首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The purpose of this study was to test the hypothesis that efferent sympathetic neural discharge is coupled with the development of muscle fatigue during voluntary exercise in humans. In 12 healthy subjects (aged 20-34 yr) we measured heart rate (HR), arterial blood pressure (AP), and noncontracting, skeletal muscle sympathetic nerve activity (MSNA) in the leg (peroneal nerve) before (control) and during each of three trials of submaximal (30% of maximum) isometric handgrip exercise performed to exhaustion. In six of the subjects of eletromyographic (EMG) activity of the exercising forearm was also measured. HR and AP increased significantly (P less than 0.05) in the 1st min of exercise in all trials. In contrast, neither MSNA nor EMG activity increased significantly above control during the 1st min of exercise, but both parameters subsequently increased in a progressive and parallel manner (P less than 0.05). The overall correlation coefficient between MSNA and EMG activity (144 observations) was 0.85 (P less than 0.001). With successive trials the magnitudes of the increases in HR, AP, MSNA, and EMG activity were greater at any absolute point in time during exercise. These results indicate that sympathetic activation to noncontracting skeletal muscle is directly related to the development of muscle fatigue (as assessed by the change in EMG) during prolonged isometric exercise in humans. Furthermore, our findings demonstrate that previous fatiguing contractions alter the time course of the sympathetic neural adjustments to exercise.  相似文献   

2.
3.
The aim of this study was to determine whether excessive oxygen uptake (Vo2) occurs not only during exercise but also during recovery after heavy exercise. After previous exercise at zero watts for 4 min, the main exercise was performed for 10 min. Then recovery exercise at zero watts was performed for 10 min. The main exercises were moderate and heavy exercises at exercise intensities of 40 % and 70 % of peak Vo2, respectively. Vo2 kinetics above zero watts was obtained by subtracting Vo2 at zero watts of previous exercise (DeltaVo2). Delta Vo2 in moderate exercise was multiplied by the ratio of power output performed in moderate and heavy exercises so as to estimate the Delta Vo2 applicable to heavy exercise. The difference between Delta Vo2 in heavy exercise and Delta Vo2 estimated from the value of moderate exercise was obtained. The obtained Vo2 was defined as excessive Vo2. The time constant of excessive Vo2 during exercise (1.88+/-0.70 min) was significantly shorter than that during recovery (9.61+/-6.92 min). Thus, there was excessive Vo2 during recovery from heavy exercise, suggesting that O2/ATP ratio becomes high after a time delay in heavy exercise and the high ratio continues until recovery.  相似文献   

4.
The aim of this study was to test the hypothesis that bicycle training may improve the relationship between the global SEMG energy and VO2. We already showed close adjustment of the root mean square (RMS) of the surface electromyogram (SEMG) to the oxygen uptake (VO2) during cycling exercise in untrained subjects. Because in these circumstances an altered neuromuscular transmission which could affect SEMG measurement occurred in untrained individuals only, we searched for differences in the SEMG vs. VO2 relationship between untrained subjects and well-trained cyclists. Each subject first performed an incremental exercise to determine VO2max and the ventilatory threshold, and second a constant-load threshold cycling exercise, continued until exhaustion. SEMG from both vastus lateralis muscles was continuously recorded. RMS was computed. M-Wave was periodically recorded. During incremental exercise: (1) a significant non-linear positive correlation was found between RMS increase and VO2 increase in untrained subjects, whereas the relationship was best fitted by a straight line in trained cyclists; (2) the RMS/VO2 ratio decreased progressively throughout the incremental exercise, its decline being significantly and markedly accentuated in trained cyclists; (3) in untrained subjects, significant M-wave alterations occurred at the end of the trial. These M-wave alterations could explain the non-linear RMS increase in these individuals. During constant-load exercise: (1) after an initial increase, the VO2 ratio decreased progressively to reach a plateau after 2 min of exercise, but no significant inter-group differences were noted; (2) no M-wave changes were measured in the two groups. We concluded that the global SEMG energy recorded from the vastus lateralis muscle is a good estimate of metabolic energy expenditure during incremental cycling exercise only in well-trained cyclists.  相似文献   

