首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G Nolte  G Curio 《Biophysical journal》1997,73(3):1253-1262
Spatially restricted biological current distributions, like the primary neuronal response in the human somatosensory cortex evoked by electric nerve stimulation, can be described adequately by a current multipole expansion. Here analytic formulas are derived for computing magnetic fields induced by current multipoles in terms of an nth-order derivative of the dipole field. The required differential operators are given in closed form for arbitrary order. The concept is realized in different forms for an expansion of the scalar as well as the dyadic Green's function, the latter allowing for separation of those multipolar source components that are electrically silent but magnetically detectable. The resulting formulas are generally applicable for current sources embedded in arbitrarily shaped volume conductors. By using neurophysiologically relevant source parameters, examples are provided for a spherical volume conductor with an analytically given dipole field. An analysis of the signal-to-noise ratio for multipole coefficients up to the octapolar term indicates that the lateral extent of cortical current sources can be detected by magnetoencephalographic recordings.  相似文献   

2.
We prove that, at the frequencies generally proposed for extracranial stimulation of the brain, it is not possible, using any superposition of external current sources, to produce a three-dimensional local maximum of the electric field strength inside the brain. The maximum always occurs on a boundary where the conductivity jumps in value. Nevertheless, it may be possible to achieve greater two-dimensional focusing and shaping of the electric field than is currently available. Towards this goal we have used the reciprocity theorem to present a uniform treatment of the electric field inside a conducting medium produced by a variety of sources: an external magnetic dipole (current loop), an external electric dipole (linear antenna), and surface and depth electrodes. This formulation makes use of the lead fields from magneto- and electroencephalography. For the special case of a system with spherically symmetric conductivity, we derive a simple analytic formula for the electric field due to an external magnetic dipole. This formula is independent of the conductivity profile and therefore embraces spherical models with any number of shells. This explains the "insensitivity" to the skull's conductivity that has been described in numerical studies. We also present analytic formulas for the electric field due to an electric dipole, and also surface and depth electrodes, for the case of a sphere of constant conductivity.  相似文献   

3.
Particle-in-cell simulations show that the inhomogeneity scale of the plasma produced in the interaction of high-power laser radiation with gas targets is of fundamental importance for ion acceleration. In a plasma slab with sharp boundaries, the quasistatic magnetic field and the associated electron vortex structure produced by fast electron beams both expand along the slab boundary in a direction perpendicular to the plasma density gradient, forming an extended region with a quasistatic electric field, in which the ions are accelerated. In a plasma with a smooth density distribution, the dipole magnetic field can propagate toward the lower plasma density in the propagation direction of the laser pulse. In this case, the electron density in an electric current filament at the axis of the magnetic dipole decreases to values at which the charge quasineutrality condition fails to hold. In electric fields generated by this process, the ions are accelerated to energies substantially higher than those characteristic of plasma configurations with sharp boundaries.  相似文献   

4.
The critical current at which an unsteady oscillating virtual cathode forms in an electron beam is studied as a function of the external magnetic field guiding the beam electrons. It is shown that the critical beam current decreases with external magnetic field and that there is an optimum magnetic induction at which the critical current for the onset of an oscillating virtual cathode in the beam is minimum. For a strong guiding magnetic field, the critical beam current is described by relationships derived under the assumption that the motion of the beam electrons is one-dimensional. Such behavior is explained by the characteristic features of the dynamics of the beam electrons in longitudinal and radial directions in the interaction space at different inductions of the external magnetic field.  相似文献   

5.
6.
The problem is considered of configurations of a strongly magnetized inviscid plasma around a rotating magnetized central body. Strong plasma magnetization implies that the Hall conductivity is much lower than the transverse conductivity, which in turn is much lower than the longitudinal conductivity. For such conditions, a self-consistent set of equations is derived that describes the conduction current density, the magnetic and electric fields, and the angular frequency of the plasma rotation under the assumptions that the components of the dielectric tensor of the plasma envelope are known functions of height and that the plasma mass velocity has only the azimuthal component. Under the assumption that the transverse conductivity is constant over a magnetic surface, the nonlinear equations derived are solved in quadratures within the class of angular frequency distributions that are symmetric about the equatorial plane. A particular solution for the plasma configurations in a dipole magnetic field is considered that corresponds to a model exponential dependence of the transverse conductivity on the number of the L-envelope (or, equivalently, on the number of the unperturbed magnetic surface).  相似文献   

