首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Role of the ErbB-4 carboxyl terminus in gamma-secretase cleavage   总被引:1,自引:0,他引:1  
The ErbB-4 receptor tyrosine kinase has a PDZ domain recognition motif at its carboxyl terminus. The first step in ErbB-4 proteolytic processing is a metalloprotease-dependent cleavage of the receptor ectodomain, which is not influenced by deletion of this motif. Metalloprotease cleavage of ErbB-4 produces a membrane-associated 80-kDa fragment that is a substrate for subsequent gamma-secretase cleavage, which releases the cytoplasmic domain from the membrane and allows nuclear translocation of this fragment. Deletion of the PDZ domain recognition motif does abrogate the gamma-secretase cleavage of ErbB-4. The wild-type 80-kDa ErbB-4 fragment forms an association complex with presenilin, thought to be the catalytic moiety of gamma-secretase activity. However, this association is significantly impaired by loss of the PDZ domain recognition motif from ErbB-4. Deletion of this ErbB-4 motif prevents the nuclear localization of the ErbB-4 cytoplasmic domain. Data also show that the basal cleavage of wild-type ErbB-4 by this proteolytic system can produce a sufficient level of ErbB-4 processing to negatively influence cell growth and that loss of the PDZ domain recognition motif abrogates this response.  相似文献   

2.
Heregulin was shown to promote the proteolytic cleavage of its receptor, ErbB-4, in several cell lines. The growth factor also rapidly promoted the transient translocation of ErbB-4 to a detergent-insoluble fraction, in which the receptor was hyper-tyrosine-phosphorylated compared with the receptor present in the detergent-soluble pool. However, an 80-kDa proteolytic fragment of ErbB-4 was found in the detergent-soluble fraction, but not in the detergent-insoluble fraction. Although the heregulin-induced cleavage of ErbB-4 produced a fragment of ErbB-4 very similar to that induced by 12-O-tetradecanoylphorbol-13-acetate or pervanadate (each of which is blocked by metalloprotease inhibitors), the growth factor-induced cleavage was not sensitive to these inhibitors under the same conditions. The heregulin-induced cleavage of ErbB-4 could be blocked by conditions that prevent clathrin-coated pit formation, suggesting that heregulin-mediated ErbB-4 cleavage occurs subsequent to internalization. When reagents that prevent acidification of endosomes were employed, heregulin-induced ErbB-4 cleavage was sensitive to metalloprotease inhibitors. The results imply that during ligand-dependent receptor trafficking, activated ErbB-4 receptors are subject to proteolytic cleavage involving an intracellular metalloprotease.  相似文献   

3.
The extracellular domain of several membrane-anchored proteins can be released as a soluble fragment by the action of a cell surface endoproteolytic system. This cleavage results in the generation of a soluble and a cell-bound fragment. In the case of proteins with signaling capability, such as tyrosine kinase receptors, the cleavage process may have an effect on the kinase activity of the cell-bound receptor fragment. By using several cell lines that express the TrkA neurotrophin receptor, we show that this receptor tyrosine kinase is cleaved by a proteolytic system that mimics the one that acts at the cell surface. TrkA cleavage is regulated by protein kinase C and several receptor agonists (including the TrkA ligand NGF), occurs at the ectodomain in a membrane-proximal region, and is independent of lysosomal function. TrkA cleavage results in the generation of a cell- associated fragment that is phosphorylated on tyrosine residues. Tyrosine phosphorylation of this fragment is not detected in TrkA mutants devoid of kinase activity, suggesting that phosphorylation requires an intact TrkA kinase domain, and is not due to activation of an intermediate intracellular tyrosine kinase. The increased phosphotyrosine content of the cell-bound fragment may thus reflect higher catalytic activity of the truncated fragment. We postulate that cleavage of receptor tyrosine kinases by this naturally occurring cellular mechanism may represent an additional mean for the regulation of receptor activity.  相似文献   

4.
The heregulin receptor tyrosine kinase ErbB-4 is constitutively cleaved, in the presence or absence of ligand, by an exofacial proteolytic activity producing a membrane-anchored cytoplasmic domain fragment of 80 kD. Based on selective sensitivity to inhibitors, the proteolytic activity is identified as that of a metalloprotease. The 80-kD product is tyrosine phosphorylated and retains tyrosine kinase activity. Importantly, the levels of this fragment are controlled by proteasome function. When proteasome activity is inhibited for 6 h, the kinase-active 80-kD ErbB-4 fragment accumulates to a level equivalent to 60% of the initial amount of native ErbB-4 (~106 receptors per cell). Hence, proteasome activity is essential to prevent the accumulation of a significant level of ligand-independent, active ErbB-4 tyrosine kinase generated by metalloprotease activity. Proteasome activity, however, does not act on the native ErbB-4 receptor before the metalloprotease-mediated cleavage, as no ErbB-4 fragments accumulate when metalloprotease activity is blocked. Although no ubiquitination of the native ErbB-4 is detected, the 80-kD fragment is polyubiquitinated. The data, therefore, describe a unique pathway for the processing of growth factor receptors, which involves the sequential function of an exofacial metalloprotease and the cytoplasmic proteasome.  相似文献   

