首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The anticonvulsive activity of nociceptin, endogenous OP4 receptors agonist was investigated in pentylenetetrazole (PTZ), N-methyl D-aspartic acid (NMDA), bicucculine (BCC) and electrically evoked seizure models of experimental epilepsy. Nociceptin, at the dose of 10 nmol, suppressed the clonic seizures induced by PTZ, NMDA and BCC. [Phe1(psi)(CH2-NH)Gly2]nociceptin-(1-13)-NH2 which has been proposed to be selective antagonist OP4 receptors, did not prevent the action of nociceptin. The effect of [Phe1(psi)(CH2-NH)Gly2]nociceptin-(1-13)-NH2 on seizures induced by PTZ, NMDA and BCC was very similar to that of nociceptin. These data support the hypothesis that it possesses agonistic properties. Naloxone did not reverse the anticonvulsive action of nociceptin as well as [Phe1(psi)(CH2-NH)Gly2]nociceptin-(1-13)-NH2 which excludes the participation of opioid receptor in this action. On the other hand in the electroconvulsive model of generalized seizures, nociceptin as well as [Phe1(psi)(CH2-NH)Gly2]nociceptin-(1-13)-NH2 influenced neither the electroconvulsive threshold nor the maximal electroshock test. The data suggest that nociceptin and [Phe1(psi)(CH2-NH)Gly2]nociceptin-(1-13)-NH2 can exert anticonvulsive action. These properties depend on OP4 but not opioid receptors activation.  相似文献   

2.
Electric field stimulation (EFS) causes excitatory non adrenergic-non cholinergic (eNANC) and cholinergic constrictions in the guinea pig isolated bronchus, the activation of eNANC and cholinergic nerves respectively. We investigated the effects of [Nphe1]nociceptin(1-13)NH2 ([Nphe1]NC(1-13)NH2), [Phe1(CH2-NH)Gly2]nociceptin(1- 13)NH2 ([F/G] NC(1-13)NH2), and nocistatin (NST) on nociceptin (NC) inhibited constrictions in isolated bronchus of guinea pig. The results show that NC (1 micromol/L) inhibited EFS-induced eNANC and cholinergic constrictions compared with the control, in which nociceptin was not applied. After pretreatment with [Nphe1]NC(1-13)NH2, [F/G]NC(1-13)NH2, or NST, the inhibitions of NC were antagonized by [Nphe1]NC(1-13)NH2 and [F/G]NC(1-13)NH2 but not NST. However, [Nphe1]NC(1-13)NH2, [F/G]NC(1-13)NH2, and NST did not affect the inhibitions induced by morphine. Furthermore, [Nphe1]NC(1-13)NH2, [F/G]NC(1-13)NH2 and NST did not cause any appreciable effects on EFS-induced eNANC and cholinergic constrictions in guinea pig bronchi. The results demonstrate that [Nphe1]NC(1-13)NH2 and [F/G]NC(1- 13)NH2 but not NST act as selective antagonists of the NC receptor and the effects of NC on EFS-induced constrictions of guinea pig isolated bronchus.  相似文献   

3.
The purpose of this study was to investigate the effects of [Nphe1]nociceptin(1-13)-NH2 on nociceptin-induced decreases in mean arterial pressure (MAP), heart rate (HR), and hindquarters vascular bed resistance (HVBR) of the anesthetized rat. The results showed that i.c.v. or i.v. [Nphe1]nociceptin(1-13)-NH2 (1.5-12 nmol/kg and 5-120 nmol/kg, respectively) could antagonize the depressor effects of i.c.v. or i.v. nociceptin (3 and 30 nmol/kg, respectively) on MAP and HR. Furthermore, [Nphe1]nociceptin(1-13)-NH2 (5-120 nmol/kg) could reverse nociceptin (30 nmol/kg)-induced decrease of HVBR. However, [Nphe1]nociceptin(1-13)-NH2 had no significant effects on similar effects induced by morphine. Our results suggest that [Nphe1]nociceptin(1-13)-NH2 acts as a selective antagonist of the nociceptin receptor in the cardiovascular system of the rat.  相似文献   