7.
We study the properties of the potential field generated by an oblique dipole layer. This field arises, for instance, in describing the potential elicited by a depolarization wavefront spreading in the myocardium when a dependence of the potential on the cardiac fiber orientation is introduced. The representation of cardiac bioelectric sources by means of an oblique dipole layer leads to a mathematical structure which generalizes the classical solid angle theory used in electrocardiology, which has been challenged by recent experimental evidence, and links models previously proposed with a view to adequately reproduce the potential observed in experiments. We investigate also the relationship between our model and an intracellular current model and we derive potential jump formulae for some models which account for the anisotropic structure of the myocardium. The potential generated by an oblique dipole layer is considered both for unbounded and bounded domains. In the latter case an integral boundary equation is derived and we study its solvability. A numerical procedure for solving this integral equation by means of the finite element method with collocation is outlined.  相似文献   

8.
A closed set of reduced dynamic equations is derived that describe nonlinear low-frequency flute MHD convection and resulting nondiffusive transport processes in weakly dissipative plasmas with closed or open magnetic field lines. The equations obtained make it possible to self-consistently simulate transport processes and the establishment of the self-consistent plasma temperature and density profiles for a large class of axisymmetric nonparaxial shearless magnetic devices: levitated dipole configurations, mirror systems, compact tori, etc. Reduced equations that are suitable for modeling the long-term evolution of the plasma on time scales comparable to the plasma lifetime are derived by the method of the adiabatic separation of fast and slow motions.  相似文献   

9.
L Trahms  S N Ern  Z Trontelj  G Curio    P Aust 《Biophysical journal》1989,55(6):1145-1153
The first detection of the magnetic field of a stimulated peripheral nerve in man is presented. The measurement was performed noninvasively and in vivo on a healthy subject. The spatio-temporal field distribution is utilized to calculate the location of bioelectric activity on the basis of the equivalent current dipole model. The localization of the active nerve tissue is confirmed by a computer tomography image of the upper arm cross-section. Furthermore, a calculation of the total current distribution in the nerve explains the observed morphology of the signal.  相似文献   

10.
基于模拟退火法由脑磁图推测电流偶极子参数   总被引:1,自引:0,他引:1  
利用模拟退火(Simulated Annealing) 算法,由脑磁图( MEG) 数据反演脑内作为磁源的单电流偶极子参数,可以得到理想的结果。在上述工作的基础上,对脑内多电流偶极子参数的反演,则呈现如下状况:即以少于实际源数目的偶极子为源假设反演,目标函数得不到极小优化。反之,目标函数可以得到极小优化, 但出现多余的伪偶极子, 且这些伪偶极子在多次不同条件的反演结果中,处于不稳定状态。若将多次反演结果中处于不稳定状态的偶极子作为伪偶极子的判据而将其排除,则可以得到一种判断磁源偶极子数目的方法  相似文献   

11.
We present a computational study of reentry wave propagation using electrophysiological models of human cardiac cells and the associated magnetic field map of a human heart. We examined the details of magnetic field variation and related physiological parameters for reentry waves in two-dimensional (2-D) human atrial tissue and a three-dimensional (3-D) human ventricle model. A 3-D mesh system representing the human ventricle was reconstructed from the surface geometry of a human heart. We used existing human cardiac cell models to simulate action potential (AP) propagation in atrial tissue and 3-D ventricular geometry, and a finite element method and the Galerkin approximation to discretize the 3-D domain spatially. The reentry wave was generated using an S1-S2 protocol. The calculations of the magnetic field pattern assumed a horizontally layered conductor for reentry wave propagation in the 3-D ventricle. We also compared the AP and magnetocardiograph (MCG) magnitudes during reentry wave propagation to those during normal wave propagation. The temporal changes in the reentry wave motion and magnetic field map patterns were also analyzed using two well-known MCG parameters: the current dipole direction and strength. The current vector in a reentry wave forms a rotating spiral. We delineated the magnetic field using the changes in the vector angle during a reentry wave, demonstrating that the MCG pattern can be helpful for theoretical analysis of reentry waves.  相似文献   

