首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disulfide reductase (DSR) of mice liver supernatant is kinetically demonstrated as associating-dissociating oligomeric protein with positive homotropic cooperativity for the substrate. Cyclic 3',5'-AMP (10(-11)--10(-5) M) activates DSR and increases V, but does not change either [S]0,5, nor nH and does not shift the plot of specific activity versus the enzyme concentration. ATP, GTP, UTP, CTP, protamine, histone, Mg2+, Ca2+, EDTA (but not adenosine, 5'-AMP, 2'3'-AMP, ADP beef serum albumin) activated DSR. The effects of different modifiers are not summed up. Preincubation is essential for the action of the majority of the activators. Heating for 8 minutes at 55 degrees C desensitized completely DSR to all the modifiers without changing its catalytic activity, [S]0,5 and nH values. Possible mechanisms of activation of DSR, especially the involvement of protein kinase, are discussed.  相似文献   

2.
The activation of 2 different mouse liver enzymes: cytozolic disulfide reductase (DSR) and mitochondrial NAD-isocitrate dehydrogenase (ICDH), by catecholamines and especially by 3',5'-AMP is characterized by negative cooperativity; substrate (both enzymes), protamine and EDTA (DSR) produce the positive cooperativity type of activation; DSR activation by isopropyl noradrenaline and serotonine is characterized by hyperbolic kinetics. Consequently, one and the same enzyme can combine positive cooperativity to non-specialized regulators (substrate, protamine, EDTA) with negative cooperativity to specialized regulators (3',5'-AMP, catecholamines). The systems, switching on by catecholamines and 3',5'-AMP, are oligomeric, and the degree and even the type of cooperativity can modify depending on the kind of catecholamine. The negative cooperativity is revealed in literature for many effects of catecholamines and 3',5'-AMP. Probably, it guarantees the broad range of regulations. Dose effect curves for 3',5'-AMP, catecholamines and other hormones should be analyzed on the basis of allosteric protein kinetics. A simple nomogram is given to estimate nH less than 1.  相似文献   

3.
A dependence of rat liver urocaninase activity on the agents affecting the adenylate cyclase system was studied in vitro and in vivo. Urocaninase is considerably activated after the injection of glucagone, NaF, theophylline and 3',5'-AMP. Under conditions optimal for the protein kinase activity of phosphorylase the urocaninase of liver extracts was activated 7-fold on the average. The nezyme retains its activity after gel-filtration through Sephadex G-25 and is capable of inactivation in the presence of Mg2+ and of reactivation after addition of ATP and 3',5'-AMP. These data suggest a possibility of regulation of mammalian liver urocaninase activity by 3',5'-AMP-dependent phosphorylation of the enzyme. Derivatives of hypoxanthine (theophylline and caffeine) in concentration 10(-4) M activate urocaninase in liver extracts 2--3 and 1.5-fold respectively. The activation is probably not due to the 3',5'-AMP phosphodiesterase inhibition, since another phosphodiesterase inhibitor--papaverine--has no activating effect on urocaninase.  相似文献   

4.
N6,O2'-dibutyrylcyclo-3',5'-AMP injected to intact rats alone or in combination with theophylline increases the activity of guanidine acetate methyltransferase (GAMT) in liver and pancreas. Cyclic 3',5'-AMP and its dibutyryl analog administered immediately or two hours after the suturing of common bile duct (SCBD) stimulate the increase of pancreatic GAMT activity 2-3 fold. Glucagon, injected intraabdominally simultaneously with SCBD and administration of theophylline, dramatically increases the theophylline effect on the GAMT activity. The freezing of rat pancreas pretreated witn secretin, a hormone structurally similar to glucagon, results in a 1.5-2-fold increase of creatine synthesis from S-adenosylmethionine and guanidinacetic acid. An hour after glucagon administration to intact rats the GAMT activity of liver increases 9 times. The effect of glucagon is enhanced by insulin. Cycloheximide inhibits the increase of GAMT activity, induced by glucagon or a combination of glucagon and insulin. Experiments on tissue homogenates demonstrate that 3',5'-AMP in concentrations of 10(-8) --10(-2) M does not affect the GAMT activity or to some extent inhibits the enzyme. The homogenate incubation in a medium containing 10(-5) M epinephrine or 10(-7) M caffeine and 5 mM Mg2+ leads to an increase in the GAMT activity. Oligomycin removes the stimulating effects of caffeine and Mg2+ on the enzyme activation. This is probably due to the presence of 3',5'-AMP-dependent protein kinase in the mechanism of GAMT activation by cyclic AMP.  相似文献   