4.
Zhao QY  Chen Q  Yang DJ  Feng Y  Long Y  Wang P  Wang R 《Life sciences》2005,77(10):1155-1165
Endomorphin 1 (EM1) and endomorphin 2 (EM2) are highly potent and selective mu-opioid receptor agonists and have significant antinociceptive action. In the mu-selective pocket of endomorphins (EMs), Pro2 residue is a spacer and directs the Tyr1 and Trp3/Phe3 side chains into the required orientation. The present work was designed to substitute the peptide bond between Tyr1 and Pro2 of EMs with a reduced (CH2NH) bond and study the agonist potency and antinociception of EM1[psi] (Tyr[psi(CH2NH)]Pro-Trp-Phe-NH2) and EM2[psi] (Tyr[psi(CH2NH)]Pro-Phe-Phe-NH2). Both EM1[psi] and EM2[psi] are partial mu opioid receptor agonists showing significant loss of agonist potency in GPI assay. However, EMs[psi] exhibited potent supraspinal antinociceptive action in vivo. In the mice tail-flick test, EMs[psi] (1, 5, 10 nmol/mouse, i.c.v.) produced potent and short-lasting antinociception in a dose-dependent and naloxone (1 mg/kg) reversed manner. At the highest dose of 10 nmol, the effect of EM2[psi] was prolonged and more significant than that of EM2. In the rat model of formalin injection induced inflammatory pain, EMs[psi] (0.1, 1, 10 nmol/rat, i.c.v.), like EMs, exerted transient but not dose-dependent antinociception. These results suggested that in the mu-selective pocket of EMs, the rigid conformation induced by the peptide bond between Tyr1 and Pro2 is essential to regulate their agonist properties at the mu opioid receptors. However, the increased conformational flexibility induced by the reduced (CH2NH) bond made less influence on their antinociception.  相似文献   

5.
Burnside JL  Rodriguez L  Toll L 《Peptides》2000,21(7):1147-1154
Recent studies have identified compounds with reduced efficacy relative to nociceptin/orphanin FQ at the opioid-like receptor ORL1. Utilizing stimulation of [(35)S]GTPgammaS binding as in vitro assays, it was determined that both [Phe(1)psi(CH(2)-NH)Gly(2)]N/OFQ(1-13)NH(2) and the hexapeptide Ac-RYYRIK-NH(2) act as partial agonists in CHO cells transfected with either human or mouse ORL1. Maximal activity for both [Phe(1)psi(CH(2)-NH)Gly(2)]N/OFQ(1-13)NH(2) and Ac-RYYRIK-NH(2) was significantly greater in cells transfected with the human receptor (90% and 73% in a high expressing clone, 76% and 68% in low expressing clone) rather than the mouse receptor (37.5 and 33%), regardless of receptor number in individual clones. In vitro studies in cells transfected with exaggerated receptor numbers can lead to unreliable estimates of agonist and antagonist activity, however, these studies suggest that animal experiments on the activity of novel compounds may not always be better predictors of the ultimate activity in humans.  相似文献   

6.
Substitution of the Phe3 aromatic ring in H-Tyr-Ticpsi[CH2-NH]Phe-Phe-OH with cyclohexylalanine (Cha) has been reported to result in a compound, H-Tyr-Ticpsi[CH2-NH]Cha-Phe-OH (TICP[psi]), showing substantially increased delta-opioid antagonist potency and high delta selectivity. TICP[psi] was radiolabeled by catalytic tritiation of its precursor Tyr(3',5'-I2)1TICP[psi]. Binding characteristics of the new tritiated pseudopeptide were determined using the radioligand binding assay in rat brain membranes. On the basis of the results of saturation binding studies performed at 25 degrees C, an equilibrium dissociation constant (Kd) of 0.35 nM and a receptor density (Bmax) of 112 fmol/mg protein were calculated. This new tritiated ligand exhibits high affinity for delta-opioid receptors, whereas its binding to mu and kappa receptors is weak. A study of [H3]TICP[psi] binding displacement by various receptor-selective opioids showed the following rank order of potency: delta > kappa = mu. These receptor binding characteristics of the ligand, together with its high specific radioactivity (41.3 Ci/mmol) and stability, makes it a useful tool for labeling delta-opioid receptors, both in vitro and in vivo.  相似文献   

