首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Nuclear pre-mRNA splicing requires ATP at several steps from spliceosome assembly to product release. Here, we demonstrate that an integral component of the 20S U5 snRNP is an RNA-dependent ATPase. The ATPase activity of 20S U5 and 25S [U4/U6.U5] snRNPs purified by glycerol gradient centrifugation is strongly stimulated by homopolymeric RNA but not ssDNA. Purified 12S Ul and U2 snRNPs do not exhibit ATPase activity. Moreover, the U5-associated NTPase specifically hydrolyzes ATP and dATP. The additional purification of 20S U5 snRNPs by Mono Q chromatography does not affect the efficiency of ATP hydrolysis. Both U5 and tri-snRNPs bind ATP stoichiometrically in an RNA-independent manner. A candidate ATPase was identified by UV-irradiation of purified snRNPs with radiolabeled ATP. In the presence of homopolymeric RNA, the 200 kDa U5-specific protein is the major crosslinked protein, even in Mono Q-purified U5 snRNPs. The correlation between RNA-dependent ATPase activity in the U5 snRNP and the RNA-dependent onset of this crosslink strongly suggests that the 200 kDa protein is an RNA-dependent ATPase. Furthermore, both the formation of the crosslink and ATPase activity appear with a similar substrate specificity for ATP.  相似文献   

2.
In order to resolve the functional role of intact rRNA in polypeptide chain elongation mouse brain ribosomes were treated with dilute pancreatic or T(1) RNAase (ribonuclease). After RNAase treatment, several physical-chemical properties as well as the functional activity of the ribosomes were measured. RNAase treatment resulted in the extensive hydrolysis of both 18S and 28S rRNA; however, the sedimentation properties of mono-ribosomes were unaltered and more than 90% of the relatively low-molecular-weight RNA fragments remained associated with ribosome particles. Analysis of the ability of RNAase-treated ribosomes to participate in cell-free protein synthesis showed that ribosomes with less than 2% intact rRNA retained more than 85% of their activity in polyphenylalanine incorporation. Proof that the incorporation of phenylalanine by ribosomes with hydrolysed rRNA actually represented active translocation was obtained by the effective inhibition of incorporation by diphtheria toxin. In addition, the oligopeptide products of protein synthesis could be identified by BD (benzoylated diethylaminoethyl)-cellulose column chromatography. Analysis of the size distribution of oligopeptides synthesized by normal and RNAase-treated ribosomes showed no significant differences which indicated that there was no change in the proportion of ribosomes engaged in protein synthesis. Thus strong RNA-protein and protein-protein interactions must serve to maintain the functional integrity of ribosomes even when the rRNA is extensively degraded. The ability of the enzyme-treated ribosomes to efficiently incorporate amino acids clearly demonstrated that ;intact' rRNA is not required for protein-synthetic activity.  相似文献   

3.
Oligomycin-sensitive ATPase activity was studied in isolated yeast mitochondria. The protonophore CCCP, at a concentration which completely inhibited ATP synthesis, induced only a low rate of hydrolysis of externally added ATP, and the extent of hydrolysis was dependent upon phosphate (Pi) concentration. CCCP promoted hydrolysis of intramitochondrial ATP. However, hydrolysis of externally added ATP was total in a medium containing potassium phosphate plus valinomycin. Without ionophores, ATPase activity was only observed at high external pH or with detergent-treated mitochondria. Under state 4 conditions, external ATP had access to the catalytic nucleotide site of ATPase as shown by 32Pi-ATP exchange experiments. These results are discussed in terms of a limitation of the translocase-mediated ATP/ADP exchange in uncoupled mitochondria.  相似文献   

4.
Formation of eukaryotic ribosomes is driven by energy-consuming enzymes. The AAA-ATPase Drg1 is essential for the release of several shuttling proteins from cytoplasmic pre-60S particles and the loading of late joining proteins. However, its exact role in ribosome biogenesis has been unknown. Here we show that the shuttling protein Rlp24 recruited Drg1 to pre-60S particles and stimulated its ATPase activity. ATP hydrolysis in the second AAA domain of Drg1 was required to release shuttling proteins. In vitro, Drg1 specifically and exclusively extracted Rlp24 from purified pre-60S particles. Rlp24 release required ATP and was promoted by the interaction of Drg1 with the nucleoporin Nup116. Subsequent ATP hydrolysis in the first AAA domain dissociated Drg1 from Rlp24, liberating both proteins for consecutive cycles of activity. Our results show that release of Rlp24 by Drg1 defines a key event in large subunit formation that is a prerequisite for progression of cytoplasmic pre-60S maturation.  相似文献   

