首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uptake and turnover of acetate in hypersaline environments   总被引:2,自引:0,他引:2  
Abstract: Acetate uptake and turnover rates were determined for the heterotrophic community in hypersaline environments (saltern crystallizer ponds, the Dead Sea) dominated by halpphilic Archaea. Acetate was formed from glycerol, which is potentially the major available carbon source for natural communities of halophilic Archaea. Values of [ K t+ S n] (the sum of the substrate affinity and the substrate concentration present in situ) for acetate measured in saltern crystallizer ponds were around 4.5–11.5 μM, while in the Dead Sea during a Dunaliella bloom values up to 12.8 μM were found. Maximal theoretical rates ( V max) of acetate uptake in saltern crystallizer ponds were 12–56 nmol l−1 h−1, with estimated turnover times for acetate ( T t) between 127–730 h at 35°C. V max values measured in the Dead Sea were between 0.8 and 12.8 nmol l−1 h−1, with turnover times in the range of 320–2190 h. V max values for acetate were much lower than those for glycerol. Comparisons with pure cultures of halophilic Archaea grown under different conditions showed that the natural communities were not adapted for preferential use of acetate. Both in natural brines and in pure cultures of halophilic Archaea, acetate incorporation rates rapidly decreased above the optimum pH value, probably since acetate enters the cell only in its unionized form. The low affinity for acetate, together with low potential utilization rates result in the long acetate turnover times, which explains the accumulation of acetate observed when low concentrations of glycerol are supplied as a nutrient to natural communities of halophilic Archaea.  相似文献   

2.
Cannibalism among starved groups of juvenile (19–48 days old) vundu catfish Heterobranchus longifilis was 66·5% nocturnal, and its impact under modified day length was proportional to the duration of the dark phase. Shallow depth and high population density decreased the intensity of cannibalism, whereas low density and deeper environments had an opposite effect. The presence of refuges had no significant effect on cannibalism. The maintenance ( R maint) and maximum ( R max) daily food rations (% day−1) of cannibals feeding on live prey were modelled as R maint=3·899 W C0·327 ( r 2=0·684; d.f.=31), and R max=49.545 W C0·321 ( r 2=0·999; d.f.=5), where W C was the body weight of the cannibal (g). The latter model indicated that the impact of a cannibal on a population decreased by a 20% margin each time the cannibal doubled its body weight, and suggested that cannibalism among vundu would become insignificant for cannibals heavier than 30 g. The significance of these findings is discussed within the contexts of vundu aquaculture and of general, conceptual models of the dynamics of cannibalism among fishes.  相似文献   

3.
Availability, uptake and turnover of glycerol in hypersaline environments   总被引:4,自引:0,他引:4  
Abstract A sensitive assay for glycerol and other polyols was developed, based on periodate oxidation to formaldehyde, followed by a colorimetric assay with 3-methyl-2-benzothiazolone hydrazone. Apparent glycerol concentrations thus measured in saltern crystallizer ponds were around 20–36 μM, while in the Dead Sea, during a Dunaliella bloom, values were up to 27 μM. However, these values probably overestimate the glycerol concentrations present, as shown by labeled glycerol uptake experiments. Values of [K + Sn] (natural concentration + affinity constant) in saltern ponds were as low as 0.76–1.4 μM, with Vmax values of 193–303 nmol 1−1h−1, and turnover times between 2.6–7.2 h at 35°C. Similar measurements in the Dead Sea were: [K + Sn] 0.07–1.41 μM, Vmax values 160–426 nmol 1−1h−1, and turnover times in the range of 0.45–3.3 h.  相似文献   

4.
The growth of two species of marine diatom, Thalassiosira weissflogii (Grunow) and Thalassiosira pseudonana (Hustedt), was followed in batch cultures at four concentrations of dissolved inorganic carbon from N- and C-replete lag phase into N- and/or C-deplete stationary phase. Results describe the relationship between carbon-specific growth rate (μC) and chl a :carbon (chl a :C) and glutamine:glutamate (gln:glu) ratios with changes in the cells' nutritional status (N:C), during the utilization of either NO3 or NH4 + . The use of the gln:glu ratio as an index of N:C requires further clarification. For both species and N sources, N stress resulted in a decrease in μC, chl a :C, and N:C relative to μCmax values, whereas C stress resulted in a decrease in μC and an increase in chl a :C and N:C relative to μCmax values. Both species attained a chl a :C ratio of approximately 15 μg·g 1 at μCmax using either N source. However, this value was not necessarily an indicator of maximal growth rate. NC colimitation resulted in decreased μC to values less than 20% of μCmax with only minor changes in chl a :C and N:C relative to μCmax values. Chl a :C results suggest a similarity between the light stress and C stress responses of marine diatoms. The potential for C stress in the marine environment needs to be addressed.  相似文献   