5.
We tested the hypothesis that heavy-exercise phase II oxygen uptake (VO(2)) kinetics could be speeded by prior heavy exercise. Ten subjects performed four protocols involving 6-min exercise bouts on a cycle ergometer separated by 6 min of recovery: 1) moderate followed by moderate exercise; 2) moderate followed by heavy exercise; 3) heavy followed by moderate exercise; and 4) heavy followed by heavy exercise. The VO(2) responses were modeled using two (moderate exercise) or three (heavy exercise) independent exponential terms. Neither moderate- nor heavy-intensity exercise had an effect on the VO(2) kinetic response to subsequent moderate exercise. Although heavy-intensity exercise significantly reduced the mean response time in the second heavy exercise bout (from 65.2 +/- 4.1 to 47.0 +/- 3.1 s; P < 0.05), it had no significant effect on either the amplitude or the time constant (from 23.9 +/- 1.9 to 25.3 +/- 2.9 s) of the VO(2) response in phase II. Instead, this "speeding" was due to a significant reduction in the amplitude of the VO(2) slow component. These results suggest phase II VO(2) kinetics are not speeded by prior heavy exercise.  相似文献   

6.
7.
It is presently unclear how the fast and slow components of pulmonary oxygen uptake (VO(2)) kinetics would be altered by body posture during heavy exercise [i.e., above the lactate threshold (LT)]. Nine subjects performed transitions from unloaded cycling to work rates representing moderate (below the estimated LT) and heavy exercise (VO(2) equal to 50% of the difference between LT and peak VO(2)) under conditions of upright and supine positions. During moderate exercise, the steady-state increase in VO(2) was similar in the two positions, but VO(2) kinetics were slower in the supine position. During heavy exercise, the rate of adjustment of VO(2) to the 6-min value was also slower in the supine position but was characterized by a significant reduction in the amplitude of the fast component of VO(2), without a significant slowing of the phase 2 time constant. However, the amplitude of the slow component was significantly increased, such that the end-exercise VO(2) was the same in the two positions. The changes in VO(2) kinetics for the supine vs. upright position were paralleled by a blunted response of heart rate at 2 min into exercise during supine compared with upright heavy exercise. Thus the supine position was associated with not only a greater amplitude of the slow component for VO(2) but also, concomitantly, with a reduced amplitude of the fast component; this latter effect may be due, at least in part, to an attenuated early rise in heart rate in the supine position.  相似文献   

8.
Langsetmo, I., G. E. Weigle, M. R. Fedde, H. H. Erickson, T. J. Barstow, and D. C. Poole.O2 kinetics in thehorse during moderate and heavy exercise. J. Appl.Physiol. 83(4): 1235-1241, 1997.The horse is asuperb athlete, achieving a maximalO2 uptake (~160ml · min1 · kg1)approaching twice that of the fittest humans. Although equine O2 uptake(O2) kinetics arereportedly fast, they have not been precisely characterized, nor hastheir exercise intensity dependence been elucidated. To addressthese issues, adult male horses underwent incremental treadmill testingto determine their lactate threshold (Tlac) and peakO2(O2 peak),and kinetic features of their O2 response to"square-wave" work forcings were resolved using exercisetransitions from 3 m/s to abelow-Tlac speed of 7 m/s or anabove-Tlac speed of 12.3 ± 0.7 m/s (i.e., between Tlac and O2 peak) sustainedfor 6 min. O2 andCO2 output were measured using anopen-flow system: pulmonary artery temperature was monitored, and mixedvenous blood was sampled for plasma lactate.O2 kinetics at work levelsbelow Tlac were well fit by atwo-phase exponential model, with a phase2 time constant(1 = 10.0 ± 0.9 s) thatfollowed a time delay (TD1 = 18.9 ± 1.9 s). TD1 was similar tothat found in humans performing leg cycling exercise, but the timeconstant was substantially faster. For speeds aboveTlac,TD1 was unchanged (20.3 ± 1.2 s); however, the phase 2 time constantwas significantly slower (1 = 20.7 ± 3.4 s, P < 0.05) than for exercise belowTlac. Furthermore, in four of fivehorses, a secondary, delayed increase inO2 became evident135.7 ± 28.5 s after the exercise transition. This "slowcomponent" accounted for ~12% (5.8 ± 2.7 l/min) of the netincrease in exercise O2. Weconclude that, at exercise intensities below and aboveTlac, qualitative features ofO2 kinetics in the horseare similar to those in humans. However, at speeds belowTlac the fast component of theresponse is more rapid than that reported for humans, likely reflectingdifferent energetics of O2utilization within equine muscle fibers.