5.
Chromatography on DEAE-cellulose of a soluble sulfate-precipitated fraction of cyclic nucleotide phosphodiesterase from rabbit myometrium revealed two 3':5'-GMP and 3':5'-AMP-hydrolase activities. 3':5'-GMP phosphodiesterase (fraction I) was eluted with 0.15-0.23 M NaCl, while 3':5'-AMP phosphodiesterase (fraction II) with 0.2-0.35 M NaCl. 3':5'-GMP phosphodiesterase hydrolyzed 3':5'-GMP with Km = 14 microM and V = 5.25 nmol . min . mg of protein, while 3':5'-AMP phosphodiesterase hydrolyzed both cyclic nucleotides with Km for 3':5'-GMP equal to 12 microM and V = 1.33 nmol . min . mg of protein; the Km value for 3':5'-AMP was 3.6 and 30.5 microM, respectively; the corresponding values of V were 0.28 and 0.97 nmol . min . mg of protein. In late pregnancy, the level of the 3':5'-AMP hydrolase activity of rabbit myometrium was significantly elevated in parallel with an increase in V, predominantly for the enzyme with a low affinity for 3':5'-AMP. The 3':5'-GMP hydrolase activity and V were largely decreased for both phosphodiesterase fractions; the Km value for fraction I was also diminished. During labour, the rate of 3':5'-AMP hydrolysis by myometrium phosphodiesterase was decreased down to the level typical of functional rest. The rate of 3':5'-GMP hydrolysis during the same period by fraction I remained at a low level, i. e., as in pregnancy, while that of fraction II was increased up to the level typical of functional rest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effect of several inhibitors of the enzyme cyclic 3',5'-AMP phosphodiesterase as chemoattractants in Physarum polycephalum was examined. Of the compounds tested, 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Roche 20-1724/001) and 1-ethyl-4-(isopropylidinehydrazino)-1H-pyrazolo-(3,4-b)-pyridine-5-carboxylic acid ethyl ester, hydrochloride (Squibb 20009) were the most potent attractants. 3-Isobutyl-1-methyl xanthine, theophylline, and morin (a flavanoid) were moderate attractants and sometimes gave negative chemotaxis at high concentrations. Cyclic 3',5'-AMP was an effective, but not potent attractant. A repellent effect following the positive chemotactic action was sometimes observed with cyclic 3',5'-AMP at concentrations as high as 1 . 10(-2) M. Dibutyryl cyclic AMP appeared to be a somewhat more potent attractant than cyclic 3',5'-AMP. The 8-thiomethyl and 8-bromoderivatives of cyclic AMP, which are poorly hydrolyzed by the phosphodiesterase, were not attractants in Physarum. Possible participation of cyclic 3',5'-AMP in the directional movement in P. polycephalum is discussed.  相似文献   