7.
The peptide CO-NH function was replaced by a trans carbon-carbon double bond or by a CH2-CH2 isostere in enkephalin analogues of DADLE, DCDCE-NH2 or DPDPE. In DADLE the 2-3 and the 3-4 peptide bond was modified, whereas in the cyclic analogues the Gly3-Phe4 bond was replaced by the isosteres Gly psi (E,CH = CH)Phe [5-amino-2-(phenylmethyl)-3(E)-pentenoic acid] or Gly psi (CH2CH2)Phe [5-amino-2-(phenylmethyl)pentanoic acid]. In general, the modification results in a drop in potency which is the largest for the flexible CH2-CH2 replacement. The Gly3 psi (E,CH = CH)Phe4 DCDCE-NH2 analogue retains considerable potency. These results confirm the importance of the peptide function at the 2-3 and 3-4 position in enkephalin analogues for biological potency.  相似文献   

8.
Schlicker E  Morari M 《Peptides》2000,21(7):1023-1029
In this article, the effect of nociceptin (orphanin FQ) on transmitter release in the central nervous system in vitro and in vivo is reviewed. Nociceptin inhibits the electrically or K(+)-evoked noradrenaline, dopamine, serotonin, and glutamate release in brain slices from guinea-pig, rat, and mouse. This effect is usually naloxone-resistant but antagonized by OP(4) receptor antagonists like [Phe(1)psi(CH(2)-NH)Gly(2)]-nociceptin(1-13)NH(2). In the rat in vivo, nociceptin diminishes acetylcholine release in the striatum, reduces dopamine release, and prevents the stimulatory effect of morphine on this transmitter in the nucleus accumbens and also elevates extracellular glutamate and gamma-aminobutyric acid levels in mesencephalic dopaminergic areas. The effect of nociceptin on the mesencephalic dopaminergic system might explain its actions on motor behavior.  相似文献   

9.
A pseudopeptide analog of the active core of the leucokinin insect neuropeptide family was synthesized and found to retain myotropic activity. No reports of active pseudopeptide analogs of an insect or other invertebrate neuropeptide have previously appeared in the literature. The pseudopeptide (Phe psi [CH2-NH] Phe-Ser-Trp-Gly-NH2) contains a reduced-amide linkage between the two N-terminal Phe residues. Unlike its amide-bond containing counterpart, the activity of the pseudopeptide was not destroyed upon exposure to aminopeptidase M.  相似文献   

10.
We studied the action of nociceptin (NC) on the atropine-resistant contractions of the guinea pig isolated bronchus evoked by the electrical field stimulation (EFS), an effect that is mediated by the activation of excitatory non adrenergic-non cholinergic (eNANC) nerves and the subsequent release of tachykinins. The functional site by which NC acts in this preparation was investigated using few different NC receptor agonists and the newly discovered NC receptor antagonist, [Phe1psi(CH2-NH)Gly2]NC(1-13)NH2 ([F/G]NC(1-13)NH2). NC inhibited in a concentration dependent manner (pEC50 7.14; Em - 87 +/- 3% of control values) EFS induced contractions. NC effect was mimicked by the NC analogues, NCNH2 and NC(1-13)NH2, but not by NC(1-9)NH2. NC (1 microM) did not affect the contractile effects of exogenously applied neurokinin A (1 microM). [F/G]NC(1-13)NH2 (10 microM) completely prevented the inhibition induced by NC (1 microM), whereas naloxone (1 microM) was found inactive. Both naloxone and ([F/G]NC(1-13)NH2 were per se inactive on basal resting tone as well as on the electrically induced contractions. The present findings show that NC inhibits the atropine-resistant EFS-induced contraction in the guinea pig bronchus by inhibiting eNANC nerves, and suggest the presence of NC receptors, distinct from opioid receptors, on the nerves of the guinea pig bronchus.  相似文献   

