首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
BACKGROUND: Testis enlargement in McCune-Albright syndrome (MAS) is generally bilateral and associated with clinical and biochemical manifestations of sexual precocity. CASE REPORT: We describe for the first time an unreported clinical expression of MAS in a 4.6-year-old boy presenting with monolateral testis enlargement and no signs of sexual precocity or other clinical manifestations of MAS at the time of presenting with macroorchidism. Both testosterone and LHRH-stimulated gonadotropin levels were in the prepubertal range. Serum inhibin B was increased to a pubertal level indicating Sertoli cell activation. The histological and immunocytochemical evaluation of the enlarged testis revealed Sertoli cell hyperplasia with no mature Leydig cells. Mutation R201C of GNAS1 gene, classically responsible for MAS, was identified in DNA samples from the right testis biopsy and leukocytes. CONCLUSIONS: (a) MAS should be taken into consideration in the clinicopathological approach to a boy with monolateral macroorchidism; (b) testicular enlargement may be only the presenting clinical manifestation of MAS and is not necessarily linked to manifestations of peripheral precocious puberty; (c) testicular autonomous hyperfunction in MAS may be restricted to Sertoli cells, as also demonstrated previously by others.  相似文献   

2.
To define a functional difference in Sertoli cells of animals exposed to different photoperiodic conditions, we isolated Sertoli cells from the testes of juvenile Siberian hamsters and cultured them in serum-free medium. In all age groups studied, Sertoli cells isolated from hamsters with delayed and normal puberty responded to follicle-stimulating hormone (FSH) with an increase in lactate production. The increase in lactate production induced by 1000 ng FSH ml-1 was significantly greater in Sertoli cells isolated from hamsters with delayed puberty than in those with normal puberty. These results suggest that Sertoli cells of Siberian hamsters exposed to short photoperiod in vivo may respond to increases in plasma FSH concentrations associated with photostimulation or spontaneous sexual maturation by an increase in secretory activity that may be critical for the initiation of spermatogenesis.  相似文献   

3.
Mammalian germ cell apoptosis plays a key role in controlling the correct number of germ cells supported by Sertoli cells during the first wave of spermatogenesis in mammalian puberty. However, little is known about hormonal factors that could influence the rate of germ cell apoptosis during puberty or adulthood. In this work we evaluate germ cell apoptosis under hypothyroidism induced by goitrogen propylthiouracil (PTU) during the first wave of spermatogenesis. Neonatally administered PTU promoted a delay in the differentiation of Sertoli cells as evaluated by the expression of clusterin using immunohistochemistry and RT-PCR. Clusterin had different expression levels in control and PTU-treated animals, but under both conditions the highest levels were found in 35-day-old rats. In addition, clusterin displayed a cytoplasmic localization in control testes, but appeared located in the nucleus in PTU-treated animals. The wave of apoptosis (determined by caspase activity and quantification of apoptotic cells) characteristic of the first round of spermatogenesis was delayed by at least 10 days in these animals. The expression levels of proapoptotic genes like BAX or BAD were different between control and PTU-treated rats; although in both groups the highest level was found at the same age (days). Thus our results indicate that the characteristic pubertal apoptotic wave during rat spermatogenesis is delayed in neonatal hypothyroid rats.  相似文献   

