首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundSingle-molecule fluorescence imaging (smFI) has evolved into a valuable method used in biophysical and biochemical studies as it can observe the real-time behavior of individual protein molecules, enabling understanding of their detailed dynamic features. smFI is also closely related to other state-of-the-art microscopic methods, optics, and nanomaterials in that smFI and these technologies have developed synergistically.Scope of reviewThis paper provides an overview of the recently developed single-molecule fluorescence microscopy methods, focusing on critical techniques employed in higher-precision measurements in vitro and fluorescent nanodiamond, an emerging promising fluorophore that will improve single-molecule fluorescence microscopy.Major conclusionssmFI will continue to improve regarding the photostability of fluorophores and will develop via combination with other techniques based on nanofabrication, single-molecule manipulation, and so on.General significanceQuantitative, high-resolution single-molecule studies will help establish an understanding of protein dynamics and complex biomolecular systems.  相似文献   

2.
Super-resolution fluorescence microscopy allows for obtaining images with a resolution of 10–20 nm, far exceeding the diffraction limit of conventional optical microscopy (200–350 nm), and provides an opportunity to study in detail the subcellular structures and individual proteins in both living and fixed cells. Among these methods, single-molecule localization microscopy (SMLM) has become widespread. SMLM techniques are based on special fluorophores capable of photoswitching. The paper presents a classification of such fluorophores and describes their photoswitching mechanisms and successful practical applications. We discuss recent progress and prospects for the development of new effective labels suitable for SMLM.  相似文献   

3.
Full understanding of complex biological interactions frequently requires multi-color detection capability in doing single-molecule fluorescence resonance energy transfer (FRET) experiments. Existing single-molecule three-color FRET techniques, however, suffer from severe photobleaching of Alexa 488, or its alternative dyes, and have been limitedly used for kinetics studies. In this work, we developed a single-molecule three-color FRET technique based on the Cy3-Cy5-Cy7 dye trio, thus providing enhanced observation time and improved data quality. Because the absorption spectra of three fluorophores are well separated, real-time monitoring of three FRET efficiencies was possible by incorporating the alternating laser excitation (ALEX) technique both in confocal microscopy and in total-internal-reflection fluorescence (TIRF) microscopy.  相似文献   

4.
Localization microscopy approaches allowing an optical resolution down to the single-molecule level in fluorescence-labeled biostructures have already found a variety of applications in cell biology, as well as in virology. Here, we focus on some perspectives of a special localization microscopy embodiment, spectral precision distance/position determination microscopy (SPDM). SPDM permits the use of conventional fluorophores or fluorescent proteins together with standard sample preparation conditions employing an aqueous buffered milieu and typically monochromatic excitation. This allowed superresolution imaging and studies on the aggregation state of modified tobacco mosaic virus particles on the nanoscale with a single-molecule localization accuracy of better than 8 nm, using standard fluorescent dyes in the visible spectrum. To gain a better understanding of cell entry mechanisms during influenza A virus infection, SPDM was used in conjunction with algorithms for distance and cluster analyses to study changes in the distribution of virus particles themselves or in the distribution of infection-related proteins, the hepatocyte growth factor receptors, in the cell membrane on the single-molecule level. Not requiring TIRF (total internal reflection) illumination, SPDM was also applied to study the molecular arrangement of gp36.5/m164 glycoprotein (essentially associated with murine cytomegalovirus infection) in the endoplasmic reticulum and the nuclear membrane inside cells with single-molecule resolution. On the basis of the experimental evidence so far obtained, we finally discuss additional application perspectives of localization microscopy approaches for the fast detection and identification of viruses by multi-color SPDM and combinatorial oligonucleotide fluorescence in situ hybridization, as well as SPDM techniques for optimization of virus-based nanotools and biodetection devices.  相似文献   

5.
Fluorescence assay technologies used for miniaturized high throughput screening are broadly divided into two classes. Macroscopic fluorescence techniques (encompassing conventional fluorescence intensity, anisotropy [also often referred to as fluorescence polarization] and energy transfer) monitor the assay volume- and time-averaged fluorescence output from the ensemble of emitting fluorophores. In contrast, single-molecule detection (SMD) techniques and related approaches, such as fluorescence correlation spectroscopy (FCS), stochastically sample the fluorescence properties of individual constituent molecules and only then average many such detection events to define the properties of the assay system as a whole. Analysis of single molecular events is accomplished using confocal optics with an illumination/detection volume of approximately 1 fl (10(-15) L) such that the signal is insensitive to miniaturization of HTS assays to 1 μl or below. In this report we demonstrate the general applicability of one SMD technique (FCS) to assay configuration for target classes typically encountered in HTS and confirm the equivalence of the rate/equilibrium constants determined by FCS and by macroscopic techniques. Advantages and limitations of the current FCS technology, as applied here, and potential solutions, particularly involving alternative SMD detection techniques, are also discussed.  相似文献   