11.
The hexapeptide acetyl-RYYRIK-amide (Ac-RYYRIK-NH(2)) has recently been reported to act as partial agonist of the nociceptin/orphanin FQ (noc/OFQ) receptor expressed in CHO cells. In addition, this peptide acts as a competitive antagonist of noc/OFQ-stimulated GTPgamma(35)S binding in rat brain membranes as well as of the noc/OFQ-evoked chronotropic effect in rat cardiomyocytes. In contrast to this antagonism, in the present study, Ac-RYYRIK-NH(2) was found to behave as an agonist at noc/OFQ receptors, affecting spontaneous locomotor activity. When administered intracerebroventricularly (i.c.v.), noc/OFQ and Ac-RYYRIK-NH(2) inhibited spontaneous locomotor activity in mice with ID(50) of 1.1 and 0.07 nmol, respectively. Co-administration of both peptides lead to additive effects. The higher potency of Ac-RYYRIK-NH(2) could not be clearly explained by differential metabolism, because in vivo microdialysis in rat striatum and in vitro metabolic inactivation by rat and mouse brain membranes revealed extensive inactivation of both peptides. Similar to Ac-RYYRIK-NH(2), [Phe(1)psi(CH(2)-NH)Gly(2)]noc/OFQ(1-13)-NH(2) ([F/G]NC(1-13)NH(2)) inhibited the noc/OFQ-stimulated GTPgamma(35)S binding in rat brain membranes (Schild constant 3.83 nM) and mouse brain sections, although several reports have shown that this peptide exhibits agonist activity of noc/OFQ in the CNS. Changes in the optimum conditions of the in vitro assay for GTP binding increased low partial agonism of Ac-RYYRIK-NH(2) in GTP binding response. To explain the discrepancy between the in vitro antagonism of G protein coupling of the noc/OFQ receptor and in vivo agonism of Ac-RYYRIK-NH(2) and of [F/G]NC(1-13)NH(2), it is suggested that low partial agonism of receptor/G protein coupling in native systems may be sufficient to evoke full biologic responses. The extent of partial agonism for GTP binding and of coupling reserve may vary in different systems, thus explaining why [F/G]NC(1-13)NH(2) and Ac-RYYRIK-NH(2) were reported to exhibit antagonist, partial agonist, or even full agonist properties, depending on the system studied.  相似文献   

12.
A series of new nociceptin analogues containing cysteine was tested for their nociceptive effects in tail-flick test on mice after icv injection. The cysteines were introduced in order to get irreversibly binding analogues based on the assumption that the cysteines in the ligand can interact with the cysteines from the receptor to form an S-S bridge. In vivo tests revealed that Cys1-nociceptin (1-13)-NH2 (Cys1-NC) is an antagonist, whereas Cys7-NC is an agonist. Gly1[Phe(p-NO2)]4-NC was less active indicating that the antagonist properties of Cys1-NC are associated with the presence of the sulfhydryl group of cysteine. The analogues D-Cys2 and Cys3 were also almost inactive.  相似文献   