4.
Prior to puberty the Sertoli cells undergo active cell proliferation, and at the onset of puberty they become a terminally differentiated postmitotic cell population that support spermatogenesis. The molecular mechanisms involved in the postmitotic block of pubertal and adult Sertoli cells are unknown. The four known helix-loop-helix ID proteins (i.e., Id1, Id2, Id3, and Id4) are considered dominant negative regulators of cellular differentiation pathways and act as positive regulators of cellular proliferation. ID proteins are expressed at low levels by postpubertal Sertoli cells and are transiently induced by serum. The hypothesis tested was that ID proteins can induce a terminally differentiated postmitotic Sertoli cell to reenter the cell cycle if they are constitutively expressed. To test this hypothesis, ID1 and ID2 were stably integrated and individually overexpressed in postmitotic rat Sertoli cells. Overexpression of ID1 or ID2 allowed postmitotic Sertoli cells to reenter the cell cycle and undergo mitosis. The cells continued to proliferate even after 300 cell doublings. The functional markers of Sertoli cell differentiation such as transferrin, inhibin alpha, Sert1, and androgen binding protein (ABP) continued to be expressed by the proliferating Sertoli cells, but at lower levels. FSH receptor expression was lost in the proliferating Sertoli cell-Id lines. Some Sertoli cell genes, such as cyclic protein 2 (cathepsin L) and Sry-related HMG box protein-11 (Sox11) increase in expression. At no stage of proliferation did the cells exhibit senescence. The expression profile as determined with a microarray protocol of the Sertoli cell-Id lines suggested an overall increase in cell cycle genes and a decrease in growth inhibitory genes. These results demonstrate that overexpression of ID1 and ID2 genes in a postmitotic, terminally differentiated cell type have the capacity to induce reentry into the cell cycle. The observations are discussed in regards to potential future applications in model systems of terminally differentiated cell types such as neurons or myocytes.  相似文献   

5.
Histological analysis revealed that Sertoli cell specific knockout of the predominant testicular gap junction protein connexin 43 results in a spermatogenic arrest at the level of spermatogonia or Sertoli cell-only syndrome, intratubular cell clusters and still proliferating adult Sertoli cells, implying an important role for connexin 43 in the Sertoli and germ cell development. This study aimed to determine the (1) Sertoli cell maturation state, (2) time of occurrence and (3) composition, differentiation and fate of clustered cells in knockout mice. Using immunohistochemistry connexin 43 deficient Sertoli cells showed an accurate start of the mature markers androgen receptor and GATA-1 during puberty and a vimentin expression from neonatal to adult. Expression of anti-Muellerian hormone, as a marker of Sertoli cell immaturity, was finally down-regulated during puberty, but its disappearance was delayed. This observed extended anti-Müllerian hormone synthesis during puberty was confirmed by western blot and Real-Time PCR and suggests a partial alteration in the Sertoli cell differentiation program. Additionally, Sertoli cells of adult knockouts showed a permanent and uniform expression of GATA-1 at protein and mRNA level, maybe caused by the lack of maturing germ cells and missing negative feedback signals. At ultrastructural level, basally located adult Sertoli cells obtained their mature appearance, demonstrated by the tripartite nucleolus as a typical feature of differentiated Sertoli cells. Intratubular clustered cells were mainly formed by abnormal Sertoli cells and single attached apoptotic germ cells, verified by immunohistochemistry, TUNEL staining and transmission electron microscopy. Clusters first appeared during puberty and became more numerous in adulthood with increasing cell numbers per cluster suggesting an age-related process. In conclusion, adult connexin 43 deficient Sertoli cells seem to proliferate while maintaining expression of mature markers and their adult morphology, indicating a unique and abnormal intermediate phenotype with characteristics common to both undifferentiated and differentiated Sertoli cells.  相似文献   

6.
Histometrical evaluation of the testis was performed in 36 Piau pigs from birth to 16 mo of age to investigate Sertoli cell, Leydig cell, and germ cell proliferation. In addition, blood samples were taken in seven animals from 1 wk of age to adulthood to measure plasma levels of FSH and testosterone. Sertoli cell proliferation in pigs shows two distinct phases. The first occurs between birth and 1 mo of age, when the number of Sertoli cells per testis increases approximately sixfold. The second occurs between 3 and 4 mo of age, or just before puberty, which occurs between 4 to 5 mo of age, when Sertoli cells almost double their numbers per testis. The periods of Sertoli cell proliferation were concomitant with high FSH plasma levels and prominent elongation in the length of seminiferous cord/tubule per testis. Leydig cell volume increased markedly from birth to 1 mo of age and just before puberty. In general, during the first 5 mo after birth, Leydig cell volume growth showed a similar pattern as that observed for testosterone plasma levels. Also, the proliferation of Leydig cells per testis before puberty showed a pattern similar to that observed for Sertoli cells. However, Leydig cell number per testis increased up to 16 mo of age. Substantial changes in Leydig cell size were also observed after the pubertal period. From birth to 4 mo of age, germ cells proliferated continuously, increasing their number approximately two- to fourfold at each monthly interval. A dramatic increase in germ cells per cross-section of seminiferous tubule was observed from 4 to 5 mo of age; their number per tubule cross-section stabilized after 8 mo. To our knowledge, this is the first longitudinal study reporting the pattern of Sertoli cell, germ cell, and Leydig cell proliferative activity in pigs from birth to adulthood and the first study to correlate these events with plasma levels of FSH and testosterone.  相似文献   