  相似文献   

9.
The mechanisms responsible for the oxygen uptake (VO2) slow component during high-intensity exercise have yet to be established. In order to explore the possibility that the VO2 slow component is related to the muscle contraction regimen used, we examined the pulmonary VO2 kinetics during constant-load treadmill and cycle exercise at an exercise intensity that produced the same level of lactacidaemia for both exercise modes. Eight healthy subjects, aged 22-37 years, completed incremental exercise tests to exhaustion on both a cycle ergometer and a treadmill for the determination of the ventilatory threshold (defined as the lactate threshold, Th1a) and maximum VO2 (VO2max). Subsequently, the subjects completed two "square-wave" transitions from rest to a running speed or power output that required a VO2 that was halfway between the mode-specific Th1a and VO2max. Arterialised blood lactate concentration was determined immediately before and after each transition. The VO2 responses to the two transitions for each exercise mode were time-aligned and averaged. The increase in blood lactate concentration produced by the transitions was not significantly different between cycling [mean (SD) 5.9 (1.5) mM] and running [5.5 (1.6) mM]. The increase in VO2 between 3 and 6 min of exercise; (i.e. the slow component) was significantly greater in cycling than in running, both in absolute terms [290 (102) vs 200 (45) ml x min(-1); P<0.05] and as a proportion of the total VO2 response above baseline [10 (3)% vs 6 (1)%; P < 0.05]. These data indicate that: (a) a VO2 slow component does exist for high-intensity treadmill running, and (b) the magnitude of the slow component is less for running than for cycling at equivalent levels of lactacidaemia. The greater slow component observed in cycling compared to running may be related to differences in the muscle contraction regimen that is required for the two exercise modes.  相似文献   

10.
11.
The glucoregulatory response to intense exercise [IE, >80% maximum O(2) uptake (VO(2 max))] comprises a marked increment in glucose production (R(a)) and a lesser increment in glucose uptake (R(d)), resulting in hyperglycemia. The R(a) correlates with plasma catecholamines but not with the glucagon-to-insulin (IRG/IRI) ratio. If epinephrine (Epi) infusion during moderate exercise were able to markedly stimulate R(a), this would support an important role for the catecholamines' response in IE. Seven fit male subjects (26 +/- 2 yr, body mass index 23 +/- 0.5 kg/m(2), VO(2 max) 65 +/- 5 ml x kg(-1) x min(-1)) underwent 40 min of postabsorptive cycle ergometer exercise (145 +/- 14 W) once without [control (CON)] and once with Epi infusion [EPI (0.1 microg x kg(-1) x min(-1))] from 30 to 40 min. Epi levels reached 9.4 +/- 0.8 nM (20x rest, 10x CON). R(a) increased approximately 70% to 3.75 +/- 0.53 in CON but to 8.57 +/- 0.58 mg x kg(-1) x min(-1) in EPI (P < 0.001). Increments in R(a) and Epi correlated (r(2) = 0.923, P 相似文献   

12.
We assessed the linearity of oxygen uptake (VO2) kinetics for several work intensities in four trained cyclists. VO2 was measured breath by breath during transitions from 33 W (baseline) to work rates requiring 38, 54, 85, and 100% of maximal aerobic capacity (VO2max). Each subject repeated each work rate four times over 8 test days. In every case, three phases (phases 1, 2, and 3) of the VO2 response could be identified. VO2 during phase 2 was fit by one of two models: model 1, a double exponential where both terms begin together close to the start of phase 2, and model 2, a double exponential where each of the exponential terms begins independently with separate time delays. VO2 rose linearly for the two lower work rates (slope 11 ml.min-1 W-1) but increased to a greater asymptote for the two heavier work rates. In all four subjects, for the two lighter work rates the double-exponential regression reduced to a single value for the time constant (average across subjects 16.1 +/- 7.7 s), indicating a truly monoexponential response. In addition, one of the responses to the heaviest work rate was monoexponential. For the remaining seven biexponential responses to the two heaviest work rates, model 2 produced a significantly better fit to the responses (P less than 0.05), with a mean time delay for the slow component of 105 +/- 46 s.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The purpose of this study was to determine the effect of eccentric exercise on the ability to exert steady submaximal forces with muscles that cross the elbow joint. Eight subjects performed two tasks requiring isometric contraction of the right elbow flexors: a maximum voluntary contraction (MVC) and a constant-force task at four submaximal target forces (5, 20, 35, 50% MVC) while electromyography (EMG) was recorded from elbow flexor and extensor muscles. These tasks were performed before, after, and 24 h after a period of eccentric (fatigue and muscle damage) or concentric exercise (fatigue only). MVC force declined after eccentric exercise (45% decline) and remained depressed 24 h later (24%), whereas the reduced force after concentric exercise (22%) fully recovered the following day. EMG amplitude during the submaximal contractions increased in all elbow flexor muscles after eccentric exercise, with the greatest change in the biceps brachii at low forces (3-4 times larger at 5 and 20% MVC) and in the brachialis muscle at moderate forces (2 times larger at 35 and 50% MVC). Eccentric exercise resulted in a twofold increase in coactivation of the triceps brachii muscle during all submaximal contractions. Force fluctuations were larger after eccentric exercise, particularly at low forces (3-4 times larger at 5% MVC, 2 times larger at 50% MVC), with a twofold increase in physiological tremor at 8-12 Hz. These data indicate that eccentric exercise results in impaired motor control and altered neural drive to elbow flexor muscles, particularly at low forces, suggesting altered motor unit activation after eccentric exercise.  相似文献   