13.
Intracerebroventricular administration of the dynorphin analog, [D-Ala2,(F5)Phe4]-dynorphin 1-13-NH2 (DAFPHEDYN) in rats produced diuresis and profound analgesia. Both effects were antagonized by central administration of naltrexone or naloxone. Intravenous administration of 10, 25, and 50 mg/kg of DAFPHEDYN failed to induce diuresis. The increased potency of DAFPHEDYN was apparent from the failure of an equal dose of the parent compound (dynorphin 1-13) to produce diuresis and the failure of [D-Ala2]-dynorphin 1-13-NH2 to produce analgesia. Radioligand binding studies indicated the DAFPHEDYN retains the same degree of kappa selectivity as the parent compound (dynorphin 1-13) though a drop in affinity occurred. DAFPHEDYN may be of significant interest because it retains the essential pharmacology of the parent compound and exhibits marked in vivo potency.  相似文献   

14.
Nociceptin and its receptor (OP(4)) share sequence homologies with the opioid peptide ligand dynorphin A and its receptor OP(2). Cationic residues in the C-terminal sequence of both peptides seem to be required for selective receptor occupation, but the number and the distribution of these basic residues are different and quite critical. Both receptors are presumably activated by the peptides N-terminal sequence (Xaa-Gly Gly-Phe, where Xaa = Phe or Tyr); however, although OP(4) requires Phe(4) as a determinant pharmacophore, OP(2) requires Tyr(1) as do the other opioid receptors. An extensive structure-activity analysis of the N-terminal tetrapeptide has led to conclude that the presence of aromatic residues in position one and four, preferably Phe, as well as the distance between Phe(1) and Phe(4) are extremely critical for occupation and activation of OP(4) in contrast with other opioid receptors (e.g. OP(1), OP(3), OP(2)). Modification of distance between the side chains of Phe(1) and Phe(4) (as obtained with Nphe(1) substitution in both NC and NC(1-13)-NH(2)) and/or conformational orientation of Phe(1) (as in Phe(1)psi(CH(2)-NH)-Gly(2)) has brought to discovery of pure antagonist ([Nphe(1)]-NC(1-13)-NH(2)) and a partial agonist ([Phe(1) psi(CH(2)-NH)-Gly(2)]-NC(1-13)-NH(2)), which have allowed us to characterize and classify the OP(4) receptor in several species. Thus, although antagonist activities at the OP(4) receptor are obtained by chemical modification of Phe(1)-Gly(2) peptide bond or by a shift of Phe(1) side chain of NC peptides, antagonism at the OP(2) receptor requires the diallylation of the N-terminal amino function, for instance, of dynorphin A. These considerations support the interpretation that the two systems nociceptin/OP(4) and dynorphin A/OP(2) are distinct pharmacological entities that differs in both their active sites (Tyr(1) for Dyn A and Phe(4) for NC) and the number and position of cationic residues in the C-terminal portions of the molecules. The chemical features of novel OP(4) receptor ligands either pseudopeptides obtained by combinatorial library screening or molecules of nonpeptide structure are reported and discussed in comparison with NC and NC related peptides.  相似文献   

15.
Chen LX  Fang Q  Chen Q  Guo J  Wang ZZ  Chen Y  Wang R 《Peptides》2004,25(8):1349-1354
In the present study, two analogues containing N-Me-Gly (Sarcosine, Sar) were synthesized to further investigate the structural-activity relationships of orphanin FQ/nociceptin (OFQ/NC, NC). The replacement of Gly(2) or Gly(3) with Sar increased the flexibility and decreased the hydrophobicity of the N-terminal tetrapeptide. The activity of the analogues was investigated in a series of assays in vivo and in vitro. [Sar(2)]NC(1-13)NH(2) was found to (1) produce dose-dependent inhibition of the electrically induced contraction in MVD assay (pEC(50) = 6.14); (2) produce significant hyperalgesia effects in a dose-dependent manner when intracerebroventricularly (i.c.v.) injected in mice. The inhibitive effects of [Sar(2)]NC(1-13)NH(2) in MVD assay could be significantly antagonized by [Nphe(1)]NC(1-13)NH(2), and partially antagonized by naloxone; the hyperalgesic effect of [Sar(2)]NC(1-13)NH(2) could be significantly antagonized by naloxone, and partially antagonized by [Nphe(1)]NC(1-13)NH(2). On the contrary, [Sar(3)]NC(1-13)NH(2) showed no effects in these assays. All the findings suggest that the flexibility of the peptide bond between Phe(1) and Gly(2) and between Gly(2) and Gly(3) play an important role in NC-OP(4) receptor interaction, and the hydrophobicity of the N-terminal tetrapeptide showed no significant effect on this interaction. The present work also helps to provide a novel method to elucidate structural and conformational requirements of the opioid peptide-receptor interaction.  相似文献   