12.
We investigate through simulations the phenomena of magnetoreception to enable an understanding of the minimum requirements of a fail-safe mechanism, operational at the cellular level, to sense a weak magnetic field at ambient temperature in a biologically active environment. To do this, we use magnetotactic bacteria (MTB) as our model system. The magnetic field sensing ability of these bacteria is due to the presence of magnetosomes, which are internal membrane-bound organelles that contain an iron-based magnetic mineral crystal. These magnetosomes are usually found arranged in a chain aligned with the long axis of the bacterial body. This arrangement yields an overall magnetic dipole moment to the bacterial cell. To simulate this orientation process, we set up a rotational Langevin stochastic differential equation and solve it repeatedly over appropriate time steps for isolated spherical shaped MTB as well as for a more realistic model of spheroidal MTB with flagella. The orientation process appears to depend on shape parameters with spheroidal MTB showing a slower response time compared to spherical MTB. Further, our simulation also reveals that the alignment to the external magnetic field is more robust for an MTB when compared to single magnetosome. For the simulation involving magnetosomes, we include an extra torque that arises from the twisting of an attachment tether and enhance the viscosity of the surrounding medium to mimic intracellular conditions in the governing Langevin equation. The response time of alignment is found to be substantially reduced when one includes a dipole interaction term with a neighboring magnetosome and the alignment becomes less robust with increase in inter dipole distance. The alignment process can thereby be said to be very sensitively dependent on the distance between magnetosomes. Simulating the process of alignment between two neighboring magnetosomes, both in the absence and presence of an ambient magnetic field, we conclude that alignment between these dipoles at the distances typical in an MTB is highly probable and it would be the locked unit that responds to changes in the external magnetic field.  相似文献   

13.
AimAiming at analysing the signal conduction in muscular fibres, the spatio-temporal dynamics of the magnetic field generated by the propagating muscle action potential (MAP) is studied.MethodIn this prospective, proof of principle study, the magnetic activity of the intrinsic foot muscle after electric stimulation of the tibial nerve was measured using optically pumped magnetometers (OPMs). A classical biophysical electric dipole model of the propagating MAP was implemented to model the source of the data. In order to account for radial currents of the muscular tubules system, a magnetic dipole oriented along the direction of the muscle was added.ResultsThe signal profile generated by the activity of the intrinsic foot muscles was measured by four OPM devices. Three OPM sensors captured the spatio-temporal magnetic field pattern of the longitudinal intrinsic foot muscles. Changes of the activation pattern reflected the propagating muscular action potential along the muscle. A combined electric and magnetic dipole model could explain the recorded magnetic activity.InterpretationOPM devices allow for a new, non-invasive way to study MAP patterns. Since magnetic fields are less altered by the tissue surrounding the dipole source compared to electric activity, a precise analysis of the spatial characteristics and temporal dynamics of the MAP is possible. The classic electric dipole model explains major but not all aspects of the magnetic field. The field has longitudinal components generated by intrinsic structures of the muscle fibre. By understanding these magnetic components, new methods could be developed to analyse the muscular signal transduction pathway in greater detail. The approach has the potential to become a promising diagnostic tool in peripheral neurological motor impairments.  相似文献   

14.
Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field–tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field–tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens’ equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens’ equivalent surface is obtained using the FDTD method by considering the complex field–tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens’ equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.  相似文献   

15.
A central problem in the study of magnetic sensitivity in animals has been the lack of behavioral techniques sufficiently powerful for the systematic psychophysical work required for an understanding of magnetosensory capacity and of the transduction mechanism. In recent experiments, free-flying honeybees have been conditioned to discriminate the presence and absence of localized magnetic dipole anomalies superimposed on the uniform background field of the earth. The results obtained thus far suggest that movement is necessary for conditioned responding to magnetic field stimuli and support the hypothesis that magnetic field transduction is based on single-domain particles of magnetite found in the anterodorsal abdomen of honeybees.  相似文献   

