首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
TREM2 in Alzheimer’s disease   总被引:1,自引:0,他引:1  
Recent works have demonstrated a rare functional variant (R47H) in triggering receptor expressed on myeloid cells (TREM) 2 gene, encoding TREM2 protein, increase susceptibility to late-onset Alzheimer’s disease (AD), with an odds ratio similar to that of the apolipoprotein E ε4 allele. The reduced function of TREM2 was speculated to be the main cause in the pathogenic effects of this risk variant, and TREM2 is highly expressed in white matter, as well as in the hippocampus and neocortex, which is partly consistent with the pathological features reported in AD brain, indicating the possible involvement of TREM2 in AD pathogenesis. Emerging evidence has demonstrated that TREM2 could suppress inflammatory response by repression of microglia-mediated cytokine production and secretion, which may prevent inflammation-induced bystander damage of neurons. TREM2 also participates in the regulation of phagocytic pathways that are responsible for the removal of neuronal debris. In this article, we review the recent epidemiological findings of TREM2 that related with late-onset AD and speculate the possible roles of TREM2 in progression of this disease. Based on the potential protective actions of TREM2 in AD pathogenesis, targeting TREM2 might provide new opportunities for AD treatment.  相似文献   

3.
Genetic factors play an important role in the Alzheimer’s disease (AD) development and memory impairment is a cardinal clinical feature of AD. Kidney and brain expressed protein (KIBRA), owing to its connection with human episodic memory, became an interesting candidate gene for AD. Recently, KIBRA (rs17070145) was reported to be associated with AD in the genetic and functional levels in Caucasian and African-American, and the association might be different across age groups. To investigate the possibility of age-dependent association of KIBRA with AD in Asian, we conducted an independent replication study in a cohort of 1,586 subjects from Han Chinese (including 790 LOAD patients and 796 healthy controls). The results revealed no significant differences in the distributions of genotype or allele between LOAD and control groups in the total sample. However, when these data were stratified by their age, we observed a significant difference in the genotypes and alleles frequencies (genotype: p = 0.004, allele: p = 0.035) in the young subgroup. Moreover, the association was further demonstrated in logistic regression analysis (rs17070145: p = 0.045, OR = 0.428). Our data suggested that KIBRA might associate with younger AD patients (≤74 years) in a Northern Han Chinese population.  相似文献   

4.
Chasing genes in Alzheimer’s and Parkinson’s disease   总被引:4,自引:0,他引:4  
Alzheimers disease (AD), the most common type of dementia, and Parkinsons disease (PD), the most common movement disorder, are both neurodegenerative adult-onset diseases characterized by the progressive loss of specific neuronal populations and the accumulation of intraneuronal inclusions. The search for genetic and environmental factors that determine the fate of neurons during the ageing process has been a widespread approach in the battle against neurodegenerative disorders. Genetic studies of AD and PD initially focused on the search for genes involved in the aetiological mechanisms of monogenic forms of these diseases. They later expanded to study hundreds of patients, affected relative-pairs and population-based studies, sometimes performed on special isolated populations. A growing number of genes (and pathogenic mutations) is being identified that cause or increase susceptibility to AD and PD. This review discusses the way in which strategies of gene hunting have evolved during the last few years and the significance of finding genes such as the presenilins, -synuclein, parkin and DJ-1. In addition, we discuss possible links between these two neurodegenerative disorders. The clinical, pathological and genetic presentation of AD and PD suggests the involvement of a few overlapping interrelated pathways. Their imbricate features point to a spectrum of neurodegeneration (tauopathies, synucleinopathies, amyloidopathies) that need further intense investigation to find the missing links.  相似文献   