5.
The Escherichia coli DEAD protein DbpA is an RNA-specific ATPase that is activated by a 153-nt fragment within domain V of 23S rRNA. A series of RNA subfragments and sequence changes were used to identify the recognition elements of this RNA-protein interaction. Reducing the size of the fully active 153-nt RNA yields compromised substrates in which both RNA and ATP binding are weakened considerably without affecting the maximal rate of ATP hydrolysis. All RNAs that stimulate ATPase activity contain hairpin 92 of 23S rRNA, which is known to interact with the 3' end of tRNAs in the ribosomal A-site. RNAs with base mutations within this hairpin fail to activate ATP hydrolysis, suggesting that it is a critical recognition element for DbpA. Although the isolated hairpin fails to activate DbpA, RNAs with an extension of approximately 15 nt on either the 5' or 3' side of hairpin 92 elicit full ATPase activity. These results suggest that the binding of DbpA to RNA requires sequence-specific interactions with hairpin 92 as well as nonspecific interactions with the RNA extension. A model relating the RNA binding and ATPase activities of DbpA is presented.  相似文献   

6.
Mitsue Miyao  Norio Murata 《BBA》1983,725(1):87-93
Treatment with 1 M NaCl almost totally removed two polypeptides of 24 and 18 kDa from the Photosystem II particles of spinach chloroplasts and reduced the oxygen-evolution activity by about half. Both polypeptides were able to rebind to the NaCl-treated particles in a low-salt medium. The rebinding of the 24 kDa polypeptide showed a saturation curve whose maximum level was close to that naturally occurring in the untreated particles. In parallel with the amount of rebound 24 kDa polypeptide, the oxygen-evolution activity was recovered. The 18 kDa polypeptide bound to the NaCl-treated particles without saturation. When the 18 kDa polypeptide was added to the particles previously treated with NaCl and then supplemented with a saturating amount of 24 kDa polypeptide, there appeared, in addition to the binding without saturation, another binding of the 18 kDa polypeptide with saturation to a maximum level close to that naturally occurring in the untreated particles. The 18 kDa polypeptide did not restore the oxygen-evolution activity. These findings suggest that there are specific binding sites; one for the 24 kDa polypeptide located on the Photosystem II particles, and the other for the 18 kDa polypeptide on the 24 kDa polypeptide.  相似文献   

7.
A vanadate- and N-ethylmaleimide-sensitive ATPase was purified about 500-fold from chromaffin granule membranes. The purified preparation contained a single major polypeptide with an apparent molecular mass of about 115 kDa, which was copurified with the ATPase activity. Immunological studies revealed that this polypeptide has no relation to subunit I (115 kDa) of the H+-ATPase from chromaffin granules. The ATPase activity of the enzyme is inhibited about 50% by 100 microM N-ethylmaleimide or 5 microM vanadate. The enzyme is not sensitive to dicyclohexylcarbodiimide, ouabain, SCH28080, and omeprazole, which distinguishes it from Na+/K+-ATPase and the gastric K+/H+-ATPase. ATP and 2-deoxy ATP are equally effective substrates for the enzyme. However, the enzyme exhibited only 10% activity with GTP as a substrate. UV illumination of the purified enzyme in the presence of [alpha-32P]ATP exclusively labeled the 115 kDa protein. This labeling was increased by Mg2+ and strongly inhibited by Ca2+ ions. Similarly, the ATPase activity was dependent on Mg2+ and inhibited by the presence of Ca2+ ions. The ATPase activity of the enzyme was largely insensitive to monovalent anions and cations, except for F-, which inhibited the vanadate-sensitive ATPase. Incubation of the enzyme in the presence of [14C]N-ethylmaleimide labeled the 115-kDa polypeptide, and this labeling could be prevented by the addition of ATP during the incubation. A reciprocal experiment showed that preincubation with N-ethylmaleimide inhibited the labeling of the 115-kDa polypeptide by [alpha-32P]ATP by UV illumination. This suggests a close proximity between the ATP-binding site and an essential sulfhydryl group. A possible connection between the isolated ATPase and organelle movement is discussed.  相似文献   

8.
Ribonucleoprotein particles with sedimentation coefficient of 12-14S were isolated from ribosome-free extracts of rabbit reticulocytes. The particles contain one RNA molecule, whose relative electrophoretic mobility and the 3'-terminal nucleotide sequence correspond to those of the 7SL RNA from mammalian cells and one type of polypeptide chains with a molecular weight of 80,000-85,000 Da. The nucleic component of these particles is identical to that of SRP from dog pancreatic cells but differs from the latter by the protein component.  相似文献   