7.
The somatic Sertoli cell plays an essential role in embryonic determination of male somatic sex and in spermatogenesis during adult life. One individual Sertoli cell supplies a clone of developing germ cells with nutrients and growth factors and it is well established that the number of Sertoli cells present is closely correlated to both testicular size and sperm output. Sertoli cells continue to proliferate and differentiate until the beginning of puberty, when they cease dividing and start nursing the germ cells. At this point in time, the future capacity of the testis for sperm production has thus been determined. Prior to puberty the Sertoli cells are immature and differ considerably with respect to morphology and biochemical activity from the mature cell. The several investigations that have focused on hormonal and paracrine regulation of the functions of the mature cell are reviewed here, but the mechanisms underlying the maturation and general maintenance of well-functioning Sertoli cells remain obscure. An alarming decline in male reproductive health has been observed in several Western countries during recent decades. Disturbance of Sertoli cell differentiation is thought to be involved in the pathogenesis of both a poor sperm count and testicular cancer. It is speculated that environmental agents that disrupt the estrogenic/androgenic balance in the testis may play a role in this connection.  相似文献   

8.
9.
Heat shock proteins (HSPs) are molecular chaperones involved in protein folding, assembly and transport, and which play critical roles in the regulation of cell growth, survival and differentiation. We set out to test the hypothesis that HSP27 protein is expressed in the human testes and its expression varies with the state of spermatogenesis. HSP27 expression was examined in 30 human testicular biopsy specimens (normal spermatogenesis, maturation arrest and Sertoli cell only syndrome, 10 cases each) using immunofluorescent methods. The biopsies were obtained from patients undergoing investigations for infertility. The seminiferous epithelium of the human testes showing normal spermatogenesis had a cell type-specific expression of HSP27. HSP27 expression was strong in the cytoplasm of the Sertoli cells, spermatogonia, and Leydig cells. Alternatively, the expression was moderate in the spermatocytes, weak in the spermatids and absent in the spermatozoa. In testes showing maturation arrest, HSP27 expression was strong in the Sertoli cells, weak in the spermatogonia, and spermatocytes. It was absent in the spermatids and Leydig cells. In Sertoli cell only syndrome, HSP27 expression was strong in the Sertoli cells and absent in the Leydig cells. We report for the first time the expression patterns of HSP27 in the human testes and show differential expression during normal spermatogenesis, indicating a possible role in this process. The altered expression of this protein in testes showing abnormal spermatogenesis may be related to the pathogenesis of male infertility.  相似文献   

10.
Brahman breed bulls (Bos indicus) are widely used to introduce environmental resistance traits into meat-producing herds. However, their reproductive development is slower than European breeds (Bos taurus). The objective of this study was to assess the development of the seminiferous epithelium in Brahman bulls. Twenty-three prepubertal bulls were castrated and testicular samples taken for histological processing. Light microscopic images were digitized and cells of the seminiferous epithelium were assessed. Immature Sertoli cells gradually decreased in numbers and were no longer detected after approximately 14 months of age; concurrently, the numbers of mature Sertoli cells increased from 10 to 14 months. Spermatogenesis started during the ninth month; prior to that, only gonocytes and immature Sertoli cells were observed. Type A spermatogonia, spermatocytes, round spermatids, elongated spermatids and spermatozoa were first detected at 9.5, 11, 11, 13 and 16 months of age, respectively. The delay in the onset of puberty in Brahman bulls with respect to B. taurus was attributed to a longer duration of the prepubertal period (interval from start of spermatogenesis to puberty) and a later start of spermatogenesis.  相似文献   