5.
Alzheimer’s disease (AD) is the most common form of dementia. At the diagnostic stage, the AD brain is characterized by the accumulation of extracellular amyloid plaques, intracellular neurofibrillary tangles and neuronal loss. Despite the large variety of therapeutic approaches, this condition remains incurable, since at the time of clinical diagnosis, the brain has already suffered irreversible and extensive damage. In recent years, it has become evident that AD starts decades prior to its clinical presentation. In this regard, transgenic animal models can shed much light on the mechanisms underlying this “pre-clinical” stage, enabling the identification and validation of new therapeutic targets. This paper summarizes the formidable efforts to create models mimicking the various aspects of AD pathology in the rat. Transgenic rat models offer distinctive advantages over mice. Rats are physiologically, genetically and morphologically closer to humans. More importantly, the rat has a well-characterized, rich behavioral display. Consequently, rat models of AD should allow a more sophisticated and accurate assessment of the impact of pathology and novel therapeutics on cognitive outcomes.  相似文献   

6.
Molecular Biology Reports - Estrogens are hormones that play a critical role during development and growth for the adequate functioning of the reproductive system of women, as well as for...  相似文献   

7.
Purinergic Signalling - Alzheimer’s disease (AD) is the most common dementia in the elderly and its increasing prevalence presents treatment challenges. Despite a better understanding of the...  相似文献   

8.
The β-amyloid (Aβ) peptide has been postulated to be a key determinant in the pathogenesis of Alzheimer’s disease (AD). Aβ is produced through sequential cleavage of the β-amyloid precursor protein (APP) by β- and γ-secretases. APP and relevant secretases are transmembrane proteins and traffic through the secretory pathway in a highly regulated fashion. Perturbation of their intracellular trafficking may affect dynamic interactions among these proteins, thus altering Aβ generation and accelerating disease pathogenesis. Herein, we review recent progress elucidating the regulation of intracellular trafficking of these essential protein components in AD.  相似文献   

9.
Alzheimer’s disease (AD) is characterized by cognitive impairment, progressive neurodegeneration, and Aβ accumulation. Aβ oligomers can lead to synaptic damage via alterations in glutamate receptors and excitotoxicity, as well as mitochondrial dysfunction. AD is associated with various biological indicators, including (1) predisposing factors such as genetic risk factors, (2) laboratory markers such as Aβ and tau protein, and (3) diagnostic markers such as MRI and PET findings. However, these markers are not confirmed, invasive, or expensive. In the present study, we employed nuclear magnetic resonance (NMR) methods that are inexpensive, time-efficient, and can be performed using samples obtained from various easily accessible sources such as cerebrospinal fluid, plasma, and peripheral tissue, thus highlighting the clinical utility of this approach. NMR analyses of blood metabolites showed that glutamine, glutamate, leucine, oxaloacetate, aspartate, isoleucine, and 3-hydroxyisovalerate are increased in patients with AD compared with control individuals. These metabolites seem to be related to mitochondrial dysfunction. Our data indicated that 3-hydroxyisovalerate, which is linked to known pathologic processes associated with mitochondrial dysfunction and accelerated neurodegeneration, was increased in the blood samples of patients with AD.  相似文献   

10.
11.
Various innovative diagnostic methods for Alzheimer’s disease (AD) have been developed in view of the increasing preva-lence and consequences of later-life dementia. Biomarkers in cerebrospinal fluid (CSF) and blood for AD are primarily based on the detection of components derived from amyloid plaques and neurofibrillary tangles (NFTs). Published reports on CSF and blood biomarkers in AD indicate that although biomarkers in body fluids may be utilized in the clinical diagnosis of AD, there are no specific markers that permit accurate and reliable diagnosis of early-stage AD or the monitoring of disease pro-gression.  相似文献   