5.
The colony-forming haptophyte Phaeocystis antarctica is an important primary producer in the Ross Sea, and must survive long periods of darkness and freezing temperature in this extreme environment. We conducted experiments on the responses of P. antarctica-dominated phytoplankton assemblages to prolonged periods of darkness and freezing. Chlorophyll and photosynthetic capacity of the alga declined nonlinearly and independently of each other in the dark, and darkness alone would potentially reduce photosynthetic capacity by only 60 per cent over 150 days (approximately the length of the Antarctic winter in the southern Ross Sea). The estimated reduction of colonial mucous carbon is higher than that of colonial cell carbon, suggesting metabolism of the colonial matrix in the dark. The alga quickly resumed growth upon return to light. Phaeocystis antarctica also survived freezing, although longer freezing durations lengthened the lag before growth resumption. Particulate dimethylsulfoniopropionate relative to chlorophyll increased upon freezing and decreased upon darkness. Taken together, the abilities of P. antarctica to survive freezing and initiate growth quickly after darkness may provide it with the capability to survive in both the ice and the water column, and help explain its repeated dominance in austral spring blooms in the Ross Sea and elsewhere in the Southern Ocean.  相似文献   

6.
Effects on sugar beet ( Beta vulgaris L.) of current and elevated CO2 and temperature alone and in combination and their interactions with abundant and deficient nitrogen supply (HN and LN, respectively) have been studied in three experiments in 1993, 1994 and 1995. Averaged over all experiments, elevated CO2 (600 μ mol mol–1 in 1993 and 700 μ mol mol–1 in 1994 and 1995) increased total dry mass at final harvest by 21% (95% confidence interval (CI) = 21, 22) and 11% (CI = 6, 15) and root dry mass by 26% (CI = 19, 32) and 12% (CI = 6, 18) for HN and LN plants, respectively. Warmer temperature decreased total dry mass by 11% (CI = – 15, – 7) and 9% (CI = – 15, – 5) and root dry mass by 7% (CI = – 12, – 2) and 7% (CI = – 10, 0) for HN and LN plants, respectively. There was no significant interaction between temperature and CO2 on total or root dry mass. Neither elevated CO2 nor temperature significantly affected sucrose concentration per unit root dry mass. Concentrations of glycinebetaine and of amino acids, measured as α -amino-N, decreased in elevated CO2 in both N applications; glycinebetaine by 13% (CI = – 21, – 5) and 16% (CI = – 24, – 8) and α -amino-N by 24% (CI = – 36, – 11) and 16% (CI = – 26, – 5) for HN and LN, respectively. Warmer temperature increased α -amino-N, by 76% (CI = 50, 107) for HN and 21% (CI = 7, 36) for LN plants, but not glycinebetaine.  相似文献   

7.
Inorganic carbon limitation of photosynthesis in lake phytoplankton   总被引:5,自引:0,他引:5  
1. Inorganic carbon availability influences species composition of phytoplankton in acidic and highly alkaline lakes, whereas the overall influence on community photosynthesis and growth is subject to debate.
2. The influence of total dissolved inorganic carbon (DIC) and free CO2 on community photosynthesis was studied in six Danish lakes during the summer of 1995. The lakes were selected to ensure a wide range of chlorophyll a concentrations (1–120 μg l–1), pH (5.6–9.6) and DIC concentration (0.02–2.5 m m ). Photosynthesis experiments were performed using the 14C technique in CO2-manipulated water samples, either by changing the pH or by adding/removing CO2.
3. Lake waters were naturally CO2 supersaturated during most of the experimental period and inorganic carbon limitation of photosynthetic rates did not occur under ambient conditions. However, photosynthesis by phytoplankton in lakes with low and intermediate DIC concentrations was seriously restricted when CO2 concentrations declined. Similarly, photosynthesis was limited by low CO2 concentrations during phytoplankton blooms in the hardwater alkaline lakes.  相似文献   

