首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jeon D  Chu K  Jung KH  Kim M  Yoon BW  Lee CJ  Oh U  Shin HS 《Cell calcium》2008,43(5):482-491
Na(+)/Ca(2+) exchanger (NCX), by mediating Na(+) and Ca(2+) fluxes bi-directionally, assumes a role in controlling the Ca(2+) homeostasis in the ischemic brain. It has been suggested that the three isoforms of NCX (NCX1, 2 and 3) may be differentially involved in permanent cerebral ischemia. However, the role of NCX2 has not been defined in ischemic reperfusion injury after a transient focal cerebral ischemia. Furthermore, it is not known whether NCX2 imports or exports intracellular Ca(2+) ([Ca(2+)](i)) following ischemia and reperfusion. To define the role of NCX2 in ischemia and reperfusion, we examined mice lacking NCX2, in vivo and in vitro. After an in vitro ischemia, a significantly slower recovery in population spike amplitudes, a sustained elevation of [Ca(2+)](i) and an increased membrane depolarization were developed in the NCX2-deficient hippocampus. Moreover, a transient focal cerebral ischemia in vivo produced a larger infarction and more cell death in the NCX2-deficient mouse brain. In particular, in the wild type brain, NCX2-expressing neurons were largely spared from cell death after ischemia. Our results suggest that NCX2 exports Ca(2+) in ischemia and thus protects neuronal cells from death by reducing [Ca(2+)](i) in the adult mouse brain.  相似文献   

2.
Although inhibition of the sarcolemmal (SL) Na(+)-K(+)-ATPase is known to cause an increase in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) by stimulating the SL Na(+)/Ca(2+) exchanger (NCX), the involvement of other SL sites in inducing this increase in [Ca(2+)](i) is not fully understood. Isolated rat cardiomyocytes were treated with or without different agents that modify Ca(2+) movements by affecting various SL sites and were then exposed to ouabain. Ouabain was observed to increase the basal levels of both [Ca(2+)](i) and intracellular Na(+) concentration ([Na(+)](i)) as well as to augment the KCl-induced increases in both [Ca(2+)](i) and [Na(+)](i) in a concentration-dependent manner. The ouabain-induced changes in [Na(+)](i) and [Ca(2+)](i) were attenuated by treatment with inhibitors of SL Na(+)/H(+) exchanger and SL Na(+) channels. Both the ouabain-induced increase in basal [Ca(2+)](i) and augmentation of the KCl response were markedly decreased when cardiomyocytes were exposed to 0-10 mM Na(+). Inhibitors of SL NCX depressed but decreasing extracellular Na(+) from 105-35 mM augmented the ouabain-induced increase in basal [Ca(2+)](i) and the KCl response. Not only was the increase in [Ca(2+)](i) by ouabain dependent on the extracellular Ca(2+) concentration, but it was also attenuated by inhibitors of SL L-type Ca(2+) channels and store-operated Ca(2+) channels (SOC). Unlike the SL L-type Ca(2+)-channel blocker, the blockers of SL Na(+) channel and SL SOC, when used in combination with SL NCX inhibitor, showed additive effects in reducing the ouabain-induced increase in basal [Ca(2+)](i). These results support the view that in addition to SL NCX, SL L-type Ca(2+) channels and SL SOC may be involved in raising [Ca(2+)](i) on inhibition of the SL Na(+)-K(+)-ATPase by ouabain. Furthermore, both SL Na(+)/H(+) exchanger and Na(+) channels play a critical role in the ouabain-induced Ca(2+) increase in cardiomyocytes.  相似文献   

3.
Inhibition of Na(+),K(+)-ATPase during NMDA applications greatly increased NMDA-induced excitotoxicity in primary cultures of forebrain neurons (FNs), but not in cerebellar granule cells (CGCs). Because Na(+),K(+)-ATPase inhibition promotes reversal of plasmalemmal Na(+)/Ca(2+) exchangers, we compared the activities of reversed K(+)-independent (NCX) and K(+)-dependent (NCKX) Na(+)/Ca(2+) exchangers in these cultures. To this end, we measured gramicidin-induced and Na(+)-dependent elevation in cytosolic [Ca(2+)] ([Ca(2+)](c)) that represents Ca(2+) influx via reversed NCX and NCKX; NCX activity was dissected out by removing external K(+). The [Ca(2+)](c) elevations mediated by NCX alone, and NCX plus NCKX combined, were 17 and 6 times more rapid in FNs than in CGCs, respectively. Northern blot analysis showed that FNs preferentially express NCX1 whereas CGCs expressed NCX3. Differences in expression of other isoforms (NCX2, NCKX2, NCKX3 and NCKX4) were less pronounced. We tested whether the NCX or NCKX family of exchangers contributes most to the toxic NMDA-induced Ca(2+) influx in depolarized neurons. We found that in FNs, inhibition of NCX alone was sufficient to significantly limit NMDA excitotoxicity, whereas in CGCs, inhibition of both NCX and NCKX was required. The data suggest that the high activity of NCX isoforms expressed in FNs, possibly NCX1, sensitizes these neurons to NMDA excitotoxicity.  相似文献   

4.
It has been proposed that a hypoxia-induced inhibition of the Na(+)-Ca(2+) exchanger (NCX) contributes to hypoxic pulmonary vasoconstriction (HPV). By recording isometric tension development in rat intrapulmonary arteries (IPA), we examined the effect on HPV of maneuvers that reduce the ability of NCX to regulate intracellular Ca(2+) concentration ([Ca(2+)](i)). In some experiments, fura pentakis(acetoxymethyl) ester-3 (fura PE-3) was also used to monitor [Ca(2+)](i). HPV was elicited in IPA that were pretreated with 10 microM diltiazem and slightly preconstricted with PGF(2alpha), which enhances the hypoxic response. Substitution of Na(+) with Li(+) increased HPV and the associated rise in [Ca(2+)](i). Pretreatment with ouabain (100 microM) to diminish the Na(+) gradient or with the reverse-mode NCX inhibitor KB-R7943 (3 or 10 microM) had no significant effect on HPV. Combined treatment with ouabain and low-[Na(+)] (24 mM) solution enhanced HPV strongly. The role of NCX in Ca(2+) extrusion was examined by assessing the decrease in [Ca(2+)](i) in Ca(2+)-free physiological saline solution either containing or lacking Na(+) following a high K(+)-induced loading of cellular [Ca(2+)]. Although the large initial rapid fall in [Ca(2+)] was Na(+) independent, final recovery of [Ca(2+)] to its basal level was delayed in the absence of Na(+). Therefore, HPV persisted or was increased under conditions in which forward-mode NCX was already attenuated or prevented, demonstrating that inhibition of NCX by hypoxia is unlikely to initiate HPV. Instead, NCX appears to act to inhibit HPV as would be expected if it is functioning to extrude Ca(2+).  相似文献   

5.
Phospholemman (PLM) regulates cardiac Na(+)/Ca(2+) exchanger (NCX1) and Na(+)-K(+)-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser(68), disinhibits Na(+)-K(+)-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na(+)-K(+)-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane areas, t-tubules, and NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, and retained near normal contractility, but alpha(1)-subunit of Na(+)-K(+)-ATPase was slightly decreased. Differences in contractility between myocytes isolated from wild-type (WT) and PLM knockout (KO) hearts were preserved after 48 h of culture. Infection with adenovirus expressing green fluorescent protein (GFP) did not affect contractility at 48 h. When WT PLM was overexpressed in PLM KO myocytes, contractility and cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients reverted back to those observed in cultured WT myocytes. Both Na(+)-K(+)-ATPase current (I(pump)) and Na(+)/Ca(2+) exchange current (I(NaCa)) in PLM KO myocytes rescued with WT PLM were depressed compared with PLM KO myocytes. Overexpressing the PLMS68E mutant (phosphomimetic) in PLM KO myocytes resulted in the suppression of I(NaCa) but had no effect on I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the PLMS68E mutant were depressed compared with PLM KO myocytes overexpressing GFP. Overexpressing the PLMS68A mutant (mimicking unphosphorylated PLM) in PLM KO myocytes had no effect on I(NaCa) but decreased I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the S68A mutant were similar to PLM KO myocytes overexpressing GFP. We conclude that at the single-myocyte level, PLM affects cardiac contractility and [Ca(2+)](i) homeostasis primarily by its direct inhibitory effects on Na(+)/Ca(2+) exchange.  相似文献   

6.
The reverse-mode of the Na(+)/Ca(2+)-exchanger (NCX) mediates Ca(2+)-entry in agonist-stimulated vascular smooth muscle (VSM) and plays a central role in salt-sensitive hypertension. We investigated buffering of Ca(2+)-entry by peripheral mitochondria upon NCX reversal in rat aortic smooth muscle cells (RASMC). [Ca(2+)] was measured in mitochondria ([Ca(2+)](MT)) and the sub-plasmalemmal space ([Ca(2+)](subPM)) with targeted aequorins and in the bulk cytosol ([Ca(2+)](i)) with fura-2. Substitution of extracellular Na(+) by N-methyl-d-glucamine transiently increased [Ca(2+)](MT) ( approximately 2microM) and [Ca(2+)](subPM) ( approximately 1.3microM), which then decreased to sustained plateaus. In contrast, Na(+)-substitution caused a delayed and tonic increase in [Ca(2+)](i) (<100nM). Inhibition of Ca(2+)-uptake by the sarcoplasmic reticulum (SR) (30microM cyclopiazonic acid) or mitochondria (2microM FCCP or 2microM ruthenium red) enhanced the elevation of [Ca(2+)](subPM). These treatments also abolished the delay in the [Ca(2+)](i) response to 0Na(+) and increased its amplitude. Extracellular ATP (1mM) caused a peak and plateau in [Ca(2+)](i), and only the plateau was inhibited by KB-R7943 (10microM), a selective blocker of reverse-mode NCX. Evidence for ATP-mediated NCX-reversal was also found in changes in [Na(+)](i). Mitochondria normally exhibited a transient elevation of [Ca(2+)] in response to ATP, but inhibiting the mitochondrial NCX with CGP-37157 (10microM) unmasked an agonist-induced increase in mitochondrial Ca(2+)-flux. This flux was blocked by KB-R7943. In summary, mitochondria and the sarcoplasmic reticulum co-operate to buffer changes in [Ca(2+)](i) due to agonist-induced NCX reversal.  相似文献   

7.
8.
Expression and activity of cardiac Na(+)/Ca(2+) exchanger (NCX1) are altered in many disease states. We engineered mice in which the phosphomimetic phospholemman S68E mutant (inhibits NCX1 but not Na(+)-K(+)-ATPase) was constitutively overexpressed in a cardiac-specific manner (conS68E). At 4-6 wk, conS68E mice exhibited severe bradycardia, ventricular arrhythmias, increased left ventricular (LV) mass, decreased cardiac output (CO), and ~50% mortality compared with wild-type (WT) littermates. Protein levels of NCX1, calsequestrin, ryanodine receptor, and α(1)- and α(2)-subunits of Na(+)-K(+)-ATPase were similar, but sarco(endo)plasmic reticulum Ca(2+)-ATPase was lower, whereas L-type Ca(2+) channels were higher in conS68E hearts. Resting membrane potential and action potential amplitude were similar, but action potential duration was dramatically prolonged in conS68E myocytes. Diastolic intracellular Ca(2+) ([Ca(2+)](i)) was higher, [Ca(2+)](i) transient and maximal contraction amplitudes were lower, and half-time of [Ca(2+)](i) transient decline was longer in conS68E myocytes. Intracellular Na(+) reached maximum within 3 min after isoproterenol addition, followed by decline in WT but not in conS68E myocytes. Na(+)/Ca(2+) exchange, L-type Ca(2+), Na(+)-K(+)-ATPase, and depolarization-activated K(+) currents were decreased in conS68E myocytes. At 22 wk, bradycardia and increased LV mass persisted in conS68E survivors. Despite comparable baseline CO, conS68E survivors at 22 wk exhibited decreased chronotropic, inotropic, and lusitropic responses to isoproterenol. We conclude that constitutive overexpression of S68E mutant was detrimental, both in terms of depressed cardiac function and increased arrhythmogenesis.  相似文献   

9.
Ion transport and regulation of Na(+)-Ca(2+) exchange were examined for two alternatively spliced isoforms of the canine cardiac Na(+)-Ca(2+) exchanger, NCX1.1, to assess the role(s) of the mutually exclusive A and B exons. The exchangers examined, NCX1.3 and NCX1.4, are commonly referred to as the kidney and brain splice variants and differ only in the expression of the BD or AD exons, respectively. Outward Na(+)-Ca(2+) exchange activity was assessed in giant, excised membrane patches from Xenopus laevis oocytes expressing the cloned exchangers, and the characteristics of Na(+)(i)- (i.e., I(1)) and Ca(2+)(i)- (i.e., I(2)) dependent regulation of exchange currents were examined using a variety of experimental protocols. No remarkable differences were observed in the current-voltage relationships of NCX1.3 and NCX1.4, whereas these isoforms differed appreciably in terms of their I(1) and I(2) regulatory properties. Sodium-dependent inactivation of NCX1.3 was considerably more pronounced than that of NCX1.4 and resulted in nearly complete inhibition of steady state currents. This novel feature could be abolished by proteolysis with alpha-chymotrypsin. It appears that expression of the B exon in NCX1.3 imparts a substantially more stable I(1) inactive state of the exchanger than does the A exon of NCX1.4. With respect to I(2) regulation, significant differences were also found between NCX1.3 and NCX1.4. While both exchangers were stimulated by low concentrations of regulatory Ca(2+)(i), NCX1.3 showed a prominent decrease at higher concentrations (>1 microM). This does not appear to be due solely to competition between Ca(2+)(i) and Na(+)(i) at the transport site, as the Ca(2+)(i) affinities of inward currents were nearly identical between the two exchangers. Furthermore, regulatory Ca(2+)(i) had only modest effects on Na(+)(i)-dependent inactivation of NCX1.3, whereas I(1) inactivation of NCX1.4 could be completely eliminated by Ca(2+)(i). Our results establish an important role for the mutually exclusive A and B exons of NCX1 in modulating the characteristics of ionic regulation and provide insight into how alternative splicing tailors the regulatory properties of Na(+)-Ca(2+) exchange to fulfill tissue-specific requirements of Ca(2+) homeostasis.  相似文献   

10.
Asterosap, a group of equally active isoforms of sperm-activating peptides from the egg jelly of the starfish Asterias amurensis, functions as a chemotactic factor for sperm. It transiently increases the intracellular cGMP level of sperm, which in turn induces a transient elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)). Using a fluorescent Ca(2+)-sensitive dye, Fluo-4 AM, we measured the changes in sperm [Ca(2+)](i) in response to asterosap. KB-R7943 (KB), a selective inhibitor of Na(+)/Ca(2+) exchanger (NCX), significantly inhibited the asterosap-induced transient elevation of [Ca(2+)](i), suggesting that asterosap influences [Ca(2+)](i) through activation of a K+-dependent NCX (NCKX). An NCKX activity of starfish sperm also shows K(+) dependency like other NCKXs. Therefore, we cloned an NCKX from the starfish testes and predicted that it codes for a 616 amino acid protein that is a member of the NCKX family. Pharmacological evidence suggests that this exchanger participates in the asterosap-induced Ca(2+) entry into sperm.  相似文献   

11.
We have previously shown that there is high Na(+)/Ca(2+) exchange (NCX) activity in bovine adrenal chromaffin cells. In this study, by monitoring the [Ca(2+)](i) change in single cells and in a population of chromaffin cells, when the reverse mode of exchanger activity has been initiated, we have shown that the NCX activity is enhanced by K(+). The K(+)-enhanced activity accounted for a significant proportion of the Na(+)-dependent Ca(2+) uptake activity in the chromaffin cells. The results support the hypothesis that both NCX and Na(+)/Ca(2+)-K(+) exchanger (NCKX) are co-present in chromaffin cells. The expression of NCKX in chromaffin cells was further confirmed using PCR and northern blotting. In addition to the plasma membrane, the exchanger activity, measured by Na(+)-dependent (45)Ca(2+) uptake, was also present in membrane isolated from the chromaffin granules enriched fraction and the mitochondria enriched fraction. The results support that both NCX and NCKX are present in bovine chromaffin cells and that the regulation of [Ca(2+)](i) is probably more efficient with the participation of NCKX.  相似文献   

12.
The data presented in this work suggest that in human umbilical artery (HUA) smooth muscle cells, the Na(+)/Ca(2+) exchanger (NCX) is active and working in the reverse mode. This supposition is based on the following results: (i) microfluorimetry in HUA smooth muscle cells in situ showed that a Ca(2+)-free extracellular solution diminished intracellular Ca(2+) ([Ca(2+)](i)), and KB-R7943 (5microM), a specific inhibitor of the Ca(2+) entry mode of the exchanger, also decreased [Ca(2+)](i) (40.6+/-4.5% of Ca(2+)-free effect); (ii) KB-R7943 produced the relaxation of HUA rings (-24.7+/-7.3gF/gW, n=8, p<0.05); (iii) stimulation of the NCX by lowering extracellular Na(+) increases basal [Ca(2+)](i) proportionally to Na(+) reduction (Delta fluorescence ratio=0.593+/-0.141 for Na(+)-free solution, n=8) and HUA rings' contraction (peak force=181.5+/-39.7 for 130mM reduction, n=8), both inhibited by KB-R7943 and a Ca(2+)-free extracellular solution. In conclusion, the NCX represents an important Ca(2+) entry route in HUA smooth muscle cells.  相似文献   

13.
Recent evidence suggests the expression of a Na(+)/Ca(2+) exchanger (NCX) in vascular endothelial cells. To elucidate the functional role of endothelial NCX, we studied Ca(2+) signaling and Ca(2+)-dependent activation of endothelial nitric-oxide synthase (eNOS) at normal, physiological Na(+) gradients and after loading of endothelial cells with Na(+) ions using the ionophore monensin. Monensin-induced Na(+) loading markedly reduced Ca(2+) entry and, thus, steady-state levels of intracellular free Ca(2+) ([Ca(2+)](i)) in thapsigargin-stimulated endothelial cells due to membrane depolarization. Despite this reduction of overall [Ca(2+)](i), Ca(2+)-dependent activation of eNOS was facilitated as indicated by a pronounced leftward shift of the Ca(2+) concentration response curve in monensin-treated cells. This facilitation of Ca(2+)-dependent activation of eNOS was strictly dependent on the presence of Na(+) ions during treatment of the cells with monensin. Na(+)-induced facilitation of eNOS activation was not due to a direct effect of Na(+) ions on the Ca(2+) sensitivity of the enzyme. Moreover, the effect of Na(+) was not related to Na(+) entry-induced membrane depolarization or suppression of Ca(2+) entry, since neither elevation of extracellular K(+) nor the Ca(2+) entry blocker 1-(beta-[3-(4-methoxyphenyl)-propoxy]-4-methoxyphenethyl)-1H-imidazol e hydrochloride (SK&F 96365) mimicked the effects of Na(+) loading. The effects of monensin were completely blocked by 3', 4'-dichlorobenzamil, a potent and selective inhibitor of NCX, whereas the structural analog amiloride, which barely affects Na(+)/Ca(2+) exchange, was ineffective. Consistent with a pivotal role of Na(+)/Ca(2+) exchange in Ca(2+)-dependent activation of eNOS, an NCX protein was detected in caveolin-rich membrane fractions containing both eNOS and caveolin-1. These results demonstrate for the first time a crucial role of cellular Na(+) gradients in regulation of eNOS activity and suggest that a tight functional interaction between endothelial NCX and eNOS may take place in caveolae.  相似文献   

14.
The Na(+)/Ca(2+) exchanger gene NCX1 undergoes alternative splicing leading to several isoforms that differ in a small portion of the large cytoplasmic loop. This loop is involved in many regulatory processes of NCX1, including ionic regulation by the transported substrates Na(+) and Ca(2+). High intracellular Ca(2+) can alleviate intracellular Na(+)-dependent inactivation in exon A (NCX1.4)-containing isoforms but not in those containing the mutually exclusive exon B (NCX1.3). Giant excised patches from Xenopus oocytes expressing various NCX1 constructs were used to examine the specific amino acids responsible for these observed regulatory differences. Using a chimeric approach, the region responsible was narrowed down to the small central part of exon A (IDDEEYEKNKTF). Replacing the second aspartic acid of this sequence with arginine (the corresponding amino acid in exon B) in an exon A background completely prevented the effect of Ca(2+) on intracellular Na(+)-dependent inactivation. Mutating the second lysine to cysteine (exon B) had a similar, but only partial, effect. The converse double mutant, but neither single mutation alone, introduced into an exon B background (arginine to aspartic acid and cysteine to lysine) was able to restore the NCX1.4 regulatory phenotype. These data demonstrate that aspartic acid 610 and lysine 617 (using the rat NCX1.4 numbering scheme) are critical molecular determinants of the unique Ca(2+) regulatory properties of NCX1.4.  相似文献   

15.
Externally applied Ni(2+), which apparently competes with Ca(2+) in all three isoforms of Na(+)/Ca(2+) exchanger, inhibits exchange activity of NCX1 or NCX2 with a 10-fold higher affinity than that of NCX3, whereas stimulation of exchange by external Li(+) is significantly greater in NCX2 and NCX3 than in NCX1 (Iwamoto, T., and Shigekawa, M. (1998) Am. J. Physiol. 275, C423-C430). Here we identified structural domains in the exchanger that confer differential sensitivity to Ni(2+) or Li(+) by measuring intracellular Na(+)-dependent (45)Ca(2+) uptake in CCL39 cells stably expressing NCX1/NCX3 chimeras or mutants. We found that two segments in the exchanger corresponding mostly to the internal alpha-1 and alpha-2 repeats are individually responsible for the alteration of Ni(2+) sensitivity, both together accounting for approximately 80% of the difference between NCX1 and NCX3. In contrast, the segment corresponding to the alpha-2 repeat fully accounts for the differential Li(+) sensitivity between the isoforms. The Ni(2+) sensitivity was mimicked, respectively, by simultaneous substitution of two amino acids in the alpha-1 repeat (N125G/T127I in NCX1 and G159N/I161T in NCX3) and substitution of one amino acid in the alpha-2 repeat (V820A in NCX1 and A809V in NCX3). On the other hand, the Li(+) sensitivity was mimicked by double substitution mutation in the alpha-2 repeat (V820A/Q826V in NCX1 and A809V/V815Q in NCX3). Single substitution mutations at Asn(125) and Val(820) of NCX1 caused significant alterations in the interactions of the exchanger with Ca(2+) and Ni(2+), and Ni(2+) and Li(+), respectively, although the extent of alteration varied depending on the nature of side chains of substituted residues. Since the above four important residues are mostly in the putative loops of the alpha repeats, these regions might form an ion interaction domain in the exchanger.  相似文献   

16.
17.
Hille C  Walz B 《Cell calcium》2006,39(4):305-311
Stimulation with the neurotransmitter dopamine causes an amplitude-modulated increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in epithelial cells of the ducts of cockroach salivary glands. This is completely attributable to a Ca(2+) influx from the extracellular space. Additionally, dopamine induces a massive [Na(+)](i) elevation via the Na(+)K(+)2Cl(-) cotransporter (NKCC). We have reasoned that Ca(2+)-entry is mediated by the Na(+)Ca(2+) exchanger (NCE) operating in the Ca(2+)-entry mode. To test this hypothesis, [Ca(2+)](i) and [Na(+)](i) were measured by using the fluorescent dyes Fura-2, Fluo-3, and SBFI. Inhibition of Na(+)-entry from the extracellular space by removal of extracellular Na(+) or inhibition of the NKCC by 10 microM bumetanide did not influence resting [Ca(2+)](i) but completely abolished the dopamine-induced [Ca(2+)](i) elevation. Simultaneous recordings of [Ca(2+)](i) and [Na(+)](i) revealed that the dopamine-induced [Na(+)](i) elevation preceded the [Ca(2+)](i) elevation. During dopamine stimulation, the generation of an outward Na(+) concentration gradient by removal of extracellular Na(+) boosted the [Ca(2+)](i) elevation. Furthermore, prolonging the dopamine-induced [Na(+)](i) rise by blocking the Na(+)/K(+)-ATPase reduced the recovery from [Ca(2+)](i) elevation. These results indicate that dopamine induces a massive NKCC-mediated elevation in [Na(+)](i), which reverses the NCE activity into the reverse mode causing a graded [Ca(2+)](i) elevation in the duct cells.  相似文献   

18.
The Na(+)-Ca(2+) exchanger (NCX) mediated Ca(2+) fluxes are essential for handling Ca(2+) homeostasis in many cell-types. Eukaryotic NCX variants contain regulatory CBD1 and CBD2 domains, whereas in distinct variants the Ca(2+) binding to Ca3-Ca4 sites of CBD1 results either in sustained activation, inhibition or no effect. CBD2 contains an alternatively spliced segment, which is expressed in a tissue-specific manner although its impact on allosteric regulation remains unclear. Recent studies revealed that the Ca(2+) binding to Ca3-Ca4 sites results in interdomain tethering of CBDs, which rigidifies CBDs movements with accompanied slow dissociation of "occluded" Ca(2+). Here we investigate the effects of CBD2 variants on Ca(2+) occlusion in the two-domain construct (CBD12). Mutational studies revealed that both sites (Ca3 and Ca4) contribute to Ca(2+) occlusion, whereas after dissociation of the first Ca(2+) ion the second Ca(2+) ion becomes occluded. This mechanism is common for the brain, kidney and cardiac splice variants of CBD12, although the occluded Ca(2+) exhibits 20-50-fold difference in off-rates among the tested variants. Therefore, the spliced exons on CBD2 affect the rate-limiting step of the occluded Ca(2+) dissociation at the primary regulatory sensor to shape dynamic features of allosteric regulation in NCX variants.  相似文献   

19.
Previous studies on myocytes isolated from rat hearts 3 wk after myocardial infarction (MI) demonstrated increased cell length, reduced Na(+)/Ca(2+) exchange (NCX1) activity, altered contractility, and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients. In the present study, we investigated whether NCX1 overexpression in MI myocytes would restore contraction and [Ca(2+)](i) transients to normal. When myocytes were placed in culture under continued electrical-field stimulation conditions, differences in contraction amplitudes and cell lengths between sham and MI myocytes were preserved for at least 48 h. Infection of both sham and MI myocytes by adenovirus expressing green fluorescent protein resulted in >95% infection, as evidenced by green fluorescent protein fluorescence, but contraction amplitudes at 6-, 24-, and 48-h postinfection were not affected. NCX1 overexpression in MI myocytes resulted in lower diastolic [Ca(2+)](i) levels at all extracellular Ca(2+) concentrations ([Ca(2+)](o)) examined, suggesting enhanced forward NCX1 activity. At 5 mM [Ca(2+)](o), subnormal contraction and [Ca(2+)](i) transient amplitudes in MI myocytes (compared with sham myocytes) were restored toward normal levels by overexpressing NCX1. At 0.6 mM [Ca(2+)](o), supranormal contraction and [Ca(2+)](i) transient amplitudes in MI myocytes (compared with sham myocytes) were lowered by NCX1 overexpression. We conclude that overexpression of NCX1 in MI myocytes was effective in improving contractile dysfunction, most likely because of enhancement of both Ca(2+) efflux and influx during a cardiac cycle. We suggest that decreased NCX1 activity may play an important role in contractile abnormalities in postinfarction myocytes.  相似文献   

20.
SEA0400 is a potent and selective Na(+)/Ca(2+) exchanger (NCX) inhibitor. We evaluated the inhibitory effects of SEA0400 on Na(+)(i)-dependent (45)Ca(2+) uptake and whole-cell Na(+)/Ca(2+) exchange currents in NCX-transfected fibroblasts. SEA0400 preferentially inhibited (45)Ca(2+) uptake by NCX1 compared with inhibitions by NCX2, NCX3, and NCKX2. SEA0400 also selectively blocked outward exchange currents from NCX1 transfectants. We searched for regions that may form the SEA0400 receptor in the NCX1 molecule by NCX1/NCX3 chimeric analysis. The results suggest that the first intracellular loop and the fifth transmembrane segment are mostly responsible for the differential drug responses between NCX1 and NCX3. Further site-directed mutagenesis revealed that multiple mutations at Phe-213 markedly reduced sensitivity to SEA0400 without affecting that to KB-R7943. We also found that Gly-833-to-Cys mutation (within the alpha-2 repeat) greatly reduced the inhibition by SEA0400, but unexpectedly the NCX1 chimera with an alpha-2 repeat from NCKX2 possessed normal drug sensitivity. In addition, exchangers with mutated exchanger inhibitory peptide regions, which display either undetectable or accelerated Na(+)-dependent inactivation, had a markedly reduced sensitivity or hypersensitivity to SEA0400, respectively. To verify the efficacy of the NCX inhibitor, we examined the renoprotective effect of SEA0400 in a hypoxic injury model using porcine renal tubular cells. SEA0400 protected against hypoxia/reoxygenation-induced cell damage in tubular cells expressing wild-type NCX1 but not in cells expressing SEA0400-insensitive mutants. These results suggest that Phe-213, Gly-833, and residues that eliminate Na(+)-dependent inactivation are critical determinants for the inhibition by SEA0400, and their mutants are very useful for checking the pharmacological importance of NCX inhibition by SEA0400.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号