6.
We have measured the fluorescence spectra of a single fluorophore attached to a single protein molecule in aqueous solution using a total internal reflection fluorescence microscope. The most reactive cysteine residue of myosin subfragment-1 (S1) was labeled with tetramethylrhodamine. The spectral shift induced by a change in solvent from aqueous buffer to methanol in both single-molecule and bulk measurements were similar, indicating that, even at the single molecule level, the fluorescence spectrum is sensitive to microenvironmental changes of fluorophores. The time dependence of the fluorescence spectra of fluorophores attached to S1 molecules solely showed a fluctuation with time over a time scale of seconds. Because the fluorescence spectra of the same fluorophores directly conjugated to a glass surface remained constant, the spectral fluctuation observed for the fluorophores attached to S1 is most likely due to slow spontaneous conformational changes in the S1 molecule. Thus, single-molecule fluorescence spectroscopy appears to be a powerful tool to study the dynamic behavior of single biomolecules.  相似文献   

7.
Börsch M 《Biological chemistry》2011,392(1-2):135-142
Conformational changes of proteins can be monitored in real time by fluorescence resonance energy transfer (FRET). Two different fluorophores have to be attached to those protein domains which move during function. Distance fluctuations between the fluorophores are measured by relative fluorescence intensity changes or fluorescence lifetime changes. The rotary mechanics of the two motors of F(o)F(1)-ATP synthase have been studied in vitro by single-molecule FRET. The results are summarized and perspectives for other transport ATPases are discussed.  相似文献   

8.
The application of single-molecule fluorescence techniques to complex biological systems places demands on the performance of single fluorophores. We present an enzymatic oxygen scavenging system for improved dye stability in single-molecule experiments. We compared the previously described protocatechuic acid/protocatechuate-3,4-dioxygenase system to the currently employed glucose oxidase/catalase system. Under standardized conditions, we observed lower dissolved oxygen concentrations with the protocatechuic acid/protocatechuate-3,4-dioxygenase system. Furthermore, we observed increased initial lifetimes of single Cy3, Cy5, and Alexa488 fluorophores. We further tested the effects of chemical additives in this system. We found that biological reducing agents increase both the frequency and duration of blinking events of Cy5, an effect that scales with reducing potential. We observed increased stability of Cy3 and Alexa488 in the presence of the antioxidants ascorbic acid and n-propyl gallate. This new O2-scavenging system should have wide application for single-molecule fluorescence experiments.  相似文献   

9.
We applied fluorescence detection methods on the single-molecule level to study structural variations and dynamic processes occurring within nucleosomes. Four fluorescent nucleosome constructs were made by attaching donor and acceptor fluorophores to different positions of two nucleosome positioning sequences and reconstituting nucleosomes by salt dialysis. The photochemical and biochemical stability of nucleosomes under single-molecule conditions was optimized by adding inert protein and free radical capturing additives, allowing us to define the best experimental conditions for single-molecule spectroscopy on highly diluted solutions of nucleosome complexes. We could demonstrate for the first time the resolution of conformational subpopulations of nucleosomes by single-pair fluorescence resonance energy transfer in a freely diffusing system and could show the effect of thermally induced nucleosome repositioning.  相似文献   

10.
P Schwille  U Haupts  S Maiti    W W Webb 《Biophysical journal》1999,77(4):2251-2265
Multiphoton excitation (MPE) of fluorescent probes has become an attractive alternative in biological applications of laser scanning microscopy because many problems encountered in spectroscopic measurements of living tissue such as light scattering, autofluorescence, and photodamage can be reduced. The present study investigates the characteristics of two-photon excitation (2PE) in comparison with confocal one-photon excitation (1PE) for intracellular applications of fluorescence correlation spectroscopy (FCS). FCS is an attractive method of measuring molecular concentrations, mobility parameters, chemical kinetics, and fluorescence photophysics. Several FCS applications in mammalian and plant cells are outlined, to illustrate the capabilities of both 1PE and 2PE. Photophysical properties of fluorophores required for quantitative FCS in tissues are analyzed. Measurements in live cells and on cell membranes are feasible with reasonable signal-to-noise ratios, even with fluorophore concentrations as low as the single-molecule level in the sampling volume. Molecular mobilities can be measured over a wide range of characteristic time constants from approximately 10(-3) to 10(3) ms. While both excitation alternatives work well for intracellular FCS in thin preparations, 2PE can substantially improve signal quality in turbid preparations like plant cells and deep cell layers in tissue. At comparable signal levels, 2PE minimizes photobleaching in spatially restrictive cellular compartments, thereby preserving long-term signal acquisition.  相似文献   