8.
Abstract. The uptake and accumulation of inorganic carbon has been investigated in Chlorella ellipsoidea cells grown at acid or alkaline pH. Carbonic anhydrase (CA) was detected in ceil extracts but not in intact cells and CA activity in acid-grown cells was considerably less than that in alkali-grown cells. Both cell types demonstrates low K1/2 (CO2) values in the range pH 7.0–8.0 and these were unaffected by O2 concentration. The CO2 compensation concentrations of acid- and alkali-grown cells suspended in aqueous media were not significantly different in the range of pH 6.0–8.0, but at pH 5.0, the CO2 compensation concentrations of acid-grown cells (57.4cm3 m−3) were lower than those of alkali-grown cells (79.2cm3 m−3). The rate of photo-synthetic O2 evolution in the range pH 7.5–8.0 exceeded the calculated rate of CO2 supply two- to three-fold, in both acid- and alkali-grown cells, indicating that HCO3 was taken up by the cells. Accumulation of inorganic carbon was measured at pH 7.5 by silicone-oil centri-fugation, and the concentration of unfixed inorganic carbon was found to be 5.1 mol m−3 in acid-grown and 6.4mol m−3 in alkali-grown cells. These concentrations were 4.6- and 5.9-fold greater than in the external medium. These results indicate that photorespiration is suppressed in both acid- and alkali-grown cells by an intracellular accumulation of inorganic carbon due, in part, to an active uptake of bicarbonate.  相似文献   

9.
The growth of two commercially important flatfish, turbot ( Psetta maxima ) (L.) and brill ( Scophthalmus rhombus ) (L.), was investigated in the Adriatic using whole otoliths (sagittae) and stained otolith sections. At variance with the pattern usually observed in temperate seas, the opaque zone was found to be laid down in autumn and winter, and the translucent zone in spring and summer. Growth rates differed according to sex, with the females attaining greater body lengths. The von Bertalanffy growth parameters were: L=66.2 cm, K=0.31 years–1, and t0=–0.14 years for turbot males, L=81.5 cm, K=0.21 years–1, and t0=–0.48 years for turbot females; L=40.2 cm, K=0.49 years–1, and t0=–1.03 years for brill males; L=50.1 cm, K=0.27 years–1, and t0=–1.75 years for brill females. Growth rates and maximum age recorded for turbot were comparable to those reported in the North Sea.  相似文献   

10.
Highbush blueberry plants ( Vaccinium corymbosum L. cv. Bluecrop) growing in containers were flooded in the laboratory for various durations to determine the effect of flooding on carbon assimilation, photosynthetic response to varying CO2 and O2 concentrations and apparent quantum yield as measured in an open flow gas analysis system. Hydraulic conductivity of the root was also measured using a pressure chamber. Root conductivity was lower and the effect of increasing CO2 levels on carbon assimilation less for flooded than unflooded plants after short-(i-2 days), intermediate-(10–14 days) and long-term (35–40 days) flooding. A reduction in O2 levels surrounding the leaves from 21 to 2% for unflooded plants increased carbon assimilation by 33% and carboxylation efficiency from 0.012 to 0.021 mol CO2 fixed (mol CO2)−1. Carboxylation efficiency of flooded plants, however, was unaffected by a decrease in percentage O2, averaging 0.005 mol CO2 fixed (mol CO2)−1. Apparent quantum yield decreased from 2.2 × 10−1 mol of CO2 fixed (mol light)−1 for unflooded plants to 2.0 × 10−3 and 9.0 × 10−4 for intermediate- and long-term flooding durations, respectively. Shortterm flooding reduced carbon assimilation via a decrease in stomatal conductance, while longer flooding durations also decreased the carboxylation efficiency of the leaf.  相似文献   