9.
The ADP(Mg2+)-deactivated, azide-trapped F0 x F1-ATPase of coupled submitochondrial particles is capable of ATP synthesis being incapable of ATP hydrolysis and ATP-dependent delta muH+ generation [FEBS Lett. (1995) 366, 29-32]. This puzzling phenomenon was studied further. No ATPase activity of the submitochondrial particles catalyzing succinate-supported oxidative phosphorylation in the presence of azide was observed when ATP was added to the assay mixture after an uncoupler. Rapid ATP hydrolysis was detected in the same system when ATP followed by an uncoupler was added. Less than 5% of the original ATPase activity was seen when the reaction (assayed with ATP-regenerating system) was initiated by the addition of ATP to the azide-trapped coupled particles oxidizing succinate either in the presence or in the absence of the uncoupler. High ATP hydrolytic activity was revealed when the reaction was started by the simultaneous addition of the ATP plus uncoupler to the particles generating delta muH+. The energy-dependent conversion of the enzyme into latent uncoupler-activated ATPase was prevented by free ADP (Ki approximately 20 microM) and was greatly enhanced after multiple turnovers in oxidative phosphorylation. The results suggest that the catalytic properties of F0 x F1 are delta muH+-dependent which is in accord with our hypothesis on different conformational states of the enzyme participating in ATP synthesis or hydrolysis.  相似文献   

10.
Evidence that the 116 kDa component of kinesin binds and hydrolyzes ATP   总被引:4,自引:0,他引:4  
Kinesin was prepared from bovine brain as described previously for studies of translocation. A major component of kinesin, (116 kDa) was shown to undergo specific photocrosslinking with [alpha-32P]ATP, indicating it was an ATP-binding polypeptide. A low ATPase activity associated with kinesin was stimulated up to 5-fold by microtubules to a specific activity of 14 nmol . min-1 . mg-1. N-Ethylmaleimide inhibited both [alpha-32P]ATP binding to the 116 kDa polypeptide and microtubule-stimulated ATPase activity, suggesting that the 116 kDa polypeptide was the catalytic subunit of kinesin. Though the ATPase activity associated with kinesin is low, it may be sufficient to support motility assuming it is coupled to the velocity of translocation.  相似文献   

11.
12.
An RNA-dependent ATPase from Chlamydomonas reinhardII   总被引:1,自引:0,他引:1  
An RNA-dependent ATPase has been isolated from extracts of Chlamydomonas reinhardii. The enzyme catalyzes the hydrolysis of ATP, dATP, CTP and dCTP to the corresponding nucleoside diphosphate and Pi in the presence of Mg2+ or Mn2+ and an RNA cofactor. In 1 mM MgCl2 it displays the greatest activity with poly(A), poly(I) and poly(U); and somewhat lower activity with poly(C) and T7 RNA. Although the enzyme is active with single-stranded DNA, all the single-stranded RNAs tested were significantly more effective cofactors than any of the single or double-stranded DNAs tested. A comparison of this ATPase with other RNA-dependent ATPases indicates that is has more in common with the ATPase isolated from the nuclei of animal cells than with the RNA synthesis termination protein rho, the major RNA-dependent ATPase from Escherichia coli. Although chloroplasts of C. reinhardii are known to contain many bacterial-like gene expression components, the presence of an enzyme with close homology to the E. coli rho protein was not detected.  相似文献   

13.
L M Boxer  D Korn 《Biochemistry》1980,19(12):2623-2633
We have purified to near homogeneity the single DNA-dependent ATPase activity that we have identified in extracts of KB cell nuclei. The protein structure of the enzyme was defined by sodium dodecyl sulfate gel electrophoresis, which revealed a single protein band of 75000 daltons that was coincident with the profile of ATPase activity resolved by the final step of agarose-ATP chromatography or by isoelectric focusing. The enzyme has a pI of 8.5, a Stokes' radius by gel filtration of 3.8 nm, and a sedimentation coefficient in high salt of 5.3 S. At low ionic strength the enzyme activity sediments at 7.0 S, suggesting that it may dimerize under these conditions. The purified enzyme has a specific activity of 5.9 X 10(5) nmol of ATP hydrolyzed per h per mg of protein and is devoid of endonuclease, exonuclease, RNA or DNA polymerase, nicking-closing, and gyrase activities at exclusion limits of 10(-6)-10(-8) of the ATPase activity. The enzyme can hydrolyze only ATP or dATP, to generate ADP or dADP plus Pi, but the other NTPs and dNTPs are competitive inhibitors of the enzyme with respect to ATP. A divalent cation (Mg2+ greater than Mn2+ greater than Ca2+) as well as a nucleic acid cofactor is required for activity. Single-stranded DNA or deoxyhomopolymers are most effective, but blunt-ended linear and nicked circular duplex DNA molecules are also used at Vmax values approximately 20% of that obtained with single-stranded DNA. Intact duplex DNA and polyribonucleotides are unable to support ATP hydrolysis. Velocity gradient sedimentation studies corroborate the interpretations of the kinetic analyses and demonstrate enzyme binding to single-stranded DNA and nicked duplex DNA but not to intact duplex DNA. Although we have not succeeded directly in demonstrating DNA unwinding by this protein, preliminary results suggest that in the presence of ATP, the ATPase can stimulate the reactivity of homogeneous human DNA polymerases alpha and beta on nicked duplex DNA substrates.  相似文献   