11.
Under fresh-water cultivation conditions, spermatogenesis in the Japanese eel is arrested at an immature stage before initiation of spermatogonial proliferation. A single injection of human chorionic gonadotropin can, however, induce complete spermatogenesis, which suggests that spermatogenesis-preventing substances may be present in eel testis. To determine whether such substances exist, we have applied a subtractive hybridisation method to identify genes whose expression is suppressed after human chorionic gonadotropin treatment in vivo. We found one previously unidentified cDNA clone that was downregulated by human chorionic gonadotropin, and named it 'eel spermatogenesis related substances 21' (eSRS21). A homology search showed that eSRS21 shares amino acid sequence similarity with mammalian and chicken Müllerian-inhibiting substance. eSRS21 was expressed in Sertoli cells of immature testes, but disappeared after human chorionic gonadotropin injection. Expression of eSRS21 mRNA was also suppressed in vitro by 11-ketotestosterone, a spermatogenesis-inducing steroid in eel. To examine the function of eSRS21 in spermatogenesis, recombinant eSRS21 produced by a CHO cell expression system was added to a testicular organ culture system. Spermtogonial proliferation induced by 11-ketotestosterone in vitro was suppressed by recombinant eSRS21. Furthermore, addition of a specific anti-eSRS21 antibody induced spermatogonial proliferation in a germ cell/somatic cell co-culture system. We conclude that eSRS21 prevents the initiation of spermatogenesis and, therefore, suppression of eSRS21 expression is necessary to initiate spermatogenesis. In other words, eSRS21 is a spermatogenesis-preventing substance.  相似文献   

12.
In order to further characterize the Sertoli cell state of differentiation, we investigated the expression of connexin 43 (cx43) protein in the testis of adult men both with normal spermatogenesis and associated with spermatogenic impairment, since cx43 is first expressed during puberty. Cx43 protein was found as a single 43-kDa band on western blots of extracts of normal human testicular material. Cx43 immunoreactivity was generally present between Leydig cells. Within the normal seminiferous epithelium cx43 immunoreactivity was localized between adjacent Sertoli cells, except at stages II and III of the seminiferous epithelial cycle when primary spermatocytes cross from the basal to the adluminal compartment suggesting a stage-dependent Sertoli cell function. While testes with hypospermatogenesis and spermatogenic arrest at the level of round spermatids or spermatocytes revealed a staining pattern similar to that of normal adult testis, the seminiferous tubules showing spermatogenic arrest at the level of spermatogonia and Sertoli-cell-only syndrome were completely immunonegative. We therefore assume that severe spermatogenic impairment is associated with a population of Sertoli cells exhibiting a stage of differentiation deficiency. Accepted: 10 June 1999  相似文献   

13.
The relationship between the intactness of sustentacular (Sertoli) cell tight junctions and the status of spermatogenesis was examined in rats fed a vitamin-A-deficient diet after weaning (VAD rats). Both serum and testicular retinol concentrations of the VAD rats declined to a nadir by 80 days of age. At this time, it was observed that Sertoli cell tight junctions of the VAD animals were intact and complete spermatogenesis was maintained. Leakage in Sertoli cell tight junctions, as demonstrated by the presence of lanthanum in the adluminal compartment of the seminiferous epithelium, was first observed in 90-day-old VAD rats. Severe regression of spermatogenic cells was noted in 100-day or older VAD animals. These results suggest that severe germ cell loss observed during chronic vitamin A deficiency may result from abnormal intratubular environment due to the disruption of the blood-testis barrier.  相似文献   