16.
A series of analogs of the ORL1 receptor antagonist [Nphe1]-NC(1-13)-NH2 was prepared and tested for agonistic and antagonistic activities in the mouse vas deferens, a preparation that shows high sensitivity to nociceptin and related peptides. The purpose of this study was to determine the role of the aromatic residue at the N-terminal for antagonism and eventually identify compounds with improved potency. Results indicated that all 23 compounds are inactive as agonists, and the antagonistic potency of the initial template [Nphe1]-NC(1-13)-NH2 is high (pKB 6.43) compared with those of all other compounds except [(S)(betaMe)Nphe1]NC(1-13)-NH2 (pK(B) 6.48). The other 22 compounds can be divided into two groups: 10 show antagonistic potencies (pK(B)) ranging from 5.30 to 5.86, whereas the other 12 compounds are inactive. This study clearly shows that the aromatic ring of Nphe is very critical for the interaction with the ORL1 receptor and can not be enlarged or sterically modified without significant loss of antagonistic potency.  相似文献   

17.
In order to prevent enzymatic degradation of beta-casomorphin-5 (1) and morphiceptin, reduced peptide bonds were incorporated at the 2-3 and 3-4 bonds, respectively. The analogues were synthesized by a combination of solid phase methodology and reductive alkylation of resin-bound peptide amines with Boc-amino acid aldehydes (Boc: tert-butyloxycarbonyl) in the presence of NaBH3CN. During reversed phase high pressure liquid chromatography purification, peak shape distortions could be observed. Epimerization was excluded, based on gas chromatography/mass spectroscopy analysis, which indicated acceptable levels of racemization (less than 3%) in the crude product. Instead, the phenomena could be attributed to slow cis/trans isomerizations originating from the Xxx-Pro bonds in the sequence. The presence of different conformational isomers was also established by 1H-nmr spectroscopy in DMSO-d6. All analogues showed high stability in blood plasma, enhanced binding affinity for the mu receptor, and very low binding to the delta receptor. While the Phe 3 psi(CH2-N)Pro4 analogues (3) and (5) displayed agonist activity, the Pro 2 psi(CH2-NH)Phe3 modified analogue (2) showed antagonist activity comparable to D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2.  相似文献   