7.
Two forms of cyclic nucleotide phosphodiesterase (ES 3.1.4.17)--PDE-I and PDE-II--sensitive and resistant to Ca-dependent protein regulator, were isolated from the soluble fraction of rabbit heart by chromatography on DEAE-cellulose. Both forms of enzyme are inhibited by 30--50% by Ca2+ (10(-4) M). Addition of Ca-dependent protein regulator activates PDE-I and eliminates Ca2+-induced inhibition of PDE-II. In heart extract Ca2+ increases the phosphodiesterase activity 1.5-fold. The amount of PDE-I makes up to about 10% of total phosphodiesterase activity of the heart; that of PDE-II is about 90%. In the presence of Ca-dependent protein regulator the rate of 3', 5'-AMP hydrolysis by PDE-I is increased 5--15-fold, while that of 3', 5'-GMP hydrolysis only 2.5-fold. Both PDE-I and PDE-II have close Km values for substrates--(3.5--4.0).10(-6) M for 3', 5'-AMP and 14.10(-6) M for 3', 5'-GMP. Inhibition by Ca2+ and effect of Ca-dependent protein regulator manifest themselves in changes in V for cyclic nucleotide hydrolysis and do not alter the Km value for the enzyme.  相似文献   

8.
In rabbit skeletal muscle extracts the activity of phosphodiesterase practically insensitive to the increase of Ca2+ concentration from 10(-8) M up to 10(-5) M. The Ca2+-dependent protein regulator is separated from phosphodiesterase at the stage of isolation and purification. The activity of phosphodiesterase devoid of the protein regulator is inhibited by Ca2+ (10(-5)--10(-3) M). An addition of Ca2+-dependent regulator protects the enzyme against inhibition by Ca2+. The Km values for 3',5'-AMP (5 mkM) and 3',5'-GMP (13 mkM) appear to be close; however, the maximal hydrolysis rates for these nucleotides differ considerably (14,0 and 0,25--0,50 nmoles/min/mg of protein). The hydrolysis of 3',5'-AMP is increased 1,6--3,2-fold under the effect of 3',5'-GMP and that of 3',5'-GMP is increased 1,8--2,7-fold under the effect of 3',5'-AMP. Using ion-exchange chromatography it was shown that only 1% of the total activity of skeletal muscle phosphodieterase belongs to the phosphodiesterase sensitive to the activating effect of Ca2+-dependent regulator the activity of this enzymic form is increased 4--5 fold. The Ca2+-dependent regulator of skeletal muscles is inactivated under the effects of trypsin and during gel-filtration is eluted together with the Ca2+-dependent regulator from the heart. The amount of Ca2+-dependent regulator in skeletal muscles is 30 times as low as that in brain and 3 times as low as that in the heart of the rabbit.  相似文献   

9.
The renal extracellular 2',3'-cAMP-adenosine and 3',5'-cAMP-adenosine pathways (extracellular cAMPs→AMPs→adenosine) may contribute to renal adenosine production. Because mouse kidneys provide opportunities to investigate renal adenosine production in genetically modified kidneys, it is important to determine whether mouse kidneys express these cAMP-adenosine pathways. We administered (renal artery) 2',3'-cAMP and 3',5'-cAMP to isolated, perfused mouse kidneys and measured renal venous secretion rates of 2',3'-cAMP, 3',5'-cAMP, 2'-AMP, 3'-AMP, 5'-AMP, adenosine, and inosine. Arterial infusions of 2',3'-cAMP increased (P < 0.0001) the mean venous secretion of 2'-AMP (390-fold), 3'-AMP (497-fold), adenosine (18-fold), and inosine (adenosine metabolite; 7-fold), but they did not alter 5'-AMP secretion. Infusions of 3',5'-cAMP did not affect venous secretion of 2'-AMP or 3'-AMP, but they increased (P < 0.0001) secretion of 5'-AMP (5-fold), adenosine (17-fold), and inosine (6-fold). Energy depletion (metabolic inhibitors) increased the secretion of 2',3'-cAMP (8-fold, P = 0.0081), 2'-AMP (4-fold, P = 0.0028), 3'-AMP (4-fold, P = 0.0270), 5'-AMP (3-fold, P = 0.0662), adenosine (2-fold, P = 0.0317), and inosine (7-fold, P = 0.0071), but it did not increase 3',5'-cAMP secretion. The 2',3'-cAMP-adenosine pathway was quantitatively similar in CD73 -/- vs. +/+ kidneys. However, 3',5'-cAMP induced a 6.7-fold greater increase in 5'-AMP, an attenuated increase (61% reduction) in inosine and a similar increase in adenosine in CD73 -/- vs. CD73 +/+ kidneys. In mouse kidneys, 1) 2',3'-cAMP and 3',5'-cAMP are metabolized to their corresponding AMPs, which are subsequently metabolized to adenosine; 2) energy depletion activates the 2',3'-cAMP-adenosine, but not the 3',5'-cAMP-adenosine, pathway; and 3) although CD73 is involved in the 3',5'-AMP-adenosine pathway, alternative pathways of 5'-AMP metabolism and reduced metabolism of adenosine to inosine compensate for life-long deficiency of CD73.  相似文献   