14.
The effects of prior moderate- and prior heavy-intensity exercise on the subsequent metabolic response to incremental exercise were examined. Healthy, young adult subjects (n = 8) performed three randomized plantar-flexion exercise tests: 1) an incremental exercise test (approximately 0.6 W/min) to volitional fatigue (Ramp); 2) Ramp preceded by 6 min of moderate-intensity, constant-load exercise below the intracellular pH threshold (pHT; Mod-Ramp); and 3) Ramp preceded by 6 min of heavy-intensity, constant-load exercise above pHT (Hvy-Ramp); the constant-load and incremental exercise periods were separated by 6 min of rest. (31)P-magnetic resonance spectroscopy was used to continuously monitor intracellular pH, phosphocreatine concentration ([PCr]), and inorganic phosphate concentration ([P(i)]). No differences in exercise performance or the metabolic response to exercise were observed between Ramp and Mod-Ramp. However, compared with Ramp, a 14% (SD 10) increase (P < 0.01) in peak power output (PPO) was observed in Hvy-Ramp. The improved exercise performance in Hvy-Ramp was accompanied by a delayed (P = 0.01) onset of intracellular acidosis [Hvy-Ramp 60.4% PPO (SD 11.7) vs. Ramp 45.8% PPO (SD 9.4)] and a delayed (P < 0.01) onset of rapid increases in [P(i)]/[PCr] [Hvy-Ramp 61.5% PPO (SD 12.0) vs. Ramp 45.1% PPO (SD 9.1)]. In conclusion, prior heavy-intensity exercise delayed the onset of intracellular acidosis and enhanced exercise performance during a subsequent incremental exercise test.  相似文献   

15.
16.
We examined the effects of (-)-Hydroxycitrate (HCA) ingestion on fat oxidation during moderate intensity exercise in untrained men. Six subjects ingested 500 mg of HCA or a placebo for 5 days and did endurance exercise. Blood FFA concentrations were significantly increased and respiratory exchange ratio (RER) decreased by HCA ingestion. These results suggested short-term HCA ingestion increases fat oxidation in untrained men.  相似文献   

17.
This study examined the effect of heavy-intensity warm-up exercise on O(2) uptake (VO(2)) kinetics at the onset of moderate-intensity (80% ventilation threshold), constant-work rate exercise in eight older (65 +/- 2 yr) and seven younger adults (26 +/- 1 yr). Step increases in work rate from loadless cycling to moderate exercise (Mod(1)), heavy exercise, and moderate exercise (Mod(2)) were performed. Each exercise bout was 6 min in duration and separated by 6 min of loadless cycling. VO(2) kinetics were modeled from the onset of exercise by use of a two-component exponential model. Heart rate (HR) kinetics were modeled from the onset of exercise using a single exponential model. During Mod(1), the time constant (tau) for the predominant rise in VO(2) (tau VO(2)) was slower (P < 0.05) in the older adults (50 +/- 10 s) than in young adults (19 +/- 5 s). The older adults demonstrated a speeding (P < 0.05) of VO(2) kinetics when moderate-intensity exercise (Mod(2)) was preceded by high-intensity warm-up exercise (tau VO(2), 27 +/- 3 s), whereas young adults showed no speeding of VO(2) kinetics (tau VO(2), 17 +/- 3 s). In the older and younger adults, baseline HR preceding Mod(2) was elevated compared with Mod(1), but the tau for HR kinetics was slowed (P < 0.05) in Mod(2) only for the older adults. Prior heavy-intensity exercise in old, but not young, adults speeded VO(2) kinetics during Mod(2). Despite slowed HR kinetics in Mod(2) in the older adults, an elevated baseline HR before the onset of Mod(2) may have led to sufficient muscle perfusion and O(2) delivery. These results suggest that, when muscle blood flow and O(2) delivery are adequate, muscle O(2) consumption in both old and young adults is limited by intracellular processes within the exercising muscle.  相似文献   