14.
Characterization of alpha 2 beta 2 and alpha 2 forms of kinesin   总被引:12,自引:0,他引:12  
Bovine brain kinesin separates into two components on sucrose density gradient centrifugation. The predominant component is a heterotetramer of two 120 kDa alpha subunits and two 64 kDa beta subunits with an sedimentation coefficient of 9.6 S and a low Vm rate of microtubule-stimulated ATPase of 1.3 +/- 0.5 sec-1 at 25 degrees, pH 7.0. The minor element is a homodimer of two alpha subunits without beta subunits with a sedimentation coefficient of 6.9 S and a higher Vm rate of microtubule-stimulated ATPase of 7.0 +/- 1.9 sec-1. Microtubules stimulate the rate of release of ADP from the active site of the tetramer, but the rate of release is not fast enough to account for the rate of steady state ATP hydrolysis. Further complexity is indicated by biphasic release kinetics. In spite of the large difference in Vm ATPase rate for the two species, both drive the sliding of sea urchin axonemes over glass surfaces at the same velocity.  相似文献   

15.
Salinity stress caused a decrease in the relative amount of the subunits of the hydrophilic head of the tonoplast H±ATPase from leaf cells of Valencia orange [Citrus sinensis (L.) Osbeck]. In parallel, a 35 kDa polypeptide appeared in the tonoplast, which could be separated from the tono-plast H±ATPase and cross-reacted with an antiserum against the catalytic subunit A of the tonoplast H±ATPase. This polypeptide seems to show ATP hydrolysis activity and is considered to be a product of proteolytic breakdown of subunit A. This indicates an increased turnover of the tonoplast H±ATPase of Valencia orange under salinity stress.  相似文献   

16.
1. Preincubation of the ox heart chloroform-released mitochondrial ATPase with MgATP results in a time-dependent inhibition of ATPase activity. No re-activation occurs when MgATP remains in the preincubation medium. The enzyme activity returns when all the MgATP in the preincubation system has been hydrolysed. 2. The mechanism of the MgATP-induced inhibition was examined. Inhibition occurs on incubation with MgATP or other hydrolysable nucleotides. Incubation with MgADP or Pi does not cause any inhibition. Neither freshly bound adenine nucleotide nor Pi is associated with inhibited enzyme. The rate of MgATP-induced inhibition correlates with the rate of ATP hydrolysis in the preincubation medium. Changing the rate of ATP hydrolysis at a fixed concentration of ATP also changes the rate of MgATP-induced inhibition by the same proportion. The inhibition is thus related to the ATP-hydrolysis process itself. 3. We propose that intermediate enzyme species of the ATP-hydrolytic sequence can undergo a conformational change to form inhibited species. The kinetics of the inhibition suggest that a substrate-activation step is involved in ATP hydrolysis and MgATP-induced inhibition. 4. The effects of the nature of the preincubation medium on the process of MgATP-induced inhibition and its reversal were examined.  相似文献   

17.
DEAD-box proteins have been implicated in a wide array of cellular processes ranging from initiation of protein synthesis and ribosome biogenesis to mRNA splicing. Here, we report the isolation, biochemical characterization and crystallization of the first thermophilic DEAD box protein, Hera (heat-resistant RNA-dependent ATPase) from Thermus thermophilus HB8. The molecular mass of the deduced Hera protein sequence (510 amino acid residues) is 55.95 kDa. Hera possesses all of the conserved motifs found among the, DEAD-box RNA helicases. In addition, it also has a motif characteristic of the protein component of ribonuclease P at its C-terminal region (residues 372-386). Hera appears to be non-specific with respect to the RNA species that triggers ATPase activity. Nevertheless, at high temperature, ATPase activity is at a maximum when bacterial 16 S rRNA or 23 S rRNA are used as the substrates. Moreover, a deletion of the RNase P protein motif significantly reduces the ability of Hera to hydrolyze ATP in the presence of RNase P RNA. Hera has a specific ATPase activity of 480 units/microg and therefore, displays the highest ATPase specific activity reported for a protein of the RNA helicase family. We determined that Hera shows helix-destabilizing activity, and that the RNA-unwinding or helix-destabilizing activity of Hera is coupled to ATP hydrolysis. Since Hera is a stable thermophilic protein and we have obtained crystals of it diffracting beyond 2.6 A, the possibilities for structure determination of a full-length RNA-helicase are open.  相似文献   