10.
J L Gabriel  G W Plaut 《Biochemistry》1990,29(14):3528-3535
The specificity of yeast NAD-specific isocitrate dehydrogenase for the structures of the allosteric effector 5'-AMP was examined with analogues modified in the purine ring, pentosyl group, and 5'-phosphate group. An unsubstituted 6-amino group was essential for activation as was the phosphoryl group at the 5'-position. Activity was retained when an oxygen function of the 5'-phosphoryl was replaced by sulfur (Murry & Atkinson, 1968) or by nitrogen (phosphoramidates). 2-NH2-AMP, 2-azido-AMP, and 8-NH2-AMP were active; 8-azido-AMP and 8-Br-AMP were inactive. The configuration or nature of substituents about carbons 2' and 3' of the pentosyl portion of AMP was not critical for allosteric activation since AMP analogues containing, e.g., 2',3'-dideoxyribose or the bulky 2',3'-O-(2,4,6-trinitrocyclo-hexadienylidene) substituent (TNP-AMP) were active. TNP-AMP was bound to the enzyme with fluorescence enhancement and had an S0.5 for activation similar to the S0.5 for AMP. Positive effector activity was decreased when the pentosyl moiety of 5'-AMP was replaced by the six-membered nitrogen-containing morpholine group, indicating that the pentosyl group may be critical as a spacer for the proper geometry of binding to enzyme at the 6-amino and 5'-phosphoryl groups of 5'-AMP. A comparison of molecular models of 5'-AMP with 8,5'-cycloAMP suggests that the species of 5'-AMP required for binding to the enzyme contains the purine and ribose moieties in an anti conformation and positioning of the 5'-phosphate trans with respect to carbon 4'.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
M E Dahmus 《Biochemistry》1976,15(9):1821-1829
The activity of purified RNA polymerase II from Novikoff ascites tumor cells is stimulated 5-7-fold by a purified protein factor. This protein factor, designated HLF2, has extensive protein kinase activity and catalyzed the incorporation of gamma-32G from ATP into protein under normal RNA polymerase assay conditions. Protein phosphorylation is totally dependent on the presence of HLF2 and is stimulated 2-3-fold by the presence of highly purified RNA polymerase II. The purification procedure developed for the isolation of the polymerase stimulatory factor resulted in a 4000-fold purification of a protein kinase. Chromatography on carboxymethylcellulose, phosphocellulose, and Sephadex G-100 did not resolve polymerase stimulatory activity from protein kinase activity. Adenylimidodiphosphate (AMP-PNP), an inhibitor of protein kinases, inhibited the stimulatory activity of purified factor by 80%. The heat denaturation profile of protein kinase was paralleled by the loss of polymerase stimulatory activity. Concentrations of (NH4)2SO4 which are known to inhibit polymerase stimulation (Lee and Dahmus, 1973) also inhibit protein kinase activity. The protein kinase activity associated with stimulatory factor catalyzes the phosphorylation of basic proteins such as protamine or histone. The protein kinase is not stimulated by cyclic 3', 5'-AMP or -GMP over a concentration range of 10(-6)-10(-4)M. Furthermore, protein kinase activity is not inhibited by either the regulatory subunit of rabbit muscle protein kinase or by the heat-stable inhibitor of cyclic 3', 5'-AMP-dependent protein kinases. Protein kinase activity is stimulated by KCl or NH4Cl and is inhibited by MnCl2. The apparent Km values, determined in the presence of 4 mM Mg2+, are 0.02 mM for ATP, and 4.1 mM for GTP.  相似文献   

