long deletions within repetitive sequences in E. coli. Furthermore, this study reveals that the deletions occur preferentially at the end of the repeat sequence that is distal with respect to the origin of replication.  相似文献   

17.
Meiotic recombination in yeast is initiated by DNA double-strand breaks (DSBs) that occur at preferred sites, distributed along the chromosomes. These DSB sites undergo changes in chromatin structure early in meiosis, but their common features at the level of DNA sequence have not been defined until now. Alignment of 1 kb sequences flanking six well-mapped DSBs has allowed us to define a flexible sequence motif, the CoHR profile, which predicts the great majority of meiotic DSB locations. The 50 bp profile contains a poly(A) tract in its centre and may have several gaps of unrelated sequences over a total length of up to 250 bp. The major exceptions to the correlation between CoHRs and preferred DSB sites are at telomeric regions, where DSBs do not occur. The CoHR sequence may provide the basis for understanding meiosis-induced chromatin changes that enable DSBs to occur at defined chromosomal sites.  相似文献   

18.
19.
Like many transposons the bacterial insertion sequence IS903 was thought to insert randomly. However, using both genetic and statistical approaches, we have derived a target site for IS903 that is used 84% of the time. Computational and genetic analyses of multiple IS903 insertion sites predicted a preferred target consisting of a 21 bp palindromic pattern centered on the 9 bp target duplication generated during transposition. Here we show that targeting can be dissected into four components: the 5 bp flanking sequences, the most important sequences required for site-specific insertion; the 7 bp palindromic core within the target duplication; the dinucleotide pair at the transposon-target junction; and the local DNA context. Finally, using a substrate with multiple target sites we show that a target site is more likely found by a local bind-and-slide model and not by extended DNA tracking.  相似文献   

20.
S Aho  V Tate    H Boedtker 《Nucleic acids research》1984,12(15):6117-6125
During the fine structural analysis of the 5' end of the 38 kb chicken pro alpha 2(I) collagen gene, we failed to locate an exon, only 11 bp in size, which had been predicted from the DNA sequence analysis of a cDNA clone complementary to the 5' end of the pro alpha 2(I) collagen mRNA (1). We know report the location of this 11 bp exon, exon 2, at the 5' end of a 180 bp Pst I fragment, 1900 bp 3' to exon 1 and 600 bp 5' to exon 3. Its sequence, ATGTGAGTGAG, is highly unusual in that it contains two overlapping consensus donor splice sequences. Moreover, it is flanked by two overlapping donor splice sequences but only one of the four splice sequences is actually spliced (1). The first half of intron 1 also has an unusual sequence: it is 68% GC, contains 88 CpG dinucleotides and 11 Hpa II sites. The second half is more like other intron sequences in the collagen gene with a GC content of 41%, 19 CpG, and no Hpa II sites. However it contains two sequences with 7 and 9 bp homology to the 14 bp SV40 enhancer core sequence. It is suggested that some part of intron 1 may be involved in regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号