5.
6.
Exposure of carcinoma cell lines to the antibiotic geldanamycin induces the degradation of ErbB-2, a co-receptor tyrosine kinase that is frequently overexpressed in certain tumors. Using ErbB-2 mutants expressed as chimeric receptors or green fluorescent protein fusion proteins, we report that the kinase domain of ErbB-2 is essential for geldanamycin-induced degradation. The kinase domain of the related epidermal growth factor receptor was not sensitive to this drug. The data further indicate mechanistic aspects of ErbB-2 degradation by geldanamycin. The data show that exposure to the drug induces at least one cleavage within the cytoplasmic domain of ErbB-2 producing a 135-kDa fragment and a 23-kDa fragment. The latter represents the carboxyl-terminal domain of ErbB-2, whereas the former represents the ectodomain and part of the cytoplasmic domain. Degradation of the carboxyl-terminal fragment is prevented by proteasome inhibitors, whereas degradation of the membrane-anchored 135-kDa ErbB-2 fragment is blocked by inhibitors of the endocytosis-dependent degradation pathway. Confocal microscopy studies confirm a geldanamycin-induced localization of ErbB-2 on intracellular vesicles.  相似文献   

7.
8.
The geldanamycin-induced degradation of ErbB-2 produces a 23-kDa carboxyl-terminal fragment, which has been isolated and subjected to amino-terminal microsequencing. The obtained sequence indicates that the amino terminus of this fragment corresponds to Gly-1126 of ErbB-2. Analysis of the residues immediately before Gly-1126 suggests that cleavage may involve caspase activity. Site-directed mutagenesis of Asp-1125 in ErbB-2 prevents geldanamycin-provoked formation of the 23-kDa fragment, consistent with the requirement of this residue for caspase-dependent cleavage in known substrates. Also, the addition of the pan-caspase inhibitor Z-VAD-FMK blocks formation of the 23-kDa ErbB-2 fragment in cells exposed to geldanamycin. Interestingly, staurosporin and curcumin are also shown to provoke the degradation of ErbB-2 with formation of the 23-kDa carboxyl-terminal fragment. The generation of this fragment by staurosporin or curcumin is likewise blocked by caspase inhibition. Caspase inhibition does not prevent accelerated degradation of the 185-kDa native ErbB-2 in geldanamycin-treated cells but does significantly prevent staurosporin-stimulated metabolic loss of ErbB-2.  相似文献   

9.
ICAM-1, a membrane-bound receptor, is released as soluble ICAM-1 in inflammatory diseases. To delineate mechanisms regulating ICAM-1 cleavage, studies were performed in endothelial cells (EC), human embryonic kidney (HEK)-293 cells transfected with wild-type (WT) ICAM-1, and ICAM-1 containing single tyrosine-to-alanine substitutions (Y474A, Y476A, and Y485A) in the cytoplasmic region. Tyrosine residues at 474 and 485 become phosphorylated upon ICAM-1 ligation and associate with signaling modules. Cleavage was assessed by using an antibody against the cytoplasmic tail of ICAM-1, which recognizes intact ICAM-1 and the 7-kDa membrane-bound fragment remaining after cleavage. Cleavage in HEK-293 WT cells was accelerated by phorbol ester PMA, whereas in EC it was induced by tumor necrosis factor-. In both cell types, a 7-kDa ICAM-1 remnant was detected. Tyrosine phosphatase inhibitors dephostatin and sodium orthovanadate augmented cleavage. PD-98059 (MEK kinase inhibitor), geldanamycin and PP2 (Src kinase inhibitors), and wortmannin (phosphatidylinositol 3-kinase inhibitor) dose-dependently inhibited cleavage in both cell types. SB-203580 (p38 inhibitor) was more effective in EC, and D609 (PLC inhibitor) mostly affected cleavage in HEK-293 cells. Cleavage was drastically decreased in Y474A and Y485A, whereas it was marginally reduced in Y476A. Surprisingly, phosphorylation was not detectable on the 7-kDa fragment of ICAM-1. These results implicate distinct pathways in the cleavage process and suggest a preferred signal transmission route for ICAM-1 shedding in the two cell systems tested. Tyrosine residues Y474 and Y485 within the cytoplasmic sequence of ICAM-1 regulate the cleavage process. ectodomain shedding; signaling; tyrosine phosphorylation  相似文献   