12.
13.
Elite swimmers and the D allele of the ACE I/D polymorphism   总被引:13,自引:0,他引:13  
A polymorphism of the human angiotensin-1-converting enzyme (ACE) gene has been identified in which the presence (insertion, I allele) of a 287-bp fragment rather than the absence (deletion, D allele) is associated with lower ACE activity. Several recent studies have shown an association of the I allele with endurance performance, it being found with excess frequency in elite distance runners, rowers and mountaineers. Other workers using heterogeneous cohorts of athletes from mixed sporting disciplines have found no such association. An increasing linear trend of I allele frequency with the distance run amongst Olympic runners and an excess of the D allele amongst sprinters led us to examine whether the ratio of I and D alleles in swimmers competing over different distances would also vary. Swimmers (n=120) from the European and Commonwealth championships and an American college team had their ACE genotype determined and their gene and allele frequencies compared with several control groups, the most closely age-matched of which were 1,248 military recruits. Of the 103 Caucasians, there was a significant excess of the D allele compared with this control group only in the truly elite swimmers of the European and Commonwealth championships (P=0.004). This association remained in those competing over shorter distances (P=0.005 for 400 m and below) but not in the longer events. These findings were confirmed in three further large control groups. A population association study testing whether a genetic marker (the ACE I/D polymorphism) occurs more frequently in cases (elite athletes) than in controls therefore requires a homogeneous cohort of subjects from the same sporting discipline.  相似文献   

14.
Studies on the role that genetic variation may play in a complex human disease can be empowered by an assessment of both disease risk in case-control or family models and of quantitative traits that reflect elements of disease etiology. An excellent example of this can be found for the 4 allele of APOE in relation to Alzheimers disease (AD) for which association with both risk and age-at-onset (AAO) is evident. Following a recent demonstration that variants of the gene encoding angiotensin I converting enzyme (ACE) contribute to AD risk, we have explored the potential influence of ACE upon AAO in AD. A total of 2861 individuals from three European populations, including six independent AD samples, have been examined in this study. Three single nucleotide polymorphisms (SNPs) previously demonstrated to have maximum effects upon ACE plasma levels and that span the ACE locus were genotyped in these materials. A strong effect upon AAO was observed for marker rs4343 in exon 17 (P<0.0001), but evidence was also obtained indicating a possible independent effect of marker rs4291 (P=0.0095) located in the ACE promoter. Effects were consistent with data from previous studies suggesting association with AD in case-control models, whereby alleles demonstrated to confer risk to disease also appear to reduce AAO. Equivalent effects were evident regardless of APOE 4 carrier status and in both males and females. These results provide an important complement to existing AD risk data, confirming that ACE harbors sequence variants that contribute to aspects of AD pathology.  相似文献   

15.
The aging process correlates with a progressive failure in the normal cellular and organ functioning; these alterations are aggravated in Alzheimer’s disease (AD). In both aging and AD there is a general decrease in the capacity of the body to eliminate toxic compounds and, simultaneously, to supply the brain with relevant growth and nutritional factors. The barriers of the brain are targets of this age related dysfunction; both the endothelial cells of the blood–brain barrier and the choroid plexus epithelial cells of the blood-cerebrospinal fluid barrier decrease their secretory capacity towards the brain and their ability to remove toxic compounds from the brain. Additionally, during normal aging and in AD, the permeability of the brain barriers increase. As such, a greater contact of the brain parenchyma with the blood content alters the highly controlled neural environment, which impacts on neural function. Of interest, the brain barriers are more than mere obstacles to the passage of molecules and cells, and therefore active players in brain homeostasis, which is still to be further recognized and investigated in the context of health and disease. Herein, we provide a review on how the brain barriers change during aging and in AD and how these processes impact on brain function.  相似文献   

16.
Alzheimer’s disease (AD) is a heterogeneous disorder with multiple patterns of clinical manifestations. Recently, due to the advance of linkage studies, next-generation sequencing and genome-wide association studies, a large number of putative risk genes for AD have been identified using acquired genome mega data. The genetic association between three causal genes, including amyloid precursor protein, presenilin1, and presenilin2 in early-onset AD (EOAD), was discovered over the past few decades. These discoveries showed that there should be additional genetic risk factors for both EOAD and late-onset AD (LOAD) to help fully explain the leading molecular mechanisms in a single pathophysiological entity. This study reviews the clinical features and genetic etiology of LOAD and discusses a variety of AD-mediated genes that are involved in cholesterol and lipid metabolism, endocytosis, and immune response according to their mutations for more efficient selection of functional candidate genes for LOAD. New mechanisms and pathways have been identified as a result.  相似文献   