18.
The effects of lauryl dimethylamine oxide on the Rhodospirillum rubrum H+-ATPase have been studied. This detergent activates Mg2+-dependent ATP hydrolysis in the isolated R. rubrum F0-F1 34-fold, whereas the Ca2+-ATPase activity is only slightly modified. ATPase activation by lauryl dimethylamine oxide enhances the effect on ATP hydrolysis exerted by free Mg2+ ions. Concentrations of free Mg2+ in the range of 0.025 mM favor activation while higher concentrations inhibit ATPase activity by approximately 70%. Steady-state kinetic analysis shows that lauryl dimethylamine oxide induces a complex kinetic behavior for Mg-ATP in the chromatophores, similar to the untreated F0-F1 complex. The initial rate value for Mg-ATP unisite catalysis was found to be 6.3 times higher (3.5 X 10(-3) mol Pi per mol R. rubrum F0-F1 per second) in the presence than in the absence of detergent, where the initial rate was 5.5 X 10(-4) mol Pi per mol R. rubrum F0-F1 per second. These experiments show that lauryl dimethylamine oxide shifts the cation requirement for ATP-hydrolysis of the isolated R. rubrum H+-ATPase from Ca2+ to Mg2+ and that it activates both multisite and unisite catalysis. Results are discussed in relation to the possibility of a regulatory role by Mg2+ ions on ATP hydrolysis expressed through subunit interactions.  相似文献   

19.
We report the purification and characterization of a novel DNA helicase from calf thymus tissue. This enzyme partially copurifies with DNA polymerase epsilon* through many of the chromatographic procedures used to isolate it. The enzyme contains an intrinsic DNA-dependent ATPase activity. It can displace short oligonucleotides annealed to long single stranded substrates, in an ATP-dependent reaction. Use of this assay indicates that the DNA helicase translocates in a 3' to 5' direction with respect to the substrate strand to which it is bound. Maximal efficiency of displacement is accomplished by hydrolysis of (d)ATP as cofactor, however, (d)CTP can also be utilized resulting in a 5-fold decrease in the level of displacement. Displacement activity is enhanced by the presence of saturating amounts of Escherichia coli single stranded DNA-binding protein, not affected by the presence of phage T4 gene 32 protein, and inhibited by human replication factor A. The DNA helicase has a molecular mass of approximately 104 kDa as measured by denaturing gel electrophoresis, and an S value of 5.4 obtained from glycerol gradient sedimentation. Direct [alpha-32P]ATP cross-linking labels a protein of molecular mass approximately 105 kDa, providing further evidence that this polypeptide contains the helicase active site. In view of the differences in the properties of this helicase from four others recently identified in calf and designated A through D, we propose the name helicase E.  相似文献   

20.
Ciliary 30S dynein of Tetrahymena was investigated with regard to modification of the ATPase activity with N-ethylmaleimide (NEM) in the presence of ATP. The elevation of enzyme activity due to the modification was largely repressed by addition of ATP at a concentration of 1 mM or more during preincubation of 20 h at 0 degrees C. The repression was highly specific for ATP, though ADP and AMPPNP showed slight repressive effects. After complete hydrolysis of ATP added to the preincubation mixture, however, elevation of 30S dynein ATPase activity occurred. It is suggested that the repression by ATP of NEM-induced elevation of 30S dynein ATPase activity is simply due to a protecting effect of ATP on certain SH group(s) (probably SH1-type group(s)) around the active center of 30S dynein. When 30S dynein was maximally activated by modification with NEM, ATP or ADP did not significantly promote the inactivation of the modified enzyme upon further treatment with NEM, indicating that 30S dynein lacks the characteristics of SH2-type groups. On the other hand, ATP also showed a protective effect against inhibition of native 30S dynein by high concentrations of NEM. High concentrations of ADP and AMPPNP were inhibitory to 30S dynein ATPase activity but inorganic phosphate did not inhibit 14S or 30S dynein ATPase activities at all.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号