11.
Recent years have seen the introduction of novel techniques and applications of total internal reflection fluorescence microscopy (TIRFM). Key technical achievements include miniaturization, enhanced depth resolution, reduction of detection volumes and the combination of TIRFM with other microscopic techniques. Novel applications have concentrated on single-molecule detection (e.g. of cellular receptors), imaging of exocytosis or endocytosis, measurements of adhesion foci of microtubules, and studies of the localization, activity and structural arrangement of specific ion channels. In addition to conventional fluorescent dyes, genetically engineered fluorescent proteins are increasingly being used to measure molecular conformations or intermolecular distances by fluorescence resonance energy transfer.  相似文献   

12.
Probing structures and dynamics within biomolecules using ensemble and single-molecule fluorescence resonance energy transfer requires the conjugation of fluorophores to proteins in a site-specific and thermodynamically nonperturbative fashion. Using single-molecule fluorescence-aided molecular sorting and the chymotrypsin inhibitor 2-subtilisin BPN' complex as an example, we demonstrate that protein-protein interactions can be exploited to afford site-specific labeling of a recombinant double-cysteine variant of CI2 without the need for extensive and time-consuming chromatography. The use of protein-protein interactions for site-specific labeling of proteins is compatible with and complementary to existing chemistries for selective labeling of N-terminal cysteines, and could be extended to label multiple positions within a given polypeptide chain.  相似文献   

13.
Bacteria have evolved complex, highly-coordinated, multi-component cellular engines to achieve high degrees of efficiency, accuracy, adaptability, and redundancy. Super-resolution fluorescence microscopy methods are ideally suited to investigate the internal composition, architecture, and dynamics of molecular machines and large cellular complexes. These techniques require the long-term stability of samples, high signal-to-noise-ratios, low chromatic aberrations and surface flatness, conditions difficult to meet with traditional immobilization methods. We present a method in which cells are functionalized to a microfluidics device and fluorophores are injected and imaged sequentially. This method has several advantages, as it permits the long-term immobilization of cells and proper correction of drift, avoids chromatic aberrations caused by the use of different filter sets, and allows for the flat immobilization of cells on the surface. In addition, we show that different surface chemistries can be used to image bacteria at different time-scales, and we introduce an automated cell detection and image analysis procedure that can be used to obtain cell-to-cell, single-molecule localization and dynamic heterogeneity as well as average properties at the super-resolution level.  相似文献   

14.
Flors C 《Biopolymers》2011,95(5):290-297
With the expansion of super-resolution fluorescence microscopy methods, it is now possible to access the organization of cells and materials at the nanoscale by optical means. This review discusses recent progress in super-resolution imaging of isolated and cell DNA using single-molecule localization methods. A high labeling density of photoswitchable fluorophores is crucial for these techniques, which can be provided by sequence independent DNA stains in which photoblinking reactions can be induced. In particular, unsymmetrical cyanine intercalating dyes in combination with special buffers can be used to image isolated DNA with a spatial resolution of 30-40 nm. For super-resolution imaging of chromatin, cell permeant cyanine dyes that bind the minor groove of DNA have the potential to become a useful alternative to the labeling of histones and other DNA-associated proteins. Other recent developments that are interesting in this context such as high density labeling methods or new DNA probes with photoswitching functionalities are also surveyed. Progress in labeling, optics, and single-molecule localization algorithms is being rapid, and it is likely to provide real insight into DNA structuring in cells and materials.  相似文献   

15.
The steady improvement in the imaging of cellular processes in living tissue over the last 10–15 years through the use of various fluorophores including organic dyes, fluorescent proteins and quantum dots, has made observing biological events common practice. Advances in imaging and recording technology have made it possible to exploit a fluorophore's fluorescence lifetime. The fluorescence lifetime is an intrinsic parameter that is unique for each fluorophore, and that is highly sensitive to its immediate environment and/or the photophysical coupling to other fluorophores by the phenomenon Förster resonance energy transfer (FRET). The fluorescence lifetime has become an important tool in the construction of optical bioassays for various cellular activities and reactions. The measurement of the fluorescence lifetime is possible in two formats; time domain or frequency domain, each with their own advantages. Fluorescence lifetime imaging applications have now progressed to a state where, besides their utility in cell biological research, they can be employed as clinical diagnostic tools. This review highlights the multitude of fluorophores, techniques and clinical applications that make use of fluorescence lifetime imaging microscopy (FLIM).  相似文献   