17.
Etiology of the Alzheimer’s disease (AD) is not fully understood. Different pathological processes are considered, such as amyloid deposition, tau protein phosphorylation, oxidative stress (OS), metal ion disregulation, or chronic neuroinflammation. Purinergic signaling is involved in all these processes, suggesting the importance of nucleotide receptors (P2X and P2Y) and adenosine receptors (A1, A2A, A2B, A3) present on the CNS cells. Ecto-purines, ecto-pyrimidines, and enzymes participating in their metabolism are present in the inter-cellular spaces. Accumulation of amyloid-β (Aβ) in brain induces the ATP release into the extra-cellular space, which in turn stimulates the P2X7 receptors. Activation of P2X7 results in the increased synthesis and release of many pro-inflammatory mediators such as cytokines and chemokines. Furthermore, activation of P2X7 leads to the decreased activity of α-secretase, while activation of P2Y2 receptor has an opposite effect. Simultaneous inhibition of P2X7 and stimulation of P2Y2 would therefore be the efficient way of the α-secretase activation. Activation of P2Y2 receptors present in neurons, glia cells, and endothelial cells may have a positive neuroprotective effect in AD. The OS may also be counteracted via the purinergic signaling. ADP and its non-hydrolysable analogs activate P2Y13 receptors, leading to the increased activity of heme oxygenase, which has a cytoprotective activity. Adenosine, via A1 and A2A receptors, affects the dopaminergic and glutaminergic signaling, the brain-derived neurotrophic factor (BNDF), and also changes the synaptic plasticity (e.g., causing a prolonged excitation or inhibition) in brain regions responsible for learning and memory. Such activity may be advantageous in the Alzheimer’s disease.  相似文献   

18.
19.
Deposits of amyloid peptide Aβ and intracellular aggregates of hyperphosphorylated tau protein in the brain of patients are major neuropathological features of Alzheimer’s disease (AD). For a long time, the possibility of horizontal transmission of Aβ aggregates from cell to cell and from person to person remained hypothetical, since there was no experimental evidence. However, in 1993, the formation of senile plaques was confirmed in the brains of animals after intracerebral injections of AD patient brain homogenates. or homogenates of the brain of transgenic mice enriched with Aβ aggregates Other experiments indicate that amyloid peptide Aβ and intracellular aggregates of hyperphosphorylated tau protein may be transferred from cell to cell like prions. In 2015 and 2016, it was reported that AD could be transmitted to humans during medical procedures, i.e., that this disease might be iatrogenic. This review discusses the mechanisms by which pathogenic Aβ protein can be transmitted between cells and analyzes the current evidence concerning the possibility of horizontal Aβ transmission from person to person.  相似文献   

20.
Ionic and signal transduction alterations in Alzheimer’s disease   总被引:2,自引:0,他引:2  
Several lines of, evidence indicate that Alzheimer’s disease (AD) has systemic expression. Systemic changes are manifested as alterations in a number of molecular and cellular processes. Although, these alterations appear to have little or no consequence in peripheral systems, their parallel expression in the central nervous system (CNS) could account for the principal clinical manifestations of the disease. Recent research seems to indicate that alterations in ion channels, calcium homeostasis, and protein kinase C (PKC) can be linked and thereby constitute a model of pathophysiological relevance. Considering the difficulties of studying dynamic pathophysiological processes in the disease-ridden postmortem AD brain, peripheral tissues such as fibroblasts provide a suitable model to study molecular and cellular aspects of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号