16.
The effect of long-wavelength magnetic field disturbances typical of the Earth’s auroral region on the generation of auroral kilometric radiation in a narrow three-dimensional plasma cavity in which a weakly relativistic electron flow propagates against the background of cold low-density plasma is analyzed. The dynamics of the propagation and amplification of fluctuation waves with initial group velocities directed toward the higher magnetic field is considered in the geometrical optics approximation. Analysis of wave trajectories shows that the wave amplification coefficients depend on the magnetic field gradient in the reflection region. If the wave reflection point lies in the region where the gradient of the disturbed magnetic field is less than that of the undisturbed dipole field, then the wave amplification coefficients exceed those of waves propagating in the undisturbed field, and vice versa. Thus, the shape of the spectrum of generated waves changes in the presence of long-wavelength disturbances of the dipole magnetic field in such a way that segments with different curvatures can form in the spectrum.  相似文献   

17.
Source localization based on magnetoencephalographic and electroencephalographic data requires knowledge of the conductivity values of the head. The aim of this paper is to examine the influence of compartment conductivity changes on the neuromagnetic field and the electric scalp potential for the widely used three compartment boundary element models. Both the analysis of measurement data and the simulations with dipoles distributed in the brain produced two significant results. First, we found the electric potentials to be approximately one order of magnitude more sensitive to conductivity changes than the magnetic fields. This was valid for the field and potential topology (and hence dipole localization), and for the amplitude (and hence dipole strength). Second, changes in brain compartment conductivity yield the lowest change in the electric potentials topology (and hence dipole localization), but a very strong change in the amplitude (and hence in the dipole strength). We conclude that for the magnetic fields the influence of compartment conductivity changes is not important in terms of dipole localization and strength estimation. For the electric potentials however, both dipole localization and strength estimation are significantly influenced by the compartment conductivity.  相似文献   

18.
How pigeons return home from unfamiliar release sites is a long-standing puzzle in animal behaviour. Walker (1998, 1999) has described a "vector summation model" which "identifies a novel coordinate that pigeons could use with magnetic total intensity to determine position". The model is not applicable in a magnetic field generated simply by a geocentric dipole, but requires a field perturbed by higher-order sources. Tests are devised to simulate the addition of both regional and local magnetic anomalies to a geocentric dipole field, and to calculate the directions of the home loft from a number of release sites. The results indicate that a pigeon would be unlikely to derive useful information from the model.  相似文献   

19.
Magnetorotational instability of a weakly ionized accretion disk with an admixture of charged dust grains in a magnetic field with the axial and toroidal components is analyzed. The dispersion relation for perturbations perpendicular to the disk plane is derived with allowance for both the Hall current and the finite transverse plasma conductivity. It is shown that dust grains play an important role in the disk magnetic dynamics. Due to the effect of dust grains, the Hall current can reverse its direction as compared to the case of electron-ion plasma. As a result, the instability threshold shifts toward the short-wavelength range. Under certain conditions, electromagnetic fluctuations of any length can become unstable. It is established that the instability criterion for waves of any scale length is satisfied within a finite interval of the density ratio between the dust and electron plasma components. The width of this interval and the instability growth rate as functions of the plasma parameters and the configuration of the magnetic field in the disk are analyzed.  相似文献   

20.
Magnetotactic bacteria are microorganisms that orient and migrate along magnetic field lines. The classical model of polar magnetotaxis predicts that the field-parallel migration velocity of magnetotactic bacteria increases monotonically with the strength of an applied magnetic field. We here test this model experimentally on magnetotactic coccoid bacteria that swim along helical trajectories. It turns out that the contribution of the field-parallel migration velocity decreases with increasing field strength from 0.1 to 1.5 mT. This unexpected observation can be explained and reproduced in a mathematical model under the assumption that the magnetosome chain is inclined with respect to the flagellar propulsion axis. The magnetic disadvantage, however, becomes apparent only in stronger than geomagnetic fields, which suggests that magnetotaxis is optimized under geomagnetic field conditions. It is therefore not beneficial for these bacteria to increase their intracellular magnetic dipole moment beyond the value needed to overcome Brownian motion in geomagnetic field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号