18.
The effect of prior heavy-intensity warm-up exercise on subsequent moderate-intensity phase 2 pulmonary O2 uptake kinetics (tauVO2) was examined in young adults exhibiting relatively fast (FK; tauVO2 < 30 s; n = 6) and slow (SK; tauVO2 > 30 s; n = 6) VO2 kinetics in moderate-intensity exercise without prior warm up. Subjects performed four repetitions of a moderate (Mod1)-heavy-moderate (Mod2) protocol on a cycle ergometer with work rates corresponding to 80% estimated lactate threshold (moderate intensity) and 50% difference between lactate threshold and peak VO2 (heavy intensity); each transition lasted 6 min, and each was preceded by 6 min of cycling at 20 W. VO2 and heart rate (HR) were measured breath-by-breath and beat-by-beat, respectively; concentration changes of muscle deoxyhemoglobin (HHb), oxyhemoglobin, and total hemoglobin were measured by near-infrared spectroscopy (Hamamatsu NIRO 300). tauVO2 was lower (P < 0.05) in Mod2 than in Mod1 in both FK (20 +/- 5 s vs. 26 +/- 5 s, respectively) and SK (30 +/- 8 s vs. 45 +/- 11 s, respectively); linear regression analysis showed a greater "speeding" of VO2 kinetics in subjects exhibiting a greater Mod1 tauVO2. HR, oxyhemoglobin, and total hemoglobin were elevated (P < 0.05) in Mod2 compared with Mod1. The delay before the increase in HHb was reduced (P <0.05) in Mod2, whereas the HHb mean response time was reduced (P <0.05) in FK (Mod2, 22 +/- 3 s; Mod1, 32 +/- 11 s) but not different in SK (Mod2, 36 +/- 13 s; Mod1, 34 +/- 15 s). We conclude that improved muscle perfusion in Mod2 may have contributed to the faster adaptation of VO2, especially in SK; however, a possible role for metabolic inertia in some subjects cannot be overlooked.  相似文献   

19.
We investigated whether increased concentrations of circulating cytokines may be responsible for exercise-induced priming of blood neutrophils (J. A. Smith et al. Int. J. Sports Med. 11: 179-187, 1990). The plasma concentrations of tumor necrosis factor-alpha, interleukin- (IL) 1 beta, IL-6, granulocyte-macrophage colony-stimulating factor, and neopterin in trained and untrained human subjects were measured by immunoassay before and after 1 h of cycling at 60% of maximal oxygen uptake. C-reactive protein and creatine kinase (CK) were also measured before and 24 h after exercise as markers of the "acute-phase response" and muscle damage (C. Taylor et al. J. Appl. Physiol. 62: 464-469, 1987), respectively. The small changes in the plasma concentrations of cytokines or neopterin observed after exercise in both trained and untrained subjects were not significantly different to those found in a control group of nonexercised subjects. However, untrained subjects did exhibit an acute-phase response (P = 0.04) 24 h after exercise without additional release of CK into plasma. Baseline training differences were confined to a twofold elevation in CK activity (P = 0.04). The results show that circulating cytokines are unlikely to be responsible for the priming of neutrophil microbicidal activity observed after moderate endurance exercise (J. A. Smith et al. Int. J. Sports Med. 11: 179-187, 1990).  相似文献   

20.
The purpose of this study was to investigate gender-specific motor control strategies during eccentric exercise and delayed onset muscle soreness (DOMS) in the shoulder region. Twelve healthy males and females participated in the study. Eccentric shoulder exercises were conducted on the dominant shoulder while the other side served as control. The exerted force, range of shoulder elevation, rating of perceived exertion, pain intensity, and surface electromyography (EMG) from the trapezius muscles were recorded and analyzed. A significant decrease in exerted force during exercise was only found in males despite similar rating of perceived exertion among genders. During eccentric exercise: males showed increasing root mean square (RMS) of the EMG while a decrease occurred for females, no difference between genders in mean power frequency of the EMG were seen. During static and dynamic contractions: no differences between genders in pain intensity or RMS were observed; RMS of the exercised side were lower than that of the control side (P<0.05) at 24 h after exercise. The results indicated a more prominent muscle fatigue resistance in females compared with males and mobilization of different muscle activation strategies during eccentric exercise. A protective adaptation to DOMS, i.e. decrease in RMS values was found with no gender differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号