11.
The distribution and production of transparent exopolymer particles (TEPs) were studied quantitatively both in cultures of Phaeocystis antarctica Karsten (Prymnesiophyceae) and in natural phytoplankton assemblages in the Ross Sea, Antarctica. TEP production in culture was a function of growth rate and photosynthetic activity and was strongly influenced by photon flux density. The concentrations of TEP measured during a bloom, dominated by P. antarctica, were higher than those produced by coastal diatom blooms and were correlated with chlorophyll a (Chl a), being low at Chl a levels below 3 μgL?1 but increasing rapidly at greater Chl a concentrations. Because higher chlorophyll hek are dominated 4 larger P. antarctica colonies, this relationship suggests that TEP was produced primarily by sloughing and disintegration of the colonial matrix. TEP concentrations (both absolute and relative to Chl a) increased as the bloom's biomass increased. Vertical distributions of TEP and Chl a showed TEP: chlorophyll maxima at the bottom of the water column at most stations. Because TEP and floc formation are tightly coupled, we suggest that mucous flocs derived from TEP, rather than intact P. antarctica colonies, are the dominant component of aggregates and subsequent organic carbon vertical flux.  相似文献   

12.
Processing tomato ( Lycopersicon esculentum Mill. cv. UC82B) plants were subjected to moderate levels of water deficit and salinity (Na2SO4/CaCl2) in sand culture. Fruit water content and the relative contributions of organic and inorganic constituents to fruit solute potential (Ψ) and soluble solids content were determined throughout development. Fruit Ψ averaged –0.63, –0.86 and –0.77 MPa in the control, salinity and water deficit plants, respectively. Reduced net water import and maintenance of solute accumulation, irrespective of water import, accounted for the reductions in Ψ of stressed fruits. Mineral ions (Na+, K+, Ca2+, Mg2+, Cl and SO2-4) contributed –0.31 MPa to Ψ in salinized fruit, compared with –0.19 MPa in control and water deficit treatments. Changes in net carbon accumulation were not observed among treatments, despite considerable differences in fruit K+ status. Starch accumulation in immature fruit was increased and hexose accumulation was decreased by both salinity and water deficit. Maximum starch levels were negatively correlated with total fruit Ψ, but were independent of fruit K+. Organic acid levels were generally higher throughout development in salinized plants, relative to control plants, and correlated with increased inorganic cation rather than anion accumulation in these fruits.  相似文献   

13.
The von Bertalanffy growth parameters for common wolf–fish Anarhichas lupus in the North Sea were: male: L ∞=111·2 cm, t 0=–0·43 and K =0·12; and female: L ∞=115·1 cm, t 0=–0·39 and K =0·11, making this the fastest growing stock reported. Resting metabolic rates (RMR±S.E.) and maximum metabolic rates (MMR±S.E.) for six adult common wolf–fish (mean weight, 1·39 kg) at 5° C were 12·18±1·6 mg O2 kg–1 h–1 and 70·65±7·63 mg O2 kg–1 h–1 respectively, and at 10° C were 25·43±1·31 mg O2 kg–1 h–1 and 113·84±16·26 mg O2 kg–1 h–1. Absolute metabolic scope was 53% greater at 10° C than at 5° C. The diet was dominated by Decapoda (39% overall by relative occurrence), Bivalvia (20%) and Gastropoda (12%). Sea urchins, typically of low energy value, occupied only 7% of the diet. The fast growth probably resulted from summer temperatures approximating to the optimum for food processing and growth, but may have been influenced by diet, and reduced competition following high fishing intensity.  相似文献   

14.
The anaerobic oxidation of methane (AOM) is a major sink for methane on Earth and is performed by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Here we present a comparative study using in vitro stable isotope probing to examine methane and carbon dioxide assimilation into microbial biomass. Three sediment types comprising different methane-oxidizing communities (ANME-1 and -2 mixture from the Black Sea, ANME-2a from Hydrate Ridge and ANME-2c from the Gullfaks oil field) were incubated in replicate flow-through systems with methane-enriched anaerobic seawater medium for 5–6 months amended with either 13CH4 or H13CO3-. In all three sediment types methane was anaerobically oxidized in a 1:1 stoichiometric ratio compared with sulfate reduction. Similar amounts of 13CH4 or 13CO2 were assimilated into characteristic archaeal lipids, indicating a direct assimilation of both carbon sources into ANME biomass. Specific bacterial fatty acids assigned to the partner SRB were almost exclusively labelled by 13CO2, but only in the presence of methane as energy source and not during control incubations without methane. This indicates an autotrophic growth of the ANME-associated SRB and supports previous hypotheses of an electron shuttle between the consortium partners. Carbon assimilation efficiencies of the methanotrophic consortia were low, with only 0.25–1.3 mol% of the methane oxidized.  相似文献   