14.
15.
Sertoli cells are essential in development of a functional testis. During puberty, Sertoli cell maturation can be characterized by a number of markers, including anti-Müllerian hormone (AMH) and its receptor (AMHR2), androgen receptor (AR), cyclin-dependent kinase inhibitor (CDKN1B), and connexin 43 (Cx43). In the present study, immunohistochemistry (IHC) and real-time quantitative polymerase chain reaction (RT-qPCR) were used to characterize changes in expression of AMH, AMHR2, AR, CDKN1B, and Cx43 in prepubertal, postpubertal, and adult equine testes. During puberty, AMH expression decreased, and expression of AR as well as CDKN1B increased in Sertoli cells coinciding with the period of Sertoli cell maturation, arrest of cell proliferation, and presumptive AMH regulation by testosterone. Expression of AMHR2 appeared to decrease in Sertoli cells and increase in Leydig cells during pubertal maturation of the equine testis. In addition, expression and distribution of Cx43 changed during puberty in the stallion, suggesting a role for Cx43 in Sertoli cell signaling and maturation, hormone secretion, and blood-testis barrier formation. We concluded that Sertoli cell maturation during puberty in the stallion was accompanied by a reduced expression of AMH and its receptor, arrest of cell proliferation, increased expression of AR, and organization of gap-junctional communication.  相似文献   

16.
17.
Ubiquitin carboxyl-terminal hydrolase 1 (UCH-L1) can be detected in mouse testicular germ cells, mainly spermatogonia and somatic Sertoli cells, but its physiological role is unknown. We show that transgenic (Tg) mice overexpressing EF1alpha promoter-driven UCH-L1 in the testis are sterile due to a block during spermatogenesis at an early stage (pachytene) of meiosis. Interestingly, almost all spermatogonia and Sertoli cells expressing excess UCH-L1, but little PCNA (proliferating cell nuclear antigen), showed no morphological signs of apoptosis or TUNEL-positive staining. Rather, germ cell apoptosis was mainly detected in primary spermatocytes having weak or negative UCH-L1 expression but strong PCNA expression. These data suggest that overexpression of UCH-L1 affects spermatogenesis during meiosis and, in particular, induces apoptosis in primary spermatocytes. In addition to results of caspases-3 upregulation and Bcl-2 downregulation, excess UCH-L1 influenced the distribution of PCNA, suggesting a specific role for UCH-L1 in the processes of mitotic proliferation and differentiation of spermatogonial stem cells during spermatogenesis.  相似文献   

18.
Sertoli cells play a number of roles in supporting spermatogenesis, including structural organization, physical and paracrine support of germ cells, and secretion of factors necessary for germ cell development. Studies with microtubule disrupting compounds indicate that intact microtubule networks are crucial for normal spermatogenesis. However, treatment with toxicants and pharmacologic agents that target microtubules lack cell-type selectivity and may therefore elicit direct effects on germ cells, which also require microtubule-mediated activities for division and morphological transformation. To evaluate the importance of Sertoli cell microtubule-based activities for spermatogenesis, an adenoviral vector that overexpresses the microtubule nucleating protein, gamma-tubulin, was used to selectively disrupt microtubule networks in Sertoli cells in vivo. gamma-Tubulin overexpression was observed to cause redistribution of Sertoli cell microtubule networks, and overexpression of a gamma-tubulin-enhanced green fluorescent protein fusion protein was observed to localize to the site of elongate spermatid head attachment to the seminiferous epithelium.  相似文献   

19.
20.
夏蒙蒙  申雪沂  牛长敏  夏静  孙红亚  郑英 《遗传》2018,40(9):724-732
精子发生过程需要生精细胞及睾丸体细胞的共同参与,这两种细胞也决定着睾丸的发育及雄性生育力。支持细胞是生精小管中唯一的体细胞,在正常精子发生过程中发挥重要的作用。支持细胞增殖与粘附功能的异常将导致精子发生异常,进而引发雄性不育。近年来研究发现,microRNA (miRNA)可调控支持细胞的增殖与粘附功能,其表达水平在激素、内分泌干扰素和营养状况等多种因素作用下发生特异性变化。本文总结了与睾丸支持细胞增殖与粘附功能相关的miRNA及其作用机制,以期发现并鉴定更多与支持细胞相关的miRNA,进而为探索与支持细胞相关不育症的病因提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号