10.
11.
Treatment of U937 cells with various apoptosis-inducing agents, such as TNFalpha and beta-D-arabinofuranosylcytosine (ara-C) alone or in combination with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), bryostatin 1 or cycloheximide, causes proteolytic cleavage of protein kinase Cmu (PKCmu) between the regulatory and catalytic domain, generating a 62 kDa catalytic fragment of the kinase. The formation of this fragment is effectively suppressed by the caspase-3 inhibitor Z-DEVD-FMK. In accordance with these in vivo data, treatment of recombinant PKCmu with caspase-3 in vitro results also in the generation of a 62 kDa fragment (p62). Treatment of several aspartic acid to alanine mutants of PKCmu with caspase-3 resulted in an unexpected finding. PKCmu is not cleaved at one of the typical cleavage sites containing the motif DXXD but at the atypical site CQND378/S379. The respective fragment (amino acids 379-912) was expressed in bacteria as a GST fusion protein (GST-p62) and partially purified. In contrast to the intact kinase, the fragment does not respond to the activating cofactors TPA and phosphatidylserine and is thus unable to phosphorylate substrates effectively.  相似文献   

12.
13.
14.
In the Lewis rat, fragment 43–88 of the highly encephalitogenic guinea-pig basic protein has been previously shown to retain the full activity of the parent protein. In the present studies this fragment was subjected to controlled chymotryptic digestion so that cleavage occurred only at tyrosine 67, generating two peptides, residues 43-67 and residues 68-88. When compared on an equimolar basis peptide 68-88 had the same encephalitogenic activity as the intact fragment and induced the same degree of immunologically specific cell response as measured by the in vitro lymphocyte stimulation test. Peptide 68-88 was further fragmented by selective tryptic cleavage at arginine 78 after blocking lysine 73 with citraconic anhydride. The two peptides, residues 68-78 and residues 79-88, were not encephalitogenic, indicating that residues adjacent to the point of cleavage contribute to the active site.  相似文献   

15.
The role of juxtamembrane stalk glycosylation in modulating stalk cleavage and shedding of membrane proteins remains unresolved, despite reports that proteins expressed in glycosylation-deficient cells undergo accelerated proteolysis. We have constructed stalk glycosylation mutants of angiotensin-converting enzyme (ACE), a type I ectoprotein that is vigorously shed when expressed in Chinese hamster ovary cells. Surprisingly, stalk glycosylation did not significantly inhibit release. Introduction of an N-linked glycan directly adjacent to the native stalk cleavage site resulted in a 13-residue, proximal displacement of the cleavage site, from the Arg-626/Ser-627 to the Phe-640/Leu-641 bond. Substitution of the wild-type stalk with a Ser-/Thr-rich sequence known to be heavily O-glycosylated produced a mutant (ACE-JGL) in which this chimeric stalk was partially O-glycosylated; incomplete glycosylation may have been due to membrane proximity. Relative to levels of cell-associated ACE-JGL, rates of basal, unstimulated release of ACE-JGL were enhanced compared with wild-type ACE. ACE-JGL was cleaved at an Ala/Thr bond, 14 residues from the membrane. Notably, phorbol ester stimulation and TAPI (a peptide hydroxamate) inhibition of release-universal characteristics of regulated ectodomain shedding-were significantly blunted for ACE-JGL, as was a formerly undescribed transient stimulation of ACE release by 3, 4-dichloroisocoumarin. These data indicate that (1) stalk glycosylation modulates but does not inhibit ectodomain shedding; and (2) a Ser-/Thr-rich, O-glycosylated stalk directs cleavage, at least in part, by an alternative shedding protease, which may resemble an activity recently described in TNF-alpha convertase null cells [Buxbaum, J. D., et al. (1998) J. Biol. Chem. 273, 27765-27767].  相似文献   