15.
Abstract: The amyloid protein (βA4) is found in the CNS of patients with Alzheimer's disease; however, the pathogenic role of this protein is not known. In the present study, a peptide fragment of βA4βA4 25–35; Gly-Ser-Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met-NH2), which contains the conserved C-terminal sequence of substance P (X-Gly-Leu-Met-NH2), and the neuropeptide substance P (SP) were examined for their ability to modulate nicotine-evoked secretion from cultured bovine adrenal chromaffin cells. Secretion of the released endogenous catecholamines was monitored by electrochemical detection after separation by HPLC. Secretion induced by 10−5 M nicotine was inhibited by SP and βA4 25–35. The IC50 of SP and βA4 25–35 was 3 × 10−6 and 3 × 10−5 M , respectively. SP and βA4 25–35 both protected against nicotinic receptor desensitization. However, βA4 25–35 was ∼ 10-fold less effective than SP in its protective effect. The present work shows that βA4 25–35 can mimic the modulatory actions of SP on the nicotinic response of cultured bovine chromaffin cells, i.e., inhibition of the nicotinic response and protection against nicotinic desensitization. These modulatory actions may be associated with changes in nicotinic receptor levels reported to occur in Alzheimer's disease.  相似文献   

16.
Abstract: The regulation of striatal cholinergic function by tachykinins was examined in urethane-anesthetized rats by using microdialysis. Substance P (0.01–1 µ M ), [Sar9,Met(O2)11]substance P (1–10 µ M ), septide (0.1–3 µ M ), neurokinin (NK) A (0.1–10 µ M ), and senktide (0.1–10 µ M ) produced concentration-dependent increases in striatal acetylcholine (ACh) release. Septide was the most potent agonist for inducing release of ACh, whereas the stimulating effect of senktide was less pronounced and more progressive in onset. The response to septide was prevented by intraperitoneal administration of the nonpeptide NK1 antagonist SR 140333 (1–3 mg/kg) but not by the nonpeptide NK2 receptor antagonist SR 48968, indicating that the effect was mediated specifically by NK1 receptors. ACh release caused by NKA was reduced by SR 48968 (1–3 mg/kg) and slightly affected by SR 140333, indicating a principal role for NK2 receptors in the peptide response. The similar efficacy of SR 140333 and SR 48968 in blocking substance P-induced ACh release suggested that the effect of this peptide involves the stimulation of both NK1 and NK2 receptors. Finally, our results indicate that the increase in striatal ACh release induced by the D1 agonist (+)-SKF-38393 (3 µ M ) may be mediated indirectly through local release of NKA or substance P acting at NK2 receptors.  相似文献   

17.
Two cryophilic Desmotetra species, D. aureospora , sp. nov., and D. antarctica (Fritsch) Ling appear to be unique to the southern hemisphere snow ecosystem, or at least to the Windmill Island region, Antarctica. They have not been encountered in previous extensive studies of the Arctic and northern alpine regions. Also unusual are the higher pH (6.8 and 7.8) and conductivities of 279 μS·cm−1 and 426 μS·cm−1 for habitat conditions of D. antarctica that can be attributed to the influence of penguin guano. Both species are characterized by cells enveloped in individual mucilage layers, 1–3 contractile vacuoles, and a cup-shaped chloroplast containing a diffuse pyrenoid. The cells divided in three planes to form cubical loosely aggregated green cell packages embedded in mucilage. Vegetative cells of the two species cannot be distinguished with certainty; however, their zygospores are very different. Desmotetra aureospora has spherical, smooth-walled, golden zygospores, whereas D. antarctica has pale, yellow green, aereolate zygospores. Mucilage stalk morphology of cells in stationary-phase cultures can also be used to separate the two species. Zygospores of D. antarctica have previously been identified as the snow alga Trochiscia antarctica Fritsch. Both species are currently maintained in culture at the Australian Antarctic Division. The cultures did not grow at temperatures above 15° C. The two species are compared with the soil alga D. stigmatica (Deason) Deason et Floyd, the only other species in the genus, and also with Chlorosarcina stigmatica Deason strain T105. Results show that the three Desmotetra species form a natural group and that the absence or presence of a wall on the zoospore is of dubious value in classifications of green algal taxa above the species level.  相似文献   