18.
The neuropeptide galanin is a 29- or 30-residue peptide whose physiological functions are mediated by G-protein-coupled receptors. Galanin's agonist activity has been shown to be associated with the N-terminal sequence, galanin(1-16). Conformational investigations previously carried out on full-length galanin have, furthermore, indicated the presence of a helical conformation in the neuropeptide's N-terminal domain. Several cyclic lactam analogues of galanin(1-16)-NH2 were prepared in an attempt to stabilize an N-terminal helix in the peptide. Here we describe and compare the solution conformational properties of these analogues in the presence of SDS micelles as determined by NMR, CD, and fluorescence spectroscopy. Differences in CD spectral profiles were observed among the compounds that were studied. Both c[D4, K8]Gal(1-16)-NH2 and c[D4,K8]Gal(1-12)-NH2 adopted stable helical conformations in the micelle solution. On the basis of the analyses of their respective alpha H chemical shifts and NOE patterns, this helix was localized to the first 10 residues. The distance between the aromatic rings of Trp2 and Tyr9 in c[D4, K8]Gal(1-16)-NH2 was determined to be 10.8 +/- 3 A from fluorescence resonance energy transfer measurements. This interchromophore spacing was found to be more consistent with a helical structure than an extended one. Removal of the Gly1 residue in compounds c[D4,K8]Gal(1-16)-NH2 and c[D4, K8]Gal(1-12)-NH2 resulted in a loss of helical conformation and a concomitant reduction in binding potency at the GalR1 receptor but not at the GalR2 receptor. The nuclear Overhauser enhancements obtained for the Gly1 deficient analogues did, however, reveal the presence of nascent helical structures within the N-terminal sequence. Decreasing the ring structure size in c[D4, K8]Gal(1-16)-NH2 by replacing Lys8 with an ornithine residue or by changing the position of the single lysine residue from eight to seven was accompanied by a complete loss of helical structure and dramatically reduced receptor affinity. It is concluded from the data obtained for the series of cyclic galanin(1-16)-NH2 analogues that both the ring structure size and the presence of an N-terminal glycine residue are important for stabilizing an N-terminal helix in these compounds. However, although an N-terminal helix constitutes a predominant portion of the conformational ensemble for compounds c[D4,K8]Gal(1-16)-NH2 and c[D4, K8]Gal(1-12)-NH2, these peptides nevertheless are able to adopt other conformations in solution. Consequently, the correlation between the ability of the cyclic galanin analogues to adopt an N-terminal helix and bind to the GalR1 receptor may be considered as a working hypothesis.  相似文献   

19.
G Drapeau  A Chow  P E Ward 《Peptides》1991,12(3):631-638
Bradykinin (BK) analogs such as Lys-Lys-BK, des-Arg9-BK and [Leu8]des-Arg9-BK were poor substrates for angiotensin I converting enzyme (ACE), and analogs containing D-Phe7 residues, or a pseudopeptide C-terminal bond, were completely resistant. However, many of these analogs were metabolized by carboxypeptidase N (CPN) including Lys-Lys-BK, [Tyr8(OMe)]BK and D-Phe7-containing analogs, with Km and Vmax values comparable to those for BK. The only analogs completely resistant to both ACE and CPN were the B2 agonist [Phe8 psi(CH2NH)Arg9]BK, the B2 agonist D-Arg[Hyp3,D-Phe7,Phe8 psi(CH2NH)Arg9]BK, and the B1 agonist [D-Phe8]des-Arg9-BK. These data indicate an important role for plasma CPN and vascular CPN-like activity in the metabolism of the widely used ACE-resistant/D-Phe7-containing antagonists of B2 kinin receptors.  相似文献   

20.
A novel opioid receptor-like orphan receptor (ORL1) was cloned and identified to be homologous to classical opioid receptors but insensitive to traditional opioids. A heptadecapeptide, termed orphanin FQ or nociceptin (OFQ/N), was identified as its endogenous ligand. OFQ/N shares overlapping distribution sites in pain-processing areas and common cellular mechanisms with opioids but exerts diverse effects on nociceptive responses. Of the two reported ORL1 antagonists, [Phe(1)psi(CH(2)-NH)- Gly(2)] nociceptin-(1-13)-NH(2) (Phepsi) and naloxone benzoylhydrazone (NBZ), antagonisms were validated in the activation of inward rectifying K channels induced by OFQ/N, using the patch clamp technique in ventrolateral periaqueductal gray slices. Results showed that Phepsi acted as a partial agonist and NBZ was a weak nonselective antagonist of ORL1. It is comparable with most but not all of the findings from other tissues. Comparing all the reports supports the above inference for these two antagonists. The possible causes for the discrepancy were discussed. A brief review on the putative ORL1 antagonists, acetyl-RYYRIK-NH2, some sigma-ligands and the functional antagonist, nocistatin, is also included. It indicates that a potent and selective ORL1 antagonist is expecting to elucidate the physiological role of OFQ/N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号