16.
Rasnik I  McKinney SA  Ha T 《Nature methods》2006,3(11):891-893
Photobleaching and blinking of fluorophores pose fundamental limitations on the information content of single-molecule fluorescence measurements. Photoinduced blinking of Cy5 has hampered many previous investigations using this popular fluorophore. Here we show that Trolox in combination with the enzymatic oxygen-scavenging system eliminates Cy5 blinking, dramatically reduces photobleaching and improves the signal linearity at high excitation rates, significantly extending the applicability of single-molecule fluorescence techniques.  相似文献   

17.
Studies of biomolecules in vivo are crucial to understand their function in a natural, biological context. One powerful approach involves fusing molecules of interest to fluorescent proteins to study their expression, localization, and action; however, the scope of such studies would be increased considerably by using organic fluorophores, which are smaller and more photostable than their fluorescent protein counterparts. Here, we describe a straightforward, versatile, and high-throughput method to internalize DNA fragments and proteins labeled with organic fluorophores into live Escherichia coli by employing electroporation. We studied the copy numbers, diffusion profiles, and structure of internalized molecules at the single-molecule level in vivo, and were able to extend single-molecule observation times by two orders of magnitude compared to green fluorescent protein, allowing continuous monitoring of molecular processes occurring from seconds to minutes. We also exploited the desirable properties of organic fluorophores to perform single-molecule Förster resonance energy transfer measurements in the cytoplasm of live bacteria, both for DNA and proteins. Finally, we demonstrate internalization of labeled proteins and DNA into yeast Saccharomyces cerevisiae, a model eukaryotic system. Our method should broaden the range of biological questions addressable in microbes by single-molecule fluorescence.  相似文献   

18.
Optical imaging can advance knowledge of cellular biology and disease at the molecular level in vitro and, more recently, in vivo. In vivo optical imaging has enabled real-time study to track cell movement, cell growth, and even some cell functions. Thus, it can be used in intact animals for disease detection, screening, diagnosis, drug development, and treatment evaluation. This review includes a brief introduction to fluorescence imaging, fluorescent probes, imaging devices, and in vivo applications in animal models. It also describes a quantitative fluorescence detection method with a reconstruction algorithm for determining the location of fluorophores in tissue and addresses future applications of in vivo fluorescence imaging.  相似文献   

19.
Eukaryotic translation initiation is an intricate process involving at least 11 formally classified eIFs (eukaryotic initiation factors), which, together with the ribosome, comprise one of the largest molecular machines in the cell. Studying such huge macromolecular complexes presents many challenges which cannot readily be overcome by traditional molecular and structural methods. Increasingly, novel quantitative techniques are being used to further dissect such complex assembly pathways. One area of methodology involves the labelling of ribosomal subunits and/or eIFs with fluorophores and the use of techniques such as FRET (F?rster resonance energy transfer) and FA (fluorescence anisotropy). The applicability of such techniques in such a complex system has been greatly enhanced by recent methodological developments. In the present mini-review, we introduce these quantitative fluorescence methods and discuss the impact they are beginning to have on the field.  相似文献   

20.
Studies of biomolecules in vivo are crucial to understand their function in a natural, biological context. One powerful approach involves fusing molecules of interest to fluorescent proteins to study their expression, localization, and action; however, the scope of such studies would be increased considerably by using organic fluorophores, which are smaller and more photostable than their fluorescent protein counterparts. Here, we describe a straightforward, versatile, and high-throughput method to internalize DNA fragments and proteins labeled with organic fluorophores into live Escherichia coli by employing electroporation. We studied the copy numbers, diffusion profiles, and structure of internalized molecules at the single-molecule level in vivo, and were able to extend single-molecule observation times by two orders of magnitude compared to green fluorescent protein, allowing continuous monitoring of molecular processes occurring from seconds to minutes. We also exploited the desirable properties of organic fluorophores to perform single-molecule Förster resonance energy transfer measurements in the cytoplasm of live bacteria, both for DNA and proteins. Finally, we demonstrate internalization of labeled proteins and DNA into yeast Saccharomyces cerevisiae, a model eukaryotic system. Our method should broaden the range of biological questions addressable in microbes by single-molecule fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号