18.
The goal of this research was to use the long-term fishery data set and DNA from archived scales of walleye Sander vitreus in Escanaba Lake, WI, U.S.A., to improve the understanding of the underlying mechanism(s) influencing genetic diversity in naturally recruiting populations. The introduced population of S. vitreus in Escanaba Lake has a low mean effective population size ( N E) between 124·6 and 185·5 despite a mean census size ( N C) of 4659 ( N E/ N C c. 0·04), suggesting an accelerated rate of genetic drift between 1952 and 2002. These values are smaller than the median N E range of several studies suggesting typical N E/ N C ratios of 0·11–0·16 in a wide range of taxa. N E increased steadily during the past two sampled decades (1992 and 2002) and was consistent with a lowering of the variance in S. vitreus reproductive success, possibly linked to a large, sustained exploitation (mean 28%) rate. Variance in reproductive success is one of the most important factors influencing N E in species, like S. vitreus , which have a potential for large fecundities and large juvenile mortalities (type III survivorship). The N B estimates across six sequential cohorts (age classes of S. vitreus , assayed from 1994 to 1999) was consistent with estimates of N E reported for 1992–2002. These results, coupled with in-depth census and exploitation data, show that the genetic characteristics of Escanaba Lake S. vitreus have changed substantially and that management activities, such as supplemental stocking and harvest practices, have profoundly influenced the genetic dynamics of S. vitreus in this lake.  相似文献   

19.
We investigated (1) the effect of constant and altered inorganic phosphate (Pi) supply (1–100 mmol m–3) on proteoid root production by white lupin ( Lupinus albus L.); and (2) the variation in citrate efflux, enzyme activity and phosphate uptake along the proteoid root axis in solution culture. Proteoid root formation was greatest at Pi solution concentrations of 1–10 mmol m–3 and was suppressed at 25 mmol m–3 Pi and higher. Except at 1 mmol m–3 Pi, the formation of proteoid roots did not affect plant dry matter yields or shoot to root dry matter ratios, indicating that proteoid roots can form under conditions of adequate P supply and not at the expense of dry matter production. Plants with over 50% of the root system as proteoid roots had tissue P concentrations considered adequate for maximum growth, providing additional evidence that proteoid roots can form on P-sufficient plants. There was an inverse relationship between the Pi concentration in the youngest mature leaf and proteoid root formation. Citrate efflux and the activities of enzymes associated with citric acid synthesis (phosphoenolpyruvate carboxylase and malate dehydrogenase) varied along the proteoid root axis, being greatest in young proteoid rootlets of the 1–3 cm region from the root tip. Citrate release from the 0–1 and 5–9 cm regions of the proteoid root was only 7% (per unit root length) of that from the 1–3 cm segment. Electrical potential and 32Pi uptake measurements showed that Pi uptake was more uniform along the proteoid root than citrate efflux.  相似文献   

20.
The effect of long-term exposure to different inorganic carbon, nutrient and light regimes on CAM activity and photosynthetic performance in the submerged aquatic plant, Littorella uniflora (L.) Aschers was investigated. The potential CAM activity of Littorella was highly plastic and was reduced upon exposure to low light intensities (43 μmol m−2 s−1), high CO2 concentrations (5.5 mM, pH 6.0) or low levels of inorganic nutrients, which caused a 25–80% decline in the potential maximum CAM activity relative to the activity in the control experiments (light: 450 μmol m−2 s−1; free CO2: 1.5 mM). The CAM activity was regulated more by light than by CO2, while nutrient levels only affected the activity to a minor extent. The minor effect of low nutrient regimes may be due to a general adaptation of isoetid species to low nutrient levels.
The photosynthetic capacity and CO2 affinity was unaffected or increased by exposure to low CO2, irrespective of nutrient levels. High CO2, low nutrient and low light, however, reduced the capacity by 22–40% and the CO2 affinity by 35-45%, relative to control.
The parallel effect of growth conditions on CAM activity and photosynthetic performance of Littorella suggest that light and dark carbon assimilation are interrelated and constitute an integrated part of the carbon assimilation physiology of the plant. The results are consistent with the hypothesis that CAM is a carbon-conserving mechanism in certain aquatic plants. The investment in the CAM enzyme system is beneficial to the plants during growth at high light and low CO2 conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号