12.
The effect of 5'-AMP and cyclic 3',5'-AMP on the ability of cells--precursors of bone marrow to form colonies of fibroblast-like cells in vitro was studied in the guinea pig. No reliable effect of both substances (within the limits of 10(-5) to 10(-8) M) on the formation of fibroblast colonies in vitro by the cells--precursors of bone marrow was shown. No differences were established in the size of colonies between the experimental and control variants.  相似文献   

13.
During 1.5- and 3-months physical exercise the activity of soluble 3':5'-AMP-dependent protein kinase of the rat increases 2.4- and 4.6-fold, respectively. The maximal activity of the enzymes from heart muscles of control and experimental animals is observed at the same concentration of 3':5'-AMP (10(-6) M) and pH (6.8-7.0). The degree of changes in V and apparent Km for ATP and histone H2b depend on the duration of physical exercise. The changes in the properties of soluble 3':5'-AMP-dependent protein kinase suggest the participation of the enzyme in adaptation to systematic muscular activity.  相似文献   

14.
It was shown that in conditions of acute radiation affection there was a decrease of 37% and 32% in activity of cyclic AMP-dependent protein kinases, isolated from cytosol of gray substance of rat brain cells and from the synaptic membranes solubilized by triton X-100, respectively. The activity of enzymes from the control and irradiated animals was maximum with similar concentration of 3':5'-AMP (10(-6) M) and pH (7.4) in Tris-HCl and HEPES-buffers. Histone H4 was shown to be the best substrate for both enzyme forms. Other substrates under study were phosphorylated to a lesser degree.  相似文献   

15.
Isopropylnoradrenaline (ISO), 3',5'-AMP and dibutyryl-3',5'-AMP decreased the oxygen tension (pO2) in the liver and the spleen and increased the body oxygen consumption (VO2). Time dynamics of these two effects was closely correlated for ISO and 3',5'-AMP. An increase of heat output was not accompanied by any significant changes in the respiration coefficient. Pempidine and dihydroergotamine failed to prevent 3',5'-AMP effects; inderal somewhat decreased these effects. Apparently, the catecholamine influence upon pO2 was a result of the VO2 increase through 3'5'-AMP effects are largely direct, but they include the in vivo and beta-receptor component; 2',3'-AMP decreased pO2 and VO2.  相似文献   

16.
Two forms of soluble phosphodiesterase of cyclic nucleotides separating by DEAE-cellulose ion-exchange chromatography and not only differing in physicochemical and catalytic parameters but also differently regulated by calmodulin are found in the doe myometrium. Calmodulin with 10(-7)-10(-5) M concentrations of Ca2+ promotes the two-fold activation of the 3':5'-AMP (but not of 3':5'-GMP) hydrolysis by the first form of phosphodiesterase. Trifluoperazine (10 microM) lowers the activating action of calmodulin. The second form of soluble phosphodiesterase is not sensitive to the action of both calmodulin and Ca2+. 3':5'-GMP (10 microM) inhibits the 3':5'-AMP hydrolysis by the first form of phosphodiesterase; calmodulin exerts no effect on this process. The data obtained testify to the possible participation of Ca2+ and calmodulin in Ca2+-calmodulin-dependent phosphodiesterase regulation of the content of cyclic nucleotides (3':5'-AMP, in particular) in the doe myometrium.  相似文献   

17.
Cyclic nucleotide phosphodiesterase from wheat sprouts was isolated and partially purified. The molecular weight of the enzyme is about 83 000. The enzyme activity sharply rises as the inhibiting factors present in the homogenate are separated. The pH optimum of the enzymatic reaction is 4,8. Divalent cations (Mg2+, Mn2+, Cu2+) within the concentration range of 1--5 mM and complexons (EDTA, EGTA) at the concentration of 1 mM do not affect the PDE activity. The temperature optimum for the reaction is 60 degrees. The enzyme hydrolyzes 3' : 5'-AMP, 3' : 5'-GMP and 2':3'-AMP. The Km value for cAMP is 4 . 10(-3) M. The enzyme activity is inhibited by chemical agents possessing the fungicide activity, the strongest effect being exerted by anylate.  相似文献   

18.
The phosphorus-proton nuclear Overhauser effect (NOE) was used to investigate the quantitative distribution of rotamers about the C3'--O3' bond (phi') of 3'-AMP and 2',3'-cyclic-CMP and the C4'--C5', C5'--O5' bonds (psi, phi) of 5'-AMP. Phosphorus-proton and proton-proton NOE's were used to provide a qualitative insight into the backbone conformation and the glycosyl angle torsions of adenosylyl-(3' leads to 5')-adenosine (ApA). The major psi rotamer in 5'-AMP is the 60 degree (gg) form, while the major phi rotamer is the 180 degrees (g'g') form. The constrained model, 2',3'-cyclic-CMP, manifests the C3'endo furanose pucker predominantly. The results from these two models are consistent with nuclear magnetic resonance (NMR) J coupling analyses. The phi; distribution of 3'-AMP is dominated (77%) by the 180 degrees g- rotamer. The 3'-AMP results are consistent with phosphorus-hydrogen coupling constant analyses, but do not accord with phosphorus-carbon coupling constant results. The phosphorus-proton NOE reveals that the phosphorus of ApA occupies a region of conformation space not seen in 5'-AMP. The proton-proton NOE on APA shows a significant portion of syn rotamer in both X distributions and detects a cross-purine ring interaction consistent with base stacking known to exist in this system.  相似文献   

19.
A unique phosphatase that selectively hydrolyzed phosphotyrosine and 2'-AMP at alkaline pH and p-nitrophenylphosphate at neutral pH was isolated from a cytosolic fraction of rat brain. The purified enzyme appeared homogenous on SDS-polyacrylamide gel electrophoresis and its molecular weight was estimated to be 42,000. The molecular weight of the native enzyme was 45,000 as determined by molecular sieve chromatography. These findings indicate that the native enzyme is a monomer protein. At pH 8.6, the enzyme hydrolyzed L-phosphotyrosine, D-phosphotyrosine, 2'-AMP, p-nitrophenylphosphate, 3'-AMP, 2'-GMP, and 3'-GMP; the ratio of its activities with these substrates was 100:96:115:68:39:25:16. Its Km values for L-phosphotyrosine, 2'-AMP, and p-nitrophenylphosphate were 0.8 X 10(-4) M, 1.4 X 10(-4) M, and 1.7 X 10(-4) M, respectively. At pH 7.4, the enzyme hydrolyzed p-nitrophenylphosphate, L-phosphotyrosine, and D-phosphotyrosine; the ratio of its activities with these compounds was 100:17:17, and its Km values for L-phosphotyrosine and p-nitrophenylphosphate were 1.8 X 10(-4) M and 2.0 X 10(-4) M, respectively. The enzyme activity was dependent on Mn2+ or Mg2+, and was strongly inhibited by 5'-nucleotides, pyrophosphate, and Zn2+. The enzyme was not sensitive to inhibitors of some well-characterized phosphatases such as NaF, molybdate, L(+)tartrate, tetramisole, vanadate, and lithium salt. The physiological role of the enzyme is discussed with respect to its activities toward phosphotyrosine, 2'-AMP, and p-nitrophenylphosphate.  相似文献   

20.
It was found that 3':5'-AMP is bound by rat liver mitochondria with an affinity which corresponds to a physiological concentration of the nucleotide and a low capacity. The bound 3':5'-AMP rapidly dissociates upon dilution of mitochondrial suspensions. This finding points to the existence in mitochondria of a 3':5'-AMP receptor protein. The putative biological role of this protein is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号