16.
ErbB4 is a receptor tyrosine kinase that can signal by a mechanism involving proteolytic release of intracellular and extracellular receptor fragments. Proteolysis-dependent signaling of ErbB4 has been proposed to be enhanced in breast cancer, mainly based on immunohistochemical localization of intracellular epitopes in the nuclei. To more directly address the processing of ErbB4 in vivo, an ELISA was developed to quantify cleaved ErbB4 ectodomain from serum samples. Analysis of 238 breast cancer patients demonstrated elevated quantities of ErbB4 ectodomain in the serum (≥ 40 ng/mL) in 21% of the patients, as compared to 0% of 30 healthy controls (P = 0.002). Significantly, the elevated serum ectodomain concentration did not correlate with the presence of nuclear ErbB4 immunoreactivity in matched breast cancer tissue samples. However, elevated serum ectodomain concentration was associated with the premenopausal status at diagnosis (P = 0.04), and estradiol enhanced ErbB4 cleavage in vitro. A 3.4 ? X-ray crystal structure of a complex of ErbB4 ectodomain and the Fab fragment of anti-ErbB4 mAb 1479 localized the binding site of mAb 1479 on ErbB4 to a region on subdomain IV encompassing the residues necessary for ErbB4 cleavage. mAb 1479 also significantly blocked ErbB4 cleavage in breast cancer cell xenografts in vivo, and the inhibition of cleavage was associated with suppression of xenograft growth. These data indicate that ErbB4 processing is enhanced in breast cancer tissue in vivo, and that ErbB4 cleavage can be stimulated by estradiol and targeted with mAb 1479.  相似文献   

17.
RET is a tyrosine kinase receptor involved in numerous cellular mechanisms including proliferation, neuronal navigation, migration, and differentiation upon binding with glial cell derived neurotrophic factor family ligands. RET is an atypical tyrosine kinase receptor containing four cadherin domains in its extracellular part. Furthermore, it has been shown to act as a dependence receptor. Such a receptor is active in the absence of ligand, triggering apoptosis through a mechanism that requires receptor intracellular caspase cleavage. However, different data suggest that RET is not always associated with the cell death/survival balance but rather provides positional information. We demonstrate here that caspase cleavage of RET is involved in the regulation of adhesion in sympathetic neurons. The cleavage of RET generates an N-terminal truncated fragment that functions as a cadherin accessory protein, modifying cadherin environment and potentiating cadherin-mediated cell aggregation. Thus, the caspase cleavage of RET generates two RET fragments: one intracellular domain that can trigger cell death in apoptotic permissive settings, and one membrane-anchored ectodomain with cadherin accessory activity. We propose that this latter function may notably be important for the adequate development of the superior cervical ganglion.  相似文献   

18.
Nectin is a Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecule implicated in the organization of the junctional complex comprised of E-cadherin-based adherens junctions and claudin-based tight junctions in epithelial cells. Scatter factor (SF)/hepatocyte growth factor (HGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA), a tumor-promoting phorbol ester, induce cell spreading, followed by cell-cell dissociation and cell scattering, in Madin-Darby canine kidney (MDCK) cells. We found here that SF/HGF and TPA induced proteolytic cleavage of nectin-1alpha in the ectodomain, resulting in generation of the 80-kDa extracellular fragment and the 33-kDa fragment composed of the transmembrane and cytoplasmic domains, in MDCK cells. This shedding of nectin-1alpha was inhibited by metalloprotease inhibitors. These results indicate that SF/HGF and TPA induce the ectodomain shedding of nectin-1alpha presumably by a metalloprotease, and have raised the possibility that this shedding is involved in the SF/HGF- and TPA-induced cell-cell dissociation.  相似文献   

19.
Previously it has been shown that acute 12-O-tetradecanoylphorbol-13-acetate treatment of intact U937 cells results in activation of mitogen-activated protein (MAP) kinase and a MAP kinase activator. MAP kinase activator induces phosphorylation of MAP kinase on tyrosine and threonine residues, thereby activating MAP kinase. Here, experiments with the irreversible kinase inhibitor, 5'-p-fluorosulfonylbenzoyladenosine (FSBA), show that MAP kinase activator is in fact a MAP kinase-kinase. Treatment of MAP kinase activator with FSBA results in complete inactivation. This inactivation is prevented by a 10-fold excess of ATP. Inactivation of MAP kinase by FSBA does not affect the extent of threonine/tyrosine phosphorylation induced by MAP kinase-kinase.  相似文献   

20.
The MET tyrosine kinase, the receptor of hepatocyte growth factor-scatter factor (HGF/SF), is known to be essential for normal development and cell survival. We report that stress stimuli induce the caspase-mediated cleavage of MET in physiological cellular targets, such as epithelial cells, embryonic hepatocytes, and cortical neurons. Cleavage occurs at aspartic residue 1000 within the SVD site of the juxtamembrane region, independently of the crucial docking tyrosine residues Y1001 or Y1347 and Y1354. This cleavage generates an intracellular 40-kDa MET fragment containing the kinase domain. The p40 MET fragment itself causes apoptosis of MDCK epithelial cells and embryonic cortical neurons, whereas its kinase-dead version is impaired in proapoptotic activity. Finally, HGF/SF treatment does not favor MET cleavage and apoptosis, confirming the known survival role of ligand-activated MET. Our results show that stress stimuli convert the MET survival receptor